
T H E  GENERAL THEORY OF VISCOSITY OF TWO- 
PHASE SYSTEMS. 

Mr. Emil Hatschek read a Paper on “ The General Theory of 
Viscosity of Two-Phase Systems.” 

Notwithstanding the importance of this physical constant, and the fact 
that the literature of the subject contains many records of viscosity deter- 
minations, and of attempts to explain changes in heterogeneous systems 
on the basis of such measurements, the author is not, with one exception, 
aware of any attempt to treat the internal friction of such systems mathe- 
matically beyond two papers (I) published by him in 1910-11. The reader 
is referred to these for full details, only the main features and the results 
being reproduced in the present paper. 

The first paper deals with the viscosity of a liquid, in which are suspended 
undefotmable spheres of small diameter, which occupy in the aggregate 
only the smaller part of the total volume of the system, say not more than 
40per cent. of it. Fig. I shows such a system diagrammatically, the layer 
of liquid being contained between two parallel plates, one of which is 
stationary, while the other is moved in itself with a constant vclocity. It 
is obvious that the liquid at the upper pole of each spherical particle moves 
with a somewhat greater velocity than at the lower pole, which is equivalent 
to a translatory movement of the particles with a velocity equal to half 
the difference of the two velocities prevailing at the two poles. By carrying 
through the calculation on the basis of this reasoning, an expression is 
obtained for the viscosity of the whole system. If we call- 

q viscosity coefficient of liquid (or continuous phase), 
Total volume of particles (or disperse phase), 

Total volume of system f the ratio 

11’ viscosity of system, 

the latter is given by the forinula- 

?.I1= ?.I (I + 4’5f) . . . . . . . . . (1) 

The radius and the distance of the particles do not appear, and the formula 
accordingly states that the viscosity of a system oj- undeformable particles 
suspended in a liquid is independent of the size of the particles and is a linear 
function of the volume of disperse phase o d y .  The only qualification necessary 
is the following : Stokes’s formula is employed in the calculation, and the 
formula (I)  accordingly holds good only between those limits between which 
Stokes’s formula holds good. 

An almost identical result had been obtained by A. Einstein (2) in I*. 
This paper deals with the determination of Avogadro’s number by thermo- 
dynamical methods, and incidentally Einstein obtains the following expression 
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THE GENERAL THEORY OF VISCOSITY 81 

(using the same symbols as before) for the viscosity of a liquid with small 
spherical particles suspended in it- 

? ) x = q  (I +f) . . . . . . . . . . (2)  

The formula is therefore functionally identical with the author’s formula (I), 
and only differs in the numerical constant, which is I instead of 45.  

FIG. I. 

Einstein’s formula was checked experimentally by M. Bancelin in 191 I (3). 
Certain discrepancies led Bancelin to correspond with Einstein, and the 
latter revised his calculations and altered the numerical constant from I 

to 2-5. Bancelin used spheres of gamboge made according to Perrin’s 
method (precipitation of an  alcoholic solution and fractionation by ccntri- 
fuging) and found that the viscosity of a suspension of such particles in water 
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82 THE GENERAL THEORY OF 

w a s  indePeitdenl of the diameter of ihe particles atid imreased i n  linear ratio 
with  the volume of disperse phase, up to 3 per cent. of the latter. The constant 
however was found to be 2-9. The volume of disperse phase was deter- 
mined by weighing, a method open to certain objections to be dealt with 
further on. 

The author’s formula was tested by Wm. Harrison (4) with suspensions 
of starch granules of very different origin, and therefore diameter, in water. 
This investigator found a n  increase i n  viscosity independent of the size of fhe 
particles (i.e., the same increase with all starches used) and in linear raf io  
lo the volume of disperse phas? present, with a numerical constant of 4-75 
instead of 4‘5. He also determined the true volume of disperse phase ; 
weighing being out of the question, in view of the swelling of the starch, 
he centrifuged the suspensions in graduated tubes, and read the volume 
of disperse phase directly. The volume thus determined is no doubt some- 
what too large, on account of the probable voids between the grains, but 
is certainly directly proportional to the true volume. Harrison found the 
formula to hold good up to 30 per cent. of disperse phase. 

The systems just referred to are of course suspensions with a disperse 
phase consisting of particles very much larger than those which occur 
in colloidal solutions of the suspensoid class. A number of viscosity deter- 
minations on such sols are also to be found in the literature. In many 
cases these have been made on systems of the low degree of concentration 
which is generally characteristic of such sols, so that the variations in 
viscosity which have been measured are frequently very little in excess 
of the errors of experiment. A series of determinations free from objections 
-except certain difficulties in dealing with ultra-microscopic particles which 
are inherent-has recently been published by Sven Oden (5). The sols used 
were sulphur sols, made by Svedberg and Oden’s method of fractionated 
coagulation, which permits the preparation of sols having particles of uniform 
size, and of considerable concentration, up to 50 per cent. by weight or about 
25 per cent. by volume. The measurements show two important divergencies 
from the theoretical result : (I) the viscosity above a certain concentration 
grows inore rapidly than in linear ratio, and (2) the viscosity of sols con- 
taining smaller particles is, for equal weights, higher throughout than 
that of sols with larger particles. 

At the present moment there appears to be no satisfactory explanation 
of the first discrepancy. I t  is at least possible that it may be in part due 
to the use of the ordinary capillary viscometer, and measurements at much 
lower rates of shear in a different apparatus are therefore required to settle 
this point, Such measurements and the apparatus used will be referred 
to further on, As regards the higher viscosity of more highly disperse 
systems, i.e., such containing smaller particles, the case is different, and 
several points of high theoretical interest are raised by it. It must be 
remembered that all that is definitely known is the weight of disperse phase, 
whereas the formula, or any conceivable mathematical expression, contains 
the volume. As regards this, certain well-known assumptions are always 
made in ultra-microscopic determinations, viz., that the particles are of ;r 
simple geometrical shape, necessarily assumed to be the same for large 
and small particles, and that the density of ultra-microscopic particles is 
the same as that of substances in bulk. The further assumption that, for 
equal weights, disperse systems of different degrees of dispersity also contain 
equal volumes, is a necessary corollary of the previous ones. 

A s  is well known, neither of the two assumptions is capable of proof. 
The examination of microscopic-as compared with ultra-microscopic- 
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VISCOSITY OF TWO-PHASE SYSTEMS 83 

precipitates shows, however, that particles of different sizes may, and very 
generally do, have very different shapes, and therefore very different CO- 
efficients of friction or resistance when moving in a liquid. 

This question, which may well arise in the case of many sols, is however 
practically eliminated in that of the sulphur sols examined by Sven Oden, 
as a spherical shape is reasonably certain in these sols Nevertheless, there 
are extremely strong grounds for the view that the efective volume is not 
constant, i.e., simply proportional to the weight, for different degrees of 
dispersity. It is quite generally supposed that such particles as are here 
considered are surrounded with an adsorption envelope, which moves with 
them, so that the effective volumc of the particle is the sum of two factors : 
volume of actual disperse phase (probably, but not necessarily proportional 
to the weight) plus volume of adsorption eiivelope. 

The aggregate volume of these adsorption envelopes is the product of 
their thickness into the total surface of the disperse phase. If the thickness 
is constant for a given system, it  follows at once that the aggregate volume of 
adsorption envelopes and therefore the effective volume o j  disperse phase increases 
wi th increasing dispersity, as found by Oden. The two sols investigated by 
the latter were a sol with submicroscopic particles of 100 pp diameter, deter- 
mined ultra-microscopically in the usual way, and an amicroscopic sol with 
particles estimated at 10 pp diameter. It is of course possible to calculate 
from these data and the observed ratio of the two viscosities the thickness 
of the adsorption envelope. This has been done by the author (6), and 
the figure found is 0.87 pp. The value has nothing inherently improbable, 
and the only striking feature is that so slight an envelope is sufficient to 
increase the effective volume so considerably. 

The adsorption envelope, while it accounts perfectly for the greater 
viscosity-given equal weights of disperse phase-hardly explains the other 
discrepancy between the theoretical conclusions and the observed results in 
sols, viz., the more than linear increase of the viscosity with growing concen- 
tration. Several explanations, all tentative, suggest themselves. One is the 
possibility of particles impeding one another at much lower concentrations 
than those assumed, while the formula disregards mutual disturbances. 
Another is the assumption that a mere translatory motion of the particles in 
the direction of shear does not fully represent conditions, as an additional 
rotary motion of the former is quite conceivable : this would call for further 
energy, which would increase with decreasing distances between particles 
and accordingly with increasing concentration. 

It finally appears possible, as already mentioned, that the capillary visco- 
meter may give rise to disturbances, and it appears at least eminently 
desirable to determine the viscosity of heterogeneous systems by some 
alternative method-even if this should lack the convenience of the tran- 
spiration method. For this purpose the author has adapted the apparatus 
used by Couette (7) for determining the viscosity of water at  low rates of shear. 
Owing to the very great difficulties experienced in bringing the apparatus to 
its present convenient form, and to pressure of other work, only a few results 
are available at the time of writing, which will be given later. The method 
appears even more essential for obtaining an insight into the mechanism of 
the processes in a system of two liquid phases, such as we shall have to 
consider next, and the description of the apparatus therefore follows the 
theoretical consideration of this class, the emulsions and emulsoids. 

The systems considered so far all contain a disperse phase which is not 
deformable, and which amounts to considerably less than half the total 
volume of the system. It is by no means necessary that the disperse phase 
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84 THE GENERAL THEORY OF 

should be, in bulk, a solid substance : small globules of liquid widely sepa- 
rated would undergo no appreciable deformation during shearing, and the 
whole reasoning would apply to them equally. 

If we are therefore to account for the peculiarities, and more especially 
the 1 high viscosities, of systems like emulsions, which are known, and emul- 
soids, which for many cogent reasons are considered, to be systems of two 
liquid phases, we have to make a further assumption, namely that the disperse 
phase occupies a considerable part, say at least one half and generally very much 

A 

B 
FIG. 2. 

more, of the total volume. It is obvious that such phase ratios are possible 
with two liquid phases, and equally obvious that the system must have a 
perfectly definite geometrical structure. 

If we imagine a system of spheres in a given space, and let their radius or 
their number increase until they are in closest contact, i.e., until each sphere 
touches twelve others, the aggregate volume of the spheres is 74-04 per cent. of 
the total space occupied. The twelve points of contact are the centres of 
the faces of a dodecahedron (two different dodecahedra are possible, into 
which question it is not necessary to go), and, if the volume of the spheres is 
increased further, flattening must take place and the faces of the dodeca- 
hedron be developed more and more. 

While the'author has found a general treatment of the viscosity of a 
system of two liquid phases impossible, it is comparatively easy to proceed 
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VISCOSITY OF TWO-PHASE SYSTEMS 85 

synthetically from the stereometric considerations just developed. Fig. 2 A 
shows diagrammatically a film of such a two-phase system, the disperse phase 
being shown white and the films of continuous phase black. As explained, 
the former assumes necessarily the shape of dodecahedra, the hexagons being 
sections through these. If the system is now sheared, the polyhedra must 
slide over one another, and in a certain position the system must assume the 
altered shape shown in Fig. 2 B. A simple calculation, for which the reader is 
referred to the original paper, will show that such rectangular prisms fill 
space again continuously and are therefore possible. 

If shearing is continued, the system has of course a tendency to assume 
its original shape. The factor tending to bring about this return is the inter- 
facial tension between the two phases, which would reduce the interface to 
the minimum possible in the circumstances, i.e., to the polyhedral shape. 
This tendency, however, is counteracted by the viscosity of both phases, 
principally by that of the disperse phase, and it is therefore quite possible to 
conceive that, above a given velocity of shear, there may not be time for  this 
return to the polyhedral shape and that the system would remain as shown in 
Fig. 2 B. 

In that event it is obvious that shearing only takes place in the horizontal 
films of confinuous phase, and it is a simple matter to calculate the work done 
on this assumption. It is also obvious that neither the interfacial tension 
(which has not time to act) nor the viscosity of the disperse phase enter into 
the calculation, which is given in exteitso in the original paper. The formula 
finally obtained, if the viscosity of the continuous phase is taken as unity, is 
the following- 

in which the symbols mean :- 

q = co-efficient of viscosity of system, 

A = ratio : Volume of system 
Volume of disperse phase' 

The curve corresponding to the above equation is shown in Fig. 3, and the 
similarity to the concentration-viscosity curves obtained with a number of 
sols, such as caseinogen, rubber, nitrocellulose, etc., is striking without 
detailed comparison. 

The question naturally arises at  once, whether the assumption of a 
minimum or critical velocity of shear is tenable, i.e., whether shearing under 
ordinary conditions does proceed with such a velocity that the conditions on 
which the formula is based arise. On the basis of the material available this 
question can unhesitatingly be answered in the affirmative. The rate of shear 
in the usual method, transpiration through a capillary, appears far in excess 
of the minimum, i.e., no anomalies can be observed. Even the very low rates 
of shear used in the Couette apparatus appear sufficient to bring about the 
stable condition of stress postulated in many cases. 

As regards the application of the formula, a distinction has to be made. 
In emulsions, in the strict sense of the word, it is of course possible to 
determine the volumes of both phases, either by using known amounts of them 
in preparing the emulsion, or by breaking up an emulsion of unknown com- 
position and measuring the resulting two phases. Experiments have been 
made with coarse emulsions of ordinary paraffin oil in t per cent. soap solution, 
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86 THE GENERAL THEORY OF 

prepared by the author’s method. The phase ratio was determined from the 
finished emulsion by breaking up with dilute hydrochloric acid. A 50c.c. 
burettc is filled up to the fifty mark with dilute acid, and then to the zero 

% D.P 60 7 0  80 90 95 

A = 1.666 1.428 1.250 1.111 1.052 
FIG. 3. 

40 

30 

20 

10 

mark with 50 C.C. of emulsion. Mixing at once causes breaking up, and after 
separation the volume of oil can be read off directly. The results are given 
in Table I1 and show a very satisfactory agreement. 

As is well With emulsoids the case is somewhat more complicated. 
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VISCOSITY OF TWO-PHASE SYSTEMS 87 

known, the sol of an emulsoid, say gelatine or silicic acid, must be assumed 
to consist of two liquid phases, the disperse phase consisting of drop- 
lets of what may roughly be called a hydrate or solvate of the dissolved 
substance, i.e., composed of the latter and a certain amount of the solvent 
definitely associated with it. This amount is unknown, and the volume of 
the disperse phase is obviously equally so. There is accordingly no possi- 
bility of applying the formula to such systems unless we make some assump- 
tion with regard to the volume of disperse phase, or rather with regard to the 
relation of this volume to the weight of substance dissolved, the latter being the 
factor usually known. 

The simplest assumption, and one, moreover, in entire accord with what 
we know of the closely related phenomenon of '( swelling," is that, at  any 
given temperature, a definite weight of substance takes up a constant amount 
of solvent to form together with it the disperse phase, or, in other words, 
that at any given temperature the volume of dispersefhase is a cciistaizf multiple 
of the volume-or weight-of fhe  dissolved substance. Thus, 1.4 gr. of gelatine, 
i.e., I c.c., might conceivably at a certain temperature take into the disperse 
phase say 10 or 15 C.C. of water, i.e., 1'4 gr. would form I I or 16 C.C. of disperse 
phase. 

This assumption can obviously be tested by experimental data, From the 
known viscosity of a system we can immediately calculate the phase ratio, 
by the following formula, which is a transformation of (3) :- 

' (4) . . . . , . . 
A =  (&Y 

Total volume 
Volume of disperse phase. If theamount of dissolved sub- 

stance is, as is usually the case, given in per cent., this is also a ratio with the 

A is the ratio 

and, if our assumption is correct, 
Dissolved weight, same numerator, viz. : 

there must accordingly be a cons tad  ratio betweerr the two, i.e., the phase 
ratio must be a constant multiple of the percentage contents. 

Various experimental data have been examined in this sense, and the 
results are shown in Table I. Column I shows the weight dissolved in 
per cent. ; 11, the measured coefficient of viscosity ; 111, the ratio A calcu- 
lated from the latter by formula (4) ; IV, the corresponding ratio : total 
volume : weight of dissolved substance, and finally, V, the ratio of 111 and 
IV, which, according to the assumption, should be constant. 

I t  will be seen that this constancy shows itself satisfactorily between 
fairly wide limits of concentration. With caseinogen, for instance, I gr. of 
dissolved substance produces approximately 9 5  C.C. of disperse phase, or 
I C.C. (density about 1.3) 12.3 C.C. of disperse phase. The reason why there 
are discrepancies at lower concentrations is also obvious. 4'35 gr. of 
caseinogen would only make about 41 per cent. of disperse phase, that is, 
less than one-half of the total volume. The structure on which the formula 
is based cannot yet arise at this ratio, and the system cannot therefore 
conform to it. As a general conclusion, thoroughly confirmed by experience, 
the emulsoid character, i.e., the very rapid rise of viscosity with concentra- 
tion, can, even with typically emulsoid substances, show ifself above ceriairz 
coiicentraiiorzs only : the dissolved substance plus the solvent associated with 
it must occupy more than about 50 per cent. of the total volume. Until this 
happens, the ratio between viscosity and amount of dissolved substance is 
approximatcly linear. This shows itself strikingly in all published viscosity 
curves, but the percentage at which the characteristic rapid rise of vis- 
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88 THE GENERAL THEORY OF 

2.860 
1'715 
1'457 
1.256 
1.138 

cosity sets in varies enormously in different substances, and is a measure of 
their "emulsoid " or '' lyophilic " properties. With caseinogen it begins at 
about 5 per cent., with glycogen about 25 per cent., while indiarubber 
solutions show extremely rapid rises at concentrations above the low limit of 
0.4 or 0.5 per cent. From figures given by Schidrowitz and Goldsborough 
the author calculates that, in forming the disperse phase, rubber takes up 
70 to 100 times its own volume of solvent-a figure which is not surprising 
to those familiar with the preliminary swelling of rubber in its solvents. 

Even more than in the case of suspensions, it appears desirable to study 
the viscosity of emulsions in some way which permits variations in  the rate 

22-99 
16-53 
14-17 
I 1-78 
10.56 

TABLE I .  

20 
25 
30 
35 
40 
45 

I 
4 

Glycogen Sol (F.  Botazzi and G.  d'Emico.) (10) 

3'548 
4-548 
7'370 
20'550 
62-000 

12'220 

2.685 
2.108 
1'525 
1.292 
1.161 
1.050 

5 ' 0  
4-00 
3'33 
2.85 
2-50 
2'1 I 

Y c 
U 

B 
8 
2 
s 
4 

3 

0 

c 
c .& 

1.862 
1'897 
2.184 

2.155 
2'212 

2'010 

Casein (Sodium caseinogenate) Sol ( H .  Chick and C ,  J .  Martin.) (11) 

4'35 
6-05 
7'05 
8'49 
9'39 

3'37 
6-12 
8-48 
13-66 
23-72 

8.040 
9638 
9722 
9377 
9'358 

of shear. The latter cannot be altered in the capillary viscometer, as the 
velocity of flow is settled by the dimensions of the capillary, which are in 
turn fairly strictly defined by the necessity of avoiding turbulent flow. Such 
experiments have been made by Garrett (8) on sols of silicic acid, albumen 
and gelatine : the method employed was the determination of the decrement 
of the oscillations of a disc submerged in the liquid. Apart from the com- 
plicated mathematical treatment necessary, this procedure possesses the 
grave drawback that the velocity of shear is different at every radius of the 
disc. While this is no objection in the case of homogeneous liquids, it tends 
to obscure still further the questions which arise in the investigations of 
heterogeneous systems, which may conceivably have viscosities either constant 
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c 

FIG. 4. 
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90 THE GENERAL THEORY OF 

Reading. Zero. 

230 266 

,, 
271'5 
283 

only above certain critical velocities, or altogether inconstant, i.e., the viscosity 
might even be a function of the velocity of shear throughout. 

These objections are avoided in Couette's apparatus, the form of which 
finally adopted by the author is shown in Fig. 4. A hollow cylinder A, 
which is open and bevelled at the ends, is suspended by a wire B from a 
heavy bracket C, provided with levelling screws (not shown). This cylinder 
A is coaxial with an outer cylinder D, which is provided with a water jacket 
E covered with insulating material. Two short guard cylinders, F and F' 
-closed at one end-are placed opposite the open ends of the cylinder, 
leaving a clearance of about 2 mm. between the bevelled surfaces. The 
outer cylinder D rests on a table G, which can be rotated by suitable gear- 
ing. The suspended cylinder A is provided with a mirror H, and its deflec- 
tion read by scale and telescope. 

Product of Time and 
Deflection (Reading ::%$En Deflection, i.e., ReL 

in Secs. Viscosity. minus Zero). 

136.8 
132.8 

Mean 135'8 

36 3'8 
41'5 
52 

3'2 
2.65 137.8 

TABLE 11. 

VISCOSITY DETERMINATION BY MEANS OF COUETTE'S APPARATUS. 

System : Emulsion of Paraffin i n  Soap Solution. 

A. Viscosity of Coittinuous Phase: 0'75 per cent. Soap Solution. 

9 9  

,> 
29 46 I7 

48 19 
53 24 

1632 
I577 
1620 

Mean I@ 

06 
83 
67'5 - 

When the outer cylinder is filled with a liquid and rotated, the inner 
cylinder A is deflected, owing to the viscosity of the cylindrical layer of 
liquid between A and D. The two guards F and F1 keep the liquid in the 
interior of A entirely at rest and eliminate the very complicated effect of the 
ends, which arises where a closed suspended cylinder is used, as has been 
done by some observers. I t  has been shown by Couette and others (9) that the 
rate of shear is practically uniform in the cylindrical layer of liquid, and that 
the couple tending to deflect the cylinder A is: viscosity x velocity x an 
apparatus constant. For a given wire, therefore, assuming the viscosity (as 
has been shown to hold good for water) to be independent of the rate 
of shear, the deflection divided by the angular velocity is a constant, It 
is more convenient, especially for the low velocities to which the apparatus 
particularly lends itself, to use the product : deflection x reciprocal of 
velocity, i.e., time taken for one revolution. For relative determinations 
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the apparatus can be gauged with water at a definite temperature exactly 
like the capillary viscometer, i e . ,  the above product is determined. For the 
same wire, these products for two different liquids are in the ratio of 
the viscosities, and the specific gravity does not, as in .the capillary 
apparatus, enter into the calculation. 

The sensitiveness of the apparatus may be pushed to any desired degree, 
by using thin wire and a distant scale. The time per revolution is determined 
by stop watch, by observing the passage of a mark on the cylinder through 
some non-parallactic sight, of course counting an appropriate number of 
revolutions. The lowest angular velocity used by the writer so far has 
been about 3'38' per second, viz., one revolution in cy~ seconds. 

As a first instance of measurements by this apparatus may be mentioned 
the determination of the viscosity of an emulsion referred to above. This 
was an emulsion of ordinary lamp paraffin in a 3 per cent. soap solution, 
prepared by the author's method (12). This emulsion is fairly coarse, and 
contains even macroscopic oil globules, so that the use of the capillary 
viscometer is impossible. (N.B. This has been tried, but with a great range 
of instruments it was impossible to obtain concordant readings.) The full 
data are given in the Table I already referred to above. 

If the viscosity of the continuous phase is taken as unity, the viscosity q of 
the emulsion is 1% : 135.8 = 11-85. 

. -~ 

calculated from formula (4) is Total volume The ratio A =  
Volume of disperse phase 

11'85 - accordingly A = Io.8G - 1.302. 
The volume percentage of disperse phase is therefore IOO : 1'302 = 76'7 

per cent. 
Fifty C.C. of the emulsion was broken up by hydrochloric acid and gave 

10.1 C.C. of water and 39.9 C.C. of oil, or 798 per cent. of the latter, a satisfactory 
agreement with the calculated value of 767 per cent. 

Further work on emulsoid sols is in progress, but the results must be 
reserved for a future communication. I t  is however possible to state already 
that investigation, particularly on gum arabic and gelatine sols, shows that 
these possess different viscosities at different rates of shear below certain 
limits. The need of kinetic mefhods, so strongly emphasized by Dr. Ostwald, 
is equally pronounced in this particular direction. The capillary viscometer 
only furnishes points, i.e., the viscosity of a given system at given tem- 
peratures, and at  those velocities of shear which establish themsehes automatically 
in coilformity with the dimensions of the apparatus and the gravity of the liquid. 
To  gain an insight into the mechanism of the viscosity of heterogeneous 
systems, something more is wanted, viz., investigation at different rates 
of shear to be altered at will. 

In conclusion, the author may perhaps be permitted to express the hope 
that the theoretical and experimental study of the viscosity of heterogeneous 
systems may ultimately furnish a starting-point for a general theory of the 
viscosity of homogeneous systems. The term " homogeneous " is after 
all only relative, and a solution containing hydrates with many molecules 
of water may quite probably be treated by the same mathematical methods 
as similar systems containing microscopic or ultra-microscopic aggregates, 
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