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The Algebra of Multi-linear Partial Differential Operators.
By Captain P. A. MacMaHoN, R.A,
[Read Dec. 8th, 1887.]

§1.

In Vol. xvin., p. 61, Proc. Loud. Math. Soc., I discussed a linear
partial differential operator which was defined by

(/“r v; m, 'n) E.é:(f‘ +SV)A'- n 3,,",,;

Ac,m = 2 ——M!__ a"ob‘lc‘ld" e (

Kooyl gl oL,

Zems)

These operators were shown to form an alternating group, in that the
alternant of any two of them resulted in another operator of the same

class. :
It will be convenient to call the successive operation of two
operators P and @ their outer multiplication, and to write it

(P) (@),

also their symbolic algebraic multiplication may be called their
inner multiplication, and may be written

(PQ),

and the explicit operation of P upon @, the latter being considered as
a function of symbols of quantity only, may, for reasons which will
subsequently appear, be termed the symbolic addition of P and @,

and may be written (P+Q).

Of these three operations the second only is in general commutative.

‘We have then
(P)(Q) = (PQ) +(PtQ),

P and @ being any linear operators whatever, and the main theorem
(loc. cit.) was that, P and @ being any members of the multi-linear
class above defined,

(PY(@—(Q)(P) = (P1R)—(QtP),

= an operator of the same class.
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This result expresses that the alternant of P and Q, viz.

(PY(Q)—((P),

is another operator of the same general class, and hence the character-
istic property of these operators, that they form an alternating group.
The maultiplication theorem which was auxiliary to this result was

(#, V5 Wy ) (py v mym) = {(W, "5 m, ') (py v mym)}
+ E {ovrm—1) & 4o ] {0049 v} Auon-1Byan,
which by analogy may be written
W', v; m, "fl) (B, v mym) = {(#, V5 W, n). (p,v; m,m)}
+ { (m’+m—-1)%’,, Vi ptav, vy m+m—1, n’+n};

the operator last written is a multi-linear operator of six elements
which arises from the theorem

(l“"y V5o, 'n") T (Fv vy m, 77’)
= {(m’+m—1) %, Vi ptuv, v m+m—1, n’-{-n} .

In the further development of the algebra, operators of 8, 10, 12, ...
elements will arise; in fact

", vy m', n") t {(/“’: v my W)t (pu, v; om, '"')}

= W)t [t 3 (o 4m—1)E 4 (7 4e) v ]

X {I»‘ + (";",' ?l'+8) V} Au" +3,mem-1 aan"ns’nn a]

sm o

=3 {(M"+m’+m—2)’—‘-,;+sv"} {(m’+m—1)&’,+n"v'+sv'}
m m

=0

X {P-{-(’I’Lﬂ"l"nl) V+3V} Au,m"un'uu-ia

An s’ +nvad
or, finally, we have a formula introducing a multi-linear operator of
8 elements, viz. :

(", v"; m",n") t {(f": vy myn) t (e v m, "1‘)}
= [(m"+m’+m—2) %T» v’ (m' +m—1) ’%L—,-l-n"v', V'3

pt @ +0) v, vy w7t +m =2, n”+n'+n].
vOL. XIX.—No, 312. I
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The next formula involving an operator of 10 elements is, without
difficulty, found to be

(,‘m’ V’”; m/n’ n/") _'_ [(P", )l”; ’ln”, nl/) 1' {(P,,' V'; m;’ ﬂ:’) 1_ (’l, v; m, ”)} ]

ll

(" +m" + o' +m-—3) 1 v
(m"+m’ +m—2) +m”’v", v’

(m' +m~1) ”E-, +("+n) v, v

pt (@ 0"+ )y, v
L+ +m’ +m—~8, n”+n’+u'+n )

where for conciseness the pairs of elements on the right-hand side
have been written underneath one another.

By induction, the law of formation of the successive pairs of ele-
ments is easily established.

SEcrioN 2.

Explicit operation of a siz-element upon a four-element operator.

Denoting by P, @, R, any three four-element operators, we have

{PTQtR} = {(P)(Qt B} - {(PQ)+(B)}
= {Pt(QtE)}—{(PQ) t E},
showing that P, @, and R are non-associative as regards symbolic
addition, and this may be regarded as a theorem either for the ex-
pression of the explicit operation of the six-element operator (Pt @)
upon the four-clement operator I, as a resanlt of explicit operations
performed only upon I2; or as the expression of the explicit operation
of the symbolic product (PQ) upon B by means of explict operations
without the prior performance of symbolic multiplication.

We may write the formula as follows,
(PQtR) = {P+(QtB)}—{(P+Q)t R},
also (B) (P+ @) —(P+Q)(R) = {R+(P+Q}—{(PtQtR}
= {Rt (PtQ)} - {P+(QtR)} +(PQtR);

go that, if I be lineo-linear, its alternant with (P+@Q) is expressible
by means of two operators of eight elements each.
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Section 3.

The general multilinear operator ma,y be expressed in terms of the
lineo-linear operators

dy= (1,05 1,\) = a0, + 0.0, , +0:00,,,+
for 0 =% h!d"_ + hﬁd“? hyds s +..
a7 g, a ) a‘

where %, is the product 'of af, and the total symmetric function of
weight s of the roots of the equation

%= gt — " 'ttt —... =0 (n=);

and hence
PAo, im0, +(4+v) 41, 0s, , +(n+20) 4, - O+ ...
SR E SV P
) Ay io dm,—I’:: ,.,3+‘Zo dua=. }
o+ dynf - ,,..ﬁ*f%‘:,-d,.u—...}

= Fé;oﬂd" +-{ (r+v) Ax,m }" “‘FAO' = } duny

0

+ {<p+2v)‘1' *— (4 +5) **h1+p.“——° 21} dus
0 0
+......
A-n. m Au- m s 4 , m

+ {(p-{-sv) e —(upor—) ol g () } Ao,

+eens . ’
Now, since %u‘" =4, =4, i+ Ay, 2=

wl = = 1 + 4 h, h: mg+."
% o 0 ’

We find, by multiplication and comparison of the coefficients of o',
m—1 1 hy ;
— - .!_A +.. . '

Al,m-l a 'Al, l -1,m ( ) 31

*1 on""
)
12
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further w' ' = — A4, +24; . 2—34, .2+ ...,
u"‘“’u’ _ - Al, m-l+ 2A’, m-1 w—3As, m-1 m,'*' sesy
therefore

( Al m+2A-9 md— 3A3,,,,¢’l} +.. )(a +%— 3. )

(]

= — A|,|:|<l+2A2,m-l {U"‘3A3’m-| wg+ eey
therefore

1 h 51 Pam
S'A'l,"l-l= SG;‘AJ,m_(S_l) 'jAa-],m""--""(_) 1’;'I'Al,m;

0 0

whence the coefficient of d,,, is

(’m{ /I.+SV) 2, m-1
and the operator becomes
'E" (m -1

s=0

;.t-l-sv) V: FRRY A

The operator in the theory of pure reciprocants now takes the simpler
and, in some respects, more convenient form

2ad, + 3bd, + 4eds+ ... .

Skerion 4.
The sub-group of Operators of Two Elements.

A special case of the gencral operator arises when the second ele-
ment v is zero; then we may without loss of generality put p equal
to unity, since it is common to every term, and we may represent the
operator (1, 0; m, n) by the shorter notation (m, n).

The multiplication theorem is

(m', w)(m, n) = {(m n’)(m, 'n,)I + m—+L (' +m—1, n'+n),

an identity in Whlch only operators of two elements occur.

This class thus constitutes an algebraic group in the sense that
algebraic operations produce operators which may be always expressed
by operators of the same class.

For the alternant of (¢, »'; m/, #’) and (m, n), we find

W, v'5 w0, w)(m, w) —(m, ) (W, v'; m/, n)
= (1 13 m +m~1, n'4n),
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—mtm=1)§E L oy
where mpm=(m'+m 1){m, m(p +nu)},
y _m=1,
V=T

This alternant will vanish, if g, = », = 0.
Case L—If +' = 0, then
m’ = m, or m = 1l—m,
leading to the results
(m, n) (m, n) —(m, n) (m, v') =0,
1 —m, o) (m, n)—(m, 0)(1—m, n’) = 0.
Case IT.—If »' =1, then

n
m—3’

!\lt\

leading to
(n, m—1; 1, #'y(m, ») = (m, n)(n, m—1; 1, 2") =0.
Thus, in general, (m, n) has the three commutors
(m, n),
(1—m, ),
(n,> m—1; 1,n");
the alternant is given by

(', w), (my m) | . (m +m—1)(m—m) (m' +m—1, v’ +n),

(m', w'), (m,n) m'm
to which may be added the result
(m”, u”), (w, %), (m,n)
", "), (w, ), (m,n)
(m”, n"), (m, ), (m,n)

= (m'-l-m—})(m—m') {(m", 2") (W' +m—1, n;+n)}

mm

+ (m"-l-m'—l) (m'-'nr") {(7”:, n) (m"-f-m'—-l, 'n"-f-n')}

g
mm

NG 1),,(m” —m) {(m, @) (m+m”—1, nt+n")}.
mm
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SectioN 5.
Let =, p, be any two members of the alternating group, and further

(m) (po) — (po) () = py,
(’r) (P:) = (p) ("’) = py,

(”) (Pm) (Pm) (") - Pm+l ’

we have then the known theorem

(7" (o) = (o) () + (o) (4 22 1)

Ga) ().

If the subject of operation be previously operated npon by p,, we have

(™) (o) = (o) (7)1 { (o) (1) + () (0} ()"
+ 20 (@) +2 () + (B (0} (1)

-which may be symbohcally written
(=) Go)'=(p+p) (1) +n (o +p)' (r)+ LEZL) oy (mye2
wherein (p+p)* denotes

PP+t (o) pr-) + L

Let us assume

()" (p)* = (B0 (=) +n () (r)= 4 22D By (ay-rs

...]_)

(Ps)(pen) + ..

and then (r)" (b0 = (p)° ()" (o) +n (3¢)' (7" ()
+ 20D Gy (r2 (o -

or, by a previous theorem,
()" (po)*** = (Fp +p)° ()" + 7 (2p-+p)' (m)"!

+ 20D Gptpy (myt+ .

201 9+l — a0l
= (Zpy mr+n (30 @+ 202D Syt s
or, the law assumed true for the expansion of ()" (p,)* is equally
true for the expansion of (7)" (p,)’'*1.
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Hence, by induction, the general law is established.
In particular, if (x) = 0,

(m)" (po)' = (Sp)™
‘We may write the result in the form

(7)" (po)* = Gp+m)";

and we easily reach the companion theorem

(po)* (m)" = (m—Zp)"
More generally

F@ ) = @ f )+ f (M + G (M +.,

wherein f (r) denotes any rational integral function of =; whence,
proceeding as before, we find

F @) (o) =f(Ep+m);

and also (0)*f () = f (r—3p).
Let now ¢ (py) = 24, (py)’,
and then F(®)9 (o) = A5 (Bp+m) ;
or, if fo=F@o+m),
and ¢ (f) = 2A4.f,,
then F(x) ¢ () = 9 (f),
and ¢ (po) f (%) = ¢ (f),
where fi=f(x=%p),
and ¢ (f)=24.f..
SkcrioN 6.

(P), (Q) denoting any two linear operators whatever, we have
(P)(Q) = (PR)+(P1Q),
and comparing this with the symmetric function relation
3o’ Za" = 2B +2d*",
or, in the notation of partitions,
@) (m) = (m)+ (+m),
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we see that, regarding the symbol t as expressing a symbolic addition,
the linear operators (P), (@) combine according to precisely the same
law as single partition symmetric functions; the algebra of the
operators is not, however, commutative, and we may in the first in-
stance regard it as the algebra of symmetric functions freed from
the restriction of being commutative in the two respects of outer
maultiplication and addition.

As regards three linear operators

(), (u3), (uy),

we have the theorems

() (ug) (us) = (wytugtes) + (uy + 15, 5) + (ot F 21 ¥ 0g)*
+ (uy + usy %g)
+ (us t uy, ),

(20) (u32s) = (o ugny) + (2 + 1y, 1)
+ (v t us, ),

(1 2g) (u5) = (uyugty) + (uy T gy 1g) + (y 2g T 05)
+ (ug tuy ),

wherein, in the expansion of (u,u,)(us), the operator (u,u,+tu;) is
formed by multiplying («,) and (%) symbolically, and adding the
result symbolically to (u,).

It will be observed that, qud the symbol t, the suffixes are in
numerical order. '

Comparing these with the corresponding relations in symmetric
functions, we observe perfect coincidence of theory, except in the
case of the term (u,u; 1 u,).

Bat, if (u,) be lineo-linear, this operator vanishes, and there is no
longer any exception.

In general, an exception occurs whenever an operator is formed by
the explicit operation of a symbolic product of linear operators upon
a linear operator.

Any outer multiplication of operators, each of which is either a
single linear operator or & symbolic product (inner multiplication) of
linear operators, may in general be expanded in a series of symbolic
products, each component of which is a linear operator.

* Observe that (u) tugtu;) means w,+ (11 w;) and not (w; tuy) tuy, and that
1y, g, 15 are associative as regards outer multiplication,
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Restricting ourselves, in the first place, to outer multiplications of
two operators, we may calculate the set of relations

(w) () = (uyu9) + (),
() (ugu5) = (w,uq25) + (0, ¥ g, u5)
+ (u, T us, wy),

(mug)(ug) = (wyugug) + (o t gy ug) + (g2t 5)
+ (1 t gy ),
() (g g1tg) = (wyugugy) + (g ¥ gy wyuy)
+ (o, T us, ugy)
+ (uy Ty, usng),
(g g) (254)
= (U5t + (’“1 T vy wgry) + (uy T 2tg, 2y ¥ 20) + (g + g, )
+ (oy + 2gy ugug) + (g T g ugtug) + (29 + 1y, ug)
+ (ug t usy uyuy)
+ (ug 1 gy wyus),

(wyuqrug) () = (uygrigug) + (uy t1g ugus) + (v uy t Ugy wug) + (uyusres  u,)
+.(ug T ug, wyog) + (uyug T uy, 1)
+ (g t gy wyug) + (ugug tuy, ),

(1)) (ugug g ug) == (2 %g ugr 25) + (2 %, ug2,ty)
+ (uy T ugy ugu ug)
+ (u,"f Uy, UglsUs)

+ (uy g, uguguy),

(uy1tg) (rugu, )
= (wyuqugtiy1ty) + (g T g, wguug) + (20t ug, wy +20g, 25) + (vy 2t F 215, w,,)
+(u, t u‘,A g ttg1tg) + (U T 10g, Ugt vy 1) + (uyugt 104, uges)
+ (u, 1 g, ‘ ugugny) + (uy t g ug tuy, wy) + (w2, + g, 152
+ (ug + g, wyugus) + (g t oy, ug tug, ug)
+ (g ¥ gy wyttgug) + (g Tty iy 20y, )

+ (u! 1‘ Ugy Uy “3“4) + (u‘ 1. Ug, Ug 1- Ugy u{)’
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(uy109105) (0y105) = (wyr0g050,005) + (2 + 10, ugUgtty) + (wyug T 15, Uy05)
+ (w t g, ugugug) + (s t g, "_‘a“o)
+ (g ¥ gy wyugres) + (s F 00, u3%)
+ (ug T gy wyugng) + (g + 1y, uss))
+ (s T gy vy uqug) + (gtiy 18, uy115)
+ (gt ug, waegny) + (Uguy ¥ vy 1),

+ (g, ug t g, uy) + (g Ty us toug) + (uyugus tug 45)
+ (gt gy vyt w4y us) + (g ¥ g, w5t 0g) + (w000 oty %)
+ (g, uyt oy, ug) + (g2 0y, 2yt uy)
+(uy s uy g uy) + (s t g, us t )
+ (gt ug, ugt g, uy) + (ugueg oty wy )
+ (ug T g ug T g, w) + (uguy t ug uy T 2,),
(uyugregu,) (u5) = (2 yuy,2u)
+ (g t gy wgugtn) + (g t ooy wgreg) + (wyugrey t gy 1) + (uy gugwy ¥ 25)
+ (g sy wivy20) + (g Tty v0g20,) + (g ugug t 0y )
+ (ug T 05, wyugrey) + (g, T oy, ugrey) + (wyuyu, 1 g, u,)
+ (gt 225y wytg2g) + (g + 105, w,9,) + (wgugr, T ug w,)
+ (ugug t ugy uyuy)
+ iy t g, wy2).
In these expansions it will be observed that explicit operation only
takes place npon a single linear operator.
It is easy to see that the onter multiplication of two operators, each

of which is a symbolic product of linear operators, may be always so
expanded.

Considering, in general, the product
(uy gty oov %) (9,09 .00 0,),

there will arise a batch of operators corresponding to every partition
of m, and every lower number, into n or fewer parts.

If, for instance, we fix the attention npon the batches correspond-
ing to the partitions of p (p T m) into s(sZ n) parts, we see that
the total number of operators which occur in these batches depends,
firstly, upon the number of ways in which it is possible to pack up p
things in exactly s parcels; and secondly, upon the number of ways in
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which s out of n things can be distributed amongst these parcels, one
in each parcel.

The number of ways of choosing p out of m things is
m!
p! (m=p)V'
and p things can be distributed into s parcels in & number of ways
denoted by
Lao),
s!

in the notation of the calculus of finite differences.

Further, we can distribute s out of # things amongst these s parcels,
one in each parcel in
ways.

n!
(n—s)!

Consequently, in the batches corresponding to the two numbers p
and s, there will be & number of operators equa.l to

m! Al
& @) 2

and in the a.ggrega.te of batches corresponding to the number p
there will be

m! Ry n!
- A® (07
p! (m—p)! Ex s! (n—s)! @)
operators.
Giving p all values from O to m, we shall obtain the complete
number of operators which appear in the expansion; this number
thus is

P m! !
peo pl (m=p)lia18! (n—s)!
It will now be shown that this expression has the value
(n+1)"

First consider the summation

A* (0°).

el 8! (n-—s) 4° (%),
n!
(=)= 4,

1
A 0?) = K,

and write
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(see M. Maurice d'Ocagne “Sur une Classe de Nombres remarquables,”
American Journal of Mathematics, Vol. 1x., No. 4, p. 366) ;

= n! .
= AY(0") = SALK,

and then sa1 81 (n—s)!

= AR + A, B+ A K+ ... K,
= (14+4).) By +Q4va+ 43 ) K+ Bdua+ 4n) Kot o+ (nA) K
= K+ Ay CE, 4+ K) + 4h., BK +ED + ..o+ 400y (K, +E; ")
= Bt A Ko+ Ay KD+ o+ AV KD
= n* (loc. cit.).
Consequently the number we are in search of is

pam ml

p=0 p! (m—p)!
== (n-rl)"'.

The theorem may be stated as follows :—

“The outer multiplication of two operators, the sinister and dexter
being symbolic products of m and = linear operators respectively, may
be expressed as a sum of (n+1)™ operators, each of which is a
symbolic product of linear operators.”

In the case of the dexter being formed wholly of lineo-linear
operators the theory is identical with that of the algebraic theory of
symmetric functions, '

n?

SecrION 7.

Symbolic Addition of Operators.
Denoting by

U UgUp oo Ugyy V1VgVs oo Uy

operators of the m™ and n* orders obtained by the symbolic multi-
plication of the linear operators u,, %; ..., v;, ¥ ..., we require the
expansion of the operator (u,u,... 4, tv,9;...v,) a8 a linear function
of operators, each of which is a symbolic product of linear operators.

It will be shown that the number of operators occurring in the
development is precisely 2™,

Consider a simple case of Leibnitz's theorem, viz., the continued
performance of a single linear partial differential operation upon a
product of two functions ¢,, ¢,.
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If (u)™ designates m successive operations of «, we have
gu)m _ (u) ¢l(u)m ]
gy =3 s'(m—-s)' "

It is to be proved that a perfectly valid theorem is obtained if herein
we write (%°) in place of (u)?, where, as usual in this paper, (4*) de-
notes the operator of the s* order reached by raising « symbolically
to the power s. '

In fact, the theorem to be proved is

(W) g g, = 3 EIHET 4,

sl (m—s)!

In general, the most extended form of Leibnitz’s theorem is capable
of a similar dual interpretation, which may be established in the
following manner :—

Suppose

%y, Ug, Ug, «e0 %, $0 be any linear operators whatever,
and put
0 = 6,0,+6,0,+ 6,0, +... = Mty +Aug+Agtty+ ... + A, 1,
further let ®1 Pav ..« Pin he any m functions of a, b, ¢, d, ...,
and put ¢ =¢10305 e Puss
then
¢:(a+06,b+6,c+6,,...) = ¢+ ¢+ (g—? ¢+ (9' et .y
and -
s+op+ Glo+ Clor . = (propt Lot Dgut..),
that 1s,
¢+(A;m+kau,+7\au,+...+)\,u,) 9
+ Ql—, QR DY D WA SRR W7 L B
= :r{ {¢,+ Mty Aty + Mgt oo FN,) e
+ & Ottt At b o 4D 1) gk } :

We now compare the coefficients of

A‘. h" oo k
3
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on the two sides of this identity, and obtain a result which may be
written in the form :—

(’Lbn wru)e (urur..u?)g (uhuf.ul)e,
X! xs! o Xal® al'as el g ﬂl'ﬁl B! 9y

(u‘; ! u!”‘ eoe u‘:‘) ¢"l,

Tl el ! e
where atBetyet. . tue=x0 (t=12 ..9),

and the double summation is in regard to every positive integral
solution of these s equations and to every permutation of the ¢’s.

When we compare this result with that of Leibnitz, viz.:—

()" (us)"- ()9 _ o ()" (u)™... ()" ¢ () (). ()09,

x! e Xel @ 'a,' el Byl B! B, 9
(_1)”l (uy )”’ (uv)»' ¢m’
f‘i l! ¢m

we establish its dual character.

Comparing either of these formulw with the ordinary multinomial
theorem, we see at once that the number of terms in the development

is mX,

Applying the theorem to the case of symbolic addition, we find in
particular

(wyus T v,0,) = (’Ul; w,tts T o)+ (u, oy, %t vy)
+ (vg wyugt )+ (u o, ut 1’1') )
wherein, be it remembered, the operator

(v, s T v3)
is formed—
(i.) By multiplying v, and u, together symbolically.

(ii.) By then operating with this symbolic product upon v,
considered as a function of the symbols of quantity only and not
of the differential inverses.

(iii.) By finally multiplying the last result by v, symbolically.
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Also
(mugus to,03) = (vy, wugus t 0g) + (u; t oy, w32yt 0y)
+ (vg, wyugus ¥ v,) + (0, 0y, Ugug toy)
+ (us t vy wyus ¥ 03)
+ (gt 0y wus t 0))
+ (ug t vy, wuy T 2,)
+(us t‘"s: U Uy T vy).
In general, in writing down the expansion of
(wttg oo wy T 095 .00 0,),

we shall obtain a batch of operators cotrresponding to every partition
of m into n or fewer parts, and, as before remarked, the total number

m

of operators is n".
Secrion 8.

A very important example -f the symbolic interpretation of
Leibnitz’s formula occurs in the theory of symmetric functions.

In the result

() — s (@) o (u") ¢y ... (") 9y (W"E) 9,
m1 Pt =3 sl sl ..8,! (m-—Els)! ’
put D, = (1‘:—)=-},-(a ,+ b0, +c0g+ ... )",

thus obtaining
D'M'PI‘PZ v P = ED&:SDle,% D",.-;St’»—le-Z-"Pu-

‘Supposing ¢,, ¢;, ... ¢, to be symmetric functions of the roots of the
equation
ax"—ba" ' t—... =0,

expressed by means of partitions, the effect of operating with D, upon
any partition containing a symbolic number ¢, is to take away one

such number ¢; further .
D, (t) =1,

and any partition, not containing a number ¢, is obliterated.

Hence the operation of D,, upon a compound symmetyic function is
performed by picking out the different partitions of m in all possible
ways from the partitions of ¢, ¢,, ¢g, ... ¢, One part only at a time
from each partition.
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Thus D, (541)(321)(21) = (% 41)(32 %)(21)
+ (% 41)(321)(2 %)
+(5 % 1)(8 * 1)(21)
+(5 % 1)(821)(*1)
+ (5 ¥ 1)(34 %)(2 %)
+ (54 *¥)(* 21)(* 1),
where the asterisks denote the partitions of 6, successively picked

out.
The result then is
D, (541)(321)(21) = (41)(82)(21)+(41)(321)(2)
+(51)(31)(21) +(51)(321)(1)
+(51)(32)(2) + (54)(21)(1).
From any symmetric function identity, we can, by repeating opera-
tions similar to the above, derive a number of other identities.
In particular, in the theory of invariants, we can from any syzygy
between covariants derive a number of lower syzygies.
The operation of * decapitation,” whether of a single or compound

symmetric function of a degree 8, is seen to be merely the performance
as above of the operation D,. ’

Also D, ved ..., B+y+dé+..=0),
=D, (1) Q%) (I)"...,
= af (1) (1%'...,
= afb'é ...,
showing that a symmetric function of degree 6 belonging to the

equation
ba"—ca™ 14 da"?—... =0

is transformed by the operation of D, into one appertaining to the
equation
ar’—ba" ' ez ?—... = 0.



