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The Algebra of Multi-linear Partial Differential Operators.

By Captain P. A. MACMAHON, R.A.

[Read Bee. 8th, 1887.]

§1.

In Vol. XVIII., p. 61, Proc. Loud. Math. Soc, I discussed a linear
partial differential operator which was defined by

(h *; *h n) = M

where
(m—-1)!

A

A,,m = K 0 !

These operators were shown to form an alternating group, in that the
alternant of any two of them resulted in another operator of the same
class.

It will be convenient to call the successive operation of two
operators P and Q their outer multiplication, and to write it

also their symbolic algebraic multiplication may be called their
inner multiplication, and may be written

(PQ),
and the explicit operation of P upon Q, the latter being considered as
a function of symbols of quantity only, may, for reasons which will
subsequently appear, be tex'med the symbolic addition of P and Q,

and may be written (P\Q).

Of these three operations the second only is in general commutative.
We have then

P and Q being any linear operators whatever, and the main theorem
(loc. cit.) was that, P and Q being any members of the multi-linear
class above defined,

(PKQ)-(QKP) = (P tG)- (QtP) ,

= an operator of the same class.
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This result expresses that the alternant of P and Q, viz.

(P)(Q)-(Q)(P) ,

is another operator of the same general class, and hence the character-
istic property of these operators, that they form an alternating group.

The multiplication theorem which was auxiliary to this result was

(/*'> v'5 «»', ri) (ji, v; m,ri) = {(fi', v \ TO', ri) . (/i, v; TO, ri)}

+ "% ( (m'+m-l) £-, +KV' } {fi+(n' +K) V] AK,m -A,,.^.,
«=o v TO/ )

which by analogy may be written

O', v'; m, ri) (ft, v ; m, n) = {(fi, v'; »»', ri) . (/x, v ; m, w)}

+ ] (m' + m—1) ^-,, v'; ft+wV, i/; ra' + m— 1, w' + ?i f ;

the operator last written is a multi-linear operator of six elements
which arises from the theorem

Ox', v ; m\ ri) f (fi, v, m, ri)

= < (m+m — 1)—„ v'; /i+nV, v ; m' + m—1, w'+w f .

In the further development of the algebra, operators of 8, 10, 12, ...
elements will arise; in fact

(/i", v" ; m", w") f {(/!', / ; TO', ?i') t (f«, v ; m, »i)}

= (fx'\ v"; TO", W") tT...+'5f \ ^

s= S j (TO"+TO' -f TO— 2) £-r,+sv" { 5 (TO' + TO—1) ̂ + r i ' v + s*''
« - o ( . TO)C TO

X {/i + (n"+n') v + sv} A,«»+ws«.»3«nMtll,+n,f;

or, finally, we have a formula introducing a multi-linear operator of
8 elements, viz.:

(//', v"; iri\ n") f {(ft', V ; »»', »') f (fi, v ; m, 7i)}

= ["(m"+TO' + w - 2 ) ^ v" ; (TO' + TO-I) iL
/ + »'V', v';

L TO TO

'-{•ri) v, v\ TO"•+•TO'+TO — 2, ri' + ri+n \.
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The next formula involving an operator of 10 elements is, without
difficulty, found to be

'; m',ri) f (jxt r jw,

(ro'"+m"+w'+»»-3) ̂  v"
in

ni

(m* + ni-1)£-, + (n" + w") v\ v

[M + in"4-H" + «') v, v

„m'"+7>i"+7»' + wi—3, n"+n"+»' + ?i

where for conciseness the pairs of elements on the right-hand side
have been written underneath one another.

By induction, the law of formation of the successive pairs of ele-
ments is easily established.

SECTION 2.

Explicit operation of a six-element upon a four-element operator.

Denoting by P, Q, B, any three four-element operators, we have

showing that P, Q, and B are non-associative as regards symbolic
addition, and this may be regarded as a theorem either for the ex-
pression of the explicit operation of the six-element operator (P f Q)
upon the four-element operator 12, as a result of explicit operations
performed only upon 11; or as the expression of the explicit operation
of the symbolic product (PQ) upon B by means of explict operations
without the prior performance of symbolic multiplication.

We may write the formula as follows,

= {Pt(QtB)}-{(PtQ)tB},

also (B)(PtO)-(PtO)W= {Bf(PfQ)}-{(PtQ)fB}

so that, if B be lineo-linear, its alternant with (PfQ) is expressible
by means of two operators of eight elements each.
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SECTION 3.

The general multilinear operator may be expressed in terms of the
lineo-linear operators

dx = (1, Oj. 1,X) =

fnr 3 _ d\ h\d\*i , hid*.** »̂̂ >*8 .
* ao o0

 a o . ao

whei*e h, is the product of aj , and the total symmetric function of
weight s of the roots of the equation

u= O0JB" — alx
u'l + aix

u'i—... = 0 (71 = 00);

and hence

Mo,m3a(,+(M+")AwAn+i+0*+2>0At, 3«,l+4-h...

C a0 a0

o0

a0

+

1 l

Now, since —« 1 W £= i40 ,„—4, m * + ^ l , TOa59— ...,

We find, by multiplication and comparison of the coefficients of

m~~l » 1 J fit 4. . / v. hi 1

— A.,m_l=--A.,m- - | - ^ . , m + . . . < - ) _ A 0 , m 1

r2
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further um' V = — A u m + 2 A i t ,„ x — 3 A S t „ , # * + . . . ,

tt«-V = - Alim_l+2Aiim_ix—34,,,,,.i®2 + . . . ,

therefore

l 2)m_ix—oAs>m.\ x + . . . ,
therefore

whence the coefficient of dn+, is

fm—l . \ A

\ vi I

and the operator becomes

—1

The operator in the theory of pure I'eciprocantsnow takes the simpler
and, in some respects, more convenient form

SECTION 4.

The sub-group of Operators of Txoo Elements.

A special case of the general operator arises when the second ele-
ment v is zei-o ; then we may without loss of generality put p equal
to unity, since it is common to every term, and we may represent the
operator (1, 0 ; in, it) by the shorter notation (in, n).

The multiplication theorem is
r ' ' \ r \ ( " / • ' i \ t \ i . W + f f l — 1 / / . i / . v

(m, n)(vi, n) = [ (in , n ){in, n) j -\ -, (m -fm—l, n -\-n),

an identity in which only operators of two elements occur.

This class thus constitutes an algebraic group in the sense that
algebraic operations produce operators which may be always expressed
by operators of the same class.

For the alternant of (/u', v ; m', ri) and (m, n), we find

On', v'\ in, ri){m, w)—(m, n)(jt\ v'; in, ri)

= (fMlt v,; m'-fm—1, ri + n),
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where / " i = (rti+m—l)] »—, (fi' + nv) [,
*• in TO i

TO'— 1 /
v .

This alternant will vanish, if px = vl — 0.

CASE I.—If v = 0, then

in = w, or w' = 1—m,

leading to the results

(m, n') (w, n) — (m, w) (??i, ri) = 0,

(1—TO, w') (TO, W) —(TO, %)(1—TO, W') = 0.

CASE II.—If m = 1, then

leading to

(n, TO—1; 1, n')(TO, n) — (TO, ri)(n, TO—1; 1, ri) =

Thus, in general, (TO, ri) has the three comrautors

(TO, ri),

(1—TO, ri),

(n, m—\ ; 1, ri) ;

the alternant is given by

(TO', ri), (TO, ri)
(TO', ri), (TO, ri)

to which may be added the result

(TO", ri'), (m',n), (TO, w)

(TO", W"), (TO', ri), (TO, W)

(TO", W"), (TO', ?»'), («*I « )

_ (TO' + TO-1)(TO-TOO J ( T O . n " ) ( m ' + TO_lj w'.

0.

(TO'+TO—1)(TO—TO') , , . T ' . \= i ! /-± ' (m +TO —1, n +n ) ,

TO TO

m TO

( T O + T O " — 1 ) (TO"—TO)

TOTO"

,

* •
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SECTION 5.

Let 7r, p0 be any two members of the alternating group, and further

00 (po) - (po) 00 =Pn

0O(Pi)-(Pi)0O = P»»

we have then the known theorem

00"(Po) = (Po)00"+*(p1)OOn-1+ ^ p i (PS)(T)"-2+... .

If the subject of operation be previously operated upon by p0, we have

OO"(PO) 3 = <Wl0O"+

which may be symbolically written

wherein (p + p)' denotes

Let us assume

(»)- (p0)' = 2!

and then (TT)» (PO)«+1 = (2p)° (ir)n (p0) +w (Sp)1 O)"-1 (p0)
s e

2!
or, by a previous theorem,

( O " (Po)<+1 =

or, the law assumed true for the expansion of («•)" (p0)* is equally
true for the expansion of (TT)" (po)*

+1.
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Hence, by induction, the general law is established.

In particular, if (rr) = 0,

We may write the resnlt in the form

and we easily reach the companion theorem

More generally

/oooo = GO/0O+fj / oo+ 15-r (*)+.».
wherein / (TT) denotes any rational integral function of ir ; whence,
proceeding as before, we find

and also (Po)*J

Let now <p

and then / (TT) ^

or, if

and i

then /(

a n d <p (

where /«==/(7r~"^p)>

and <p (/*) = 2 A,f't.

SECTION 6.

(P), (Q) denoting any two linear operators whatever, we have

and comparing this with the symmetric fnnction relation

or, in the notation of partitions,
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we see that, regarding the symbol t as expressing a symbolic addition,
the linear operators (P), (Q) combine according to precisely the same
law as single partition symmetric functions; the algebra of the
operators is not, however, commutative, and we may in the first in-
stance regard it as the algebra of symmetric functions freed from
the restriction of being commutative in the two respects of outer
multiplication and addition.

As regards three linear operators

we have the theorems

t w3, «8) + (% t w, t «8)

wherein, in the expansion of («i?t3)(w3), the operator (Mi«jftt8) is
formed by multiplying («,) and (ua) symbolically, and adding the
result symbolically to (w8).

It will be observed that, qua the symbol f> the suffixes are in
numerical order.

Comparing these with the corresponding relations in symmetric
functions, we observe perfect coincidence of theory, except in the
case of the term {uYu% f tt8).

But, if (**8) be lineo-linear, this operator vanishes, and there is no
longer any exception.

In general, an exception occurs whenever an operator is formed by
the explicit operation of a symbolic product of linear operators upon
a linear operator.

Any outer multiplication of operators, each of which is either a
single linear operator or a symbolic product (inner multiplication) of
linear operators, may in general be expanded in a series of symbolic
products, each component of which is a linear operator.

* Observe that (M, t «a t «3) means «j t («a t M3) and not («i t«?) t Ms> an<i that
"»> "ji "3 a f e associative as regards outer multiplication,
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Restricting ourselves, in the first place, to outer multiplications of
two operators, we may calculate the set of relations

= (M, utua) + (% t «2>

f «8.

+ 0*lt«8>

t ««8. «| t

f M4, Wa
W8) + 0*1 t «4, t«,"t

f M4, ttjW3) + (W,W2 f M4, Ws) + («,W3Ws t

t «4, «! «8) + (Wi«8 t «4i «a)

t «4> «1 «a) + («2«8 t «4, W,),

» •M2M4Ws) + 0*1 t «8> W2 t «4.

«! t W4, ttsKsKs) + (« , f «4, « j f «5> «s) + (W1M2 t «4

W, f WB» U^Ui) + («l t «5i W3 t M8, ««4) + 0*1 M2 t «6

t W4, «! f «,, M5)

W, t «8, W8 t «4i «»)

« j t W6, « i W3«4) + (.Ul t «,, « , t «5> M4),
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«1W8 t «5»

WJM8 t **4, Wi«

f M4, tts f M6, Ws) + (M^j f «4>
 M8 t «B) + («l«s«*8 t

t «6, « | t «4> ^s) + (W1^3 t Uh, U& f M4) + («!«,«, f

f t»4, W8 f «B, «,) + («,«, f «4, t«, f «5>

» t «4. Wj) + (Ml% t ««5» M2 t «4>

» t «5, Ml) + («8% t «*4» «I t «6)

3 t «4i ^ l ) + (MJM8 t «5> Ml t «4)»

t « » «I**ltt4) + (M1W4 t «g, M8MS) + (W!«8M4 t WB,

t «

In these expansions it will be observed that explicit operation only
takes place upon a single linear operator.

It is easy to see that the outer multiplication of two operators, each
of which is a symbolic product of linear operators, may be always so
expanded.

Considering, in general, the product

, . . . Um) (UiVgWg . . . l \ , ) ,

there will arise a batch of operators corresponding to every partition
of m, and every lower number, into n or fewer parts.

If, for instance, we fix the attention upon the batches correspond-
ing to the partitions of p (p < m) into s (s ~< w) parts, we see that
the total number of operators which occur in these batches depends,
firstly, upon the number of ways in which it is possible to pack up p
things in exactly s parcels; and secondly, upon the number of ways in
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which s out of n things can be distributed amongst these parcels, one
in each parcel.

The number of ways of choosing p out of TO things is

w!
p\ (m—p)]1

and p things can be distributed into s parcels in a number of ways
denoted by

in the notation of the calculus of finite differences.

Further, we can distribute s out of n things amongst these s parcels,
one in each parcel in

n\

c^yiways*
Consequently, in the batches corresponding to the two numbers p

and 8, there will be a number of operators equal to

™! J_ A* (cv>\ n-
p\(m-p)\ s\ ^ } (»-«)!'

and in the aggregate of batches corresponding to the number p
there will be

p\ (m— p)\ «~i «! (n—s)\
operators.

Giving p all values from 0 to TO, we shall obtain the complete
number of operators which appear in the expansion; this number
thus is

2 2
P-O p\ (in— p) ! i - i s ! (w—s) !

It will now be shown that this expression has the value

First consider the summation

and write n'
(n—s)

h'
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(see M.Maurice d'Ocagne "Sur une Classe de Nombres remarquables,"
American Journal of Mathematics, Vol. ix., No. 4, p. 366) ;

and then ^ _ _ i _ _ A , ( O P ) = 2 ^ j ^

np (he. cit.).

Consequently the number we are in search of is

p.o p ! (?»— p) !

The theorem may be stated as follows :—
" The outer multiplication of two operators, the sinister and dexter

being symbolic products of m and n linear operators respectively, may
be expressed as a sum of (w + 1)1" operators, each of which is a
symbolic product of linear operators."

In the case of the dexter being formed wholly of lineo-linear
operators the theory is identical with that of the algebraic theory of
symmetric functions.

SECTION 7.

Symbolic Addition of Operators.
Denoting by

u1uiui...um, w,u,v8...uOT,

operators of the m01 and wto orders obtained by the symbolic multi-
plication of the linear operators «n u3..., vvv9..., we require the
expansion of the operator (M,^ ... um \vxv%... vu) as a linear function
of operators, each of which is a symbolic product of linear operators.

It will be shown that the number of operators occurring in the
development is precisely nm.

Consider a simple case of Leibnitz's theorem, viz., the continued
performance of a single linear partial differential operation upon a
product of two functions ^,, <pr
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If (u)m designates m successive operations of u, we have

It is to be proved that a perfectly valid theorem is obtained if herein
we write (u') in place of (it)*, where, as usual in this paper, («') de-
notes the operator of the sth order reached by raising u symbolically
to the power s.

In fact, the theorem to be proved is

ri s\ (m-s) 1 '

In general, the most extended form of Leibnitz's theorem is capable
of a similar dual interpretation, which may be established in the
following manner:—

Suppose

«*i, u2, ua, ... u, to be any linear operators whatever,

and put

further let <j>lt <pit ... <pm be any in functions of a, b, c, d,...,

and put <p = Qxfafa ... 0H,;

then

and

(a+e0> b+elt c+e3,...) = <i>t+e<pt+ ^jjft+ ® $<+...

that is,

= n

We now compare the coefficients of

X" X"... \ ' .
1 » «
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on the two sides of this identity, and obtain a result which may be
written in the form :—

(tff «;• ...«*')»__

al\ai\...atl<l>l ft | ft ! ... ft! fc

where at+ft+y,+... +^t = x<, (tf = 1, 2, ... s),

and the double summation is in regard to every positive integral
solution of these s equations and to every permutation of the <p's.

When we compare this result with that of Leibnitz, viz.:—

we establish its dual character.

Comparing either of these formulas with the ordinary multinomial
theorem, we see at once that the number of terms in the development

is m2x.

Applying the theorem to the case of symbolic addition, we find in
particular

(w,«, f t>i«,) = (»i, tfitt, t«») + («i t «i, «, t«»)

+ (»» Mi«31»,) + (a, f % «, t v,) ;

wherein, be it remembered, the operator

(vu tt,w, t «s)

is formed—

(i.) By multiplying ux and «, together symbolically.

(ii.) By then operating with this symbolic product upon vt,
considered as a function of the symbols of quantity only and not
of the differential inverses.

(iii.) By finally multiplying the last result by vt symbolically.
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Also

In general, in writing down the expansion of

we shall obtain a batch of operators corresponding to every partition
of wi into n or fewer parts, and, as before remarked, the total number
of operators is n"1..

SECTION 8.

A very important example of the symbolic interpretation of
Leibnitz's formula occurs in the theory of symmetric functions.

In the result

m! y i y 9 V" " s! s! ... «„_,! ( w -

put D, = (i^> = 1 . (a

thus obtaining

Supposing »̂u >̂j, ... 0,, to be symmetric functions of the roots of the
equation

I " - a - . . . = 0, ~

expressed by means of partitions, the effect of operating with Dt upon
any partition containing a symbolic number t, is to take away one
such number t; further

Dt (0 = 1,

and any partition, not containing a number t, is oblitei'ated.

Hence the operation of I)m upon a compound symmetvio function is
performed by picking out the different pai'titions of in in all possible
ways from the partitions of <pu 0a, 08, ... $„, one part only at a time
from each partition.
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Thus D9 (541)(321)(21) = (* 41)(32 *)(21)

+ (*41)(321)(2*)

+ (5*1) (3*1) (21)

+ (5*1)(821)(*1)

+ (5*1)(34*)(2*)

+ (54*)(*21)(*1),

where the asterisks denote the partitions of 6, successively picked
out.

The result then is

De(541)(821)(21) =

+ (51)(32)(2

From any symmetric function identity, we can, by repeating opera-
tions similar to the above, derive a number of other identities.

In particular, in the theory of invariants, we can from any syzygy
between covariants derive a number of lower syzygies.

The operation of " decapitation," whether of a single or compound
symmetric function of a degree 0, is seen to be merely the performance
as above of the operation Dt.

Also D.&Vd1..., 08 + y + 3+. . . = 0),

showing that a symmetric function of degree 0 belonging to the
equation

6a;"—caj""1 + da>"-8—... = 0

is transformed by the operation of Ds into one appertaining to the
equation

a ^ -1—... = 0 .


