Observer	Epoch	θ_{c}	ϱ_{c}	$\theta_{o}-\theta_{c}$	$\varrho_{o}-\varrho_{c}$
See	1895．30	331.4	5：70	-0.3	＋0．10
Hough	95.34	»	》	＋0．2	＋0．22
Glasenapp	$95 \cdot 36$	＊	＊	0.1	－0．09
Tebbutt	95.36	＂	＊	－I． 5	＋0．23
Comstock	95.43	331.3	5.71	$+0.7$	－0．06
Collins	95.44	＊	＊	-0.2	＋0．10
Doberck	96.07	331.2	5.72	＋ 1.8	-0.07
Gledhill	96.27	33 I．I	5.73	＋ 1.2	－0．03
Comstock	96.37	331.0	＊	＋0．7	－0．18
Lewis	96.37	＊	＊	$+2.2$	＋0．23
Hussey	96.49	－	5.74	－ 1.1	＋0．18
Bowyer	97.32	330.7	5.76	-0.7	＋0．23
Gledhill	97.36	＊	»	＋0．7	－0．06
Doolittle	97.43	＊	＊	＋0．3	-0.03
See	97.46	＊	＊	$+0.7$	＋0．07
Cogshall	97.46	＊	＊	＋0．3	－0．10
Comstock	97.47	＊	＂	-1.7	－0．13
Aitken	97.97	330.5	5.78	-0.8	－0．22
Doolittle	98.27	330.4	5.79	＋0．2	＋0．17
Bowyer	98.31	＊	，	＋0．3	－0．20
Maw	98.35	＊	＊	-0.2	－0．12
Bryant	98.36	＊	＊	－ 1.4	＋0．20
Comstock	98.36	＊	＊	$+0.7$	＋0．13
Glasenapp	98.38	＊	${ }^{*}$	＋0．9	－0．18
Greenw．Phot．	99.32	330.0	5.82	-0.4	－0．09
Bowyer	99.36	＊	＊	-2.3	－0．24
Doolittle	99.38	＊	ν	＋0．1	＋0．04
Bryant	99.39	－	＊	＋1．7	＋0．16
Comstock	99.50	＊	》	－ 1.4	0.00

Sutton，Surrey，igo8 Febr．io．

Observer	Epoch	θ_{c}	ϱ_{c}	$\theta_{0}-\theta_{c}$	$\varrho_{o}-\varrho_{c}$
Gledhill	1900.27	329.7	5：84	＋1．4	－0．0． 24
Tebbutt	00.41	»	＊	＋0．7	＋0．16
Bryant	00.45	＊	＊	-0.6	－0．06
Doolittle	01.19	329.4	5.87	－0．6	＋0．12
Bowyer	01.37	，	＊	－4．9	－0．01
Comstock	01.37	＊	＊	＋0．9	0.00
Doberck	02.20	329.1	5.89	＋0．2	0.00
Copenhag．Phot．	02.30	＊	\％	－0．3	＋0．24
Thiele	02.30	＊	＊	－0．8	＋0．45
Sternberg	02.36	329.0	＂	-0.6	-0.07
Bowyer	02.40	，	＂	－0．9	－0．14
Comstock	02.45	＊	\％	－0．2	－0．07
Doberck	03.22	328.8	5.91	-0.5	－0．02
Sternberg	03.28	＊	＊	－0．5	－0．09
Doolittle	03.29	＊	＂	-0.8	＋0．14
Biesbroeck	03.34	＊	＊	－0．4	＋0．01
Comstock	03.36	＊	＊	＋ 0.6	－0．04
Greenwich	03.37	＊	»	－х． 8	－0．11
Scott	03.40	328.7	5．90	＋1．3	-0.02
Biesbroeck	04.28	328.4	5.93	-0.3	＋0．05
Sternberg	04.30	》	＊	-0.5	－0．07
Comstock	04.48	328.3	5.94	＋ 1.8	-0.23
Farman	05.21	328.1	5.95	-0.9	－0．60
Doberck	05.46	328.0	5.96	＋0．5	－0．01
Lau	06.22	327.8	5.97	-1.5	－0．06
Olivier	06.40	＊	＊	－0．7	-0.10
Comstock	06.49	＊	》	＋0．3	－0．13
Janssen	07.14	327.6	5.99	-0.7	＋0．18
Lau	07.16	＊	＊	－ 1.1	＋0．14

W．Doberck．

On certain spectroscopic binaries．

By Edwin B．Frost．

Dr．Ludendorff＇s remarks（A．N．4225）on the radial velocity of the fainter component of ζ Ursae majoris（Mizar） are of especial interest to the observers with the Bruce spectrograph，as we have been closely following the star during the present season，and I had entered it upon our list of established spectroscopic binaries only a short time before A．N． 4225 arrived here．Our observations，based upon 18 spectrograms，fully confirm the variation in velo－ city suggested by Dr．Ludendorff＇s measures，but give a larger range，from -17 km to +10 km ．The spectrum which we obtain with a dispersion of one prism may be regarded as quite well measurable，and fifieen lines have generally been used．The first two plates obtained here， both in 1907 ，indicating a range of at least 10 km ，led me to suspect the constancy of the star＇s velocity．The mea－ sures on this star have so far been made by Mr．O．F．Lee． The period of the star＇s variation cannot yet be stated． Our exposure time is generally between 20 and 30 minutes． The full particulars of our observations will be published in the Astrophysical Journal．

The star Alcor has also long been on our program of stars of type Ia_{2} ，but we only began to observe it in this season，on the same nights as the star just mentioned． Twenty－five plates have thus far been obtained，with ex－ posures averaging about 22 minutes．The comparison spec－ trum is in fairly good focus from $\lambda 4000$ to $\lambda 4900$ ，but the star lines in this region are all so diffuse and ill－defined as to make measurement almost impossible．A qualitative examination of the plates soon showed，however，that the spectrum varies very perceptibly，the $M g$ line at 2448 r and the hydrogen lines being sometimes double and some－ times single．The displacement of $\lambda 448 \mathrm{I}$ with respect to the titanium line of almost the same wave－length also varies very obviously，leaving no doubt that Alcor is also a spec－ troscopic binary．The changes in the spectrum succeed each other so rapidly that I have found it necessary to have spectrograms of this star made in continuous succession for several hours．The impression given at present is that the period will be found to be exceedingly short，but a greater number of plates will be necessary for the establishment of the period．

Nearly all of the spectrograms so far alluded to in this note have been obtained by Messrs. S. B. Barrett, O. 7 . Lee, and F. R. Sullivan.

The increase in the complexity of the stars associated with Mizar (the brighter component of which may be called historically the parent spectroscopic binary) is thus particularly interesting, and suggestive of the results perhaps to be expected when spectrographic analysis shall have been generally applied to such stars.

Yerkes Observatory, 1908 Febr. 6.

At the meeting of the American Association in Chicago on Dec. 31, 1907, the writer reported on the following spectroscopic binaries which have recently been detected here: λ Ophiuchi, α Ophiuchi, ε^{1} Lyrae (brighter component), $\boldsymbol{\tau}$ Cygni (found by Mr. Barrett), β Equulei (found by Dr. S. A. Mitchell). I have since found that the radial velocity of the star $3^{6} \tau^{9}$ Eridani also varies through a large range. Particulars as to all of these stars will be given later in the Astrophysical Journal.

Edwin B. Frost.

Ephéméride de la planète (387) Aquitania.

Par M. L. Perrot.

Les positions sont calculées pour $\mathrm{r}^{\text {h }}{ }^{\mathrm{h}}$ temps moyen de Paris, à l'aide des éléments publiés dans le Berliner Jahrbuch igro. Les coordonnées rectangulaires équatoriales sont pour 1910.0:

1908	α	δ	$\log r$	$\log 4$
Mars 10	$12^{\text {h }} 18^{\text {m }} 35^{\text {s }}$	+19 ${ }^{\circ} 45: 8$	0.4437	0.2615
11	17 51	1956.8		
12	177	$20 \quad 7.6$	0.4429	0.2598
13	1622	$20 \quad 18.3$		
14	I5 36	$20 \quad 28.9$	0.4421	0.2584
15	1450	2039.3		
16	143	2049.6	0.4413	0.2573
17	1316	2059.7		
18	1228	219.6	0.4406	0.2564
19	1139	$\begin{array}{lll}21 & 19.4\end{array}$		
20	1051	2128.9	0.4398	0.2558
21	10	2138.3		
22	9 x 3	2147.4	0.4390	0.2554
23	824	2 I 56.4		
24	734	225.1	0.4382	0.2553
25	645	$\begin{array}{lll}22 & 13.6\end{array}$		
26	556	2221.8	0.4375	0.2555
27	56	$22 \quad 29.8$		
28	$4{ }^{1} 7$	2237.5	0.4367	0.2559
29	328	2245.0		
30	240	2252.2	0.4359	0.2566
31	I 51	2259.1		
Avril I	12 I 3	+23 5.8	0.4351	0.2574

$$
\begin{aligned}
& x=[9.987065] r \cdot \sin \left(v+13^{\circ} 44^{\prime} \quad 1.4\right) \\
& y=[9.991009] r \cdot \sin (v+2863912.0) \\
& z=[9.496459] r \cdot \sin (v+235 \quad 8 \quad 40.8)
\end{aligned}
$$

1908	a	δ	$\log r$	$\log \Delta$
Avril 1	$\begin{array}{llll}12^{\text {h }} & \mathrm{I}^{\mathrm{m}} & 3^{\mathrm{s}} \\ \mathrm{I} 2 & 0 & 16\end{array}$	$\begin{array}{r}+23^{\circ} \\ 23 \\ \hline 2.8 \\ \hline 12.2\end{array}$	0.435 I	0. 2574
3	115929	$\begin{array}{lll}23 & 18.3\end{array}$	0.4343	0.2586
4	5843	2324.2		
5	5757	$\begin{array}{lll}23 & 29.7\end{array}$	0.4335	0.2599
6	5712	2335.0		
7	5628	2340.0	0.4327	0.2615
8	5545	2344.6		
9	55 2	2349.0	0.4319	0.2633
10	5420	23 53.1		
11	5340	2356.9	0.4311	0.2652
12	53 -	$24 \quad 0.4$		
13	52 I	$24 \quad 3.6$	0.4303	0.2674
14	5144	$24 \quad 6.6$		
15	517	$24 \quad 9.2$	0.4295	0.2697
16	5032	2411.5		
17	4957	$24 \quad 13.6$	0.4286	0.272 I
18	4924	$\begin{array}{ll}24 & 15.4\end{array}$		
19	4853	2416.9	0.4278	0.2748
20	4822	24 18.1		
21	4753	2419.0	0.4270	0.2775
22	4725	2419.7		
23	$\begin{array}{ll}11 & 4659\end{array}$	+2420.0	0.4262	0.2804

Observatoire de Besançon, le 15 février 1908.
Une variable nouvelle 5.1908 Ursae majoris.
Sur des plaques dues à M.S. Blažko, Mme. L. Ceraski a trouvé ce 6 février une variable nouvelle dont voici les coordonnées approchées:

$$
1855.0 \quad \alpha=7^{\mathrm{h}} 59^{\mathrm{m}} 22^{\mathrm{s}} \quad \delta=+63^{\circ} 2^{\prime} \quad 1900.0 \quad \alpha=8^{\mathrm{h}} 3^{\mathrm{m}} 22^{\mathrm{s}} \quad \delta=+62^{\circ} 54^{\prime}
$$

De la discussion de 13 clichés obtenus en 1906 et 1907 , M. Blažko conclut que l'éclat de cette étoile varie de $\mathrm{II}^{1} / 2$ à $<\mathrm{I} 2 \frac{1}{2}$ gr. Probablement, la periode en est longue, et le maximum eut lieu au commencement de mars 1907 .

Moscou, 1908 février 17.
Prof. W. Ceraski.

