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Abstract. WPA2-Personal is widely used to protect Wi-Fi networks
against illicit access. While attackers typically use GPUs to speed up the
discovery of weak network passwords, attacking random passwords is
considered to quickly become infeasible with increasing password length.
Professional attackers may thus turn to commercial high-end FPGA-
based cluster solutions to significantly increase the speed of those attacks.
Well known manufacturers such as Elcomsoft have succeeded in creating
world’s fastest commercial FPGA-based WPA2 password recovery sys-
tem, but since they rely on high-performance FPGAs the costs of these
systems are well beyond the reach of amateurs. In this paper, we present
a highly optimized low-cost FPGA cluster-based WPA-2 Personal pass-
word recovery system that can not only achieve similar performance at
a cost affordable by amateurs, but in comparison our implementation
would also be more than 5 times as fast on the original hardware. Since
the currently fastest system is not only significantly slower but propri-
etary as well, we believe that we are the first to present the internals of
a highly optimized and fully pipelined FPGA WPA2 password recovery
system. In addition, we evaluated our approach with respect to perfor-
mance and power usage and compare it to GPU-based systems. To assess
the real-world impact of our system, we utilized the well known Wigle
Wi-Fi network dataset to conduct a case study within the country and
its border regions. Our results indicate that our system could be used to
break into each of more than 160, 000 existing Wi-Fi networks requiring
3 days per network on our low-cost FPGA cluster in the worst case.
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1 Introduction

Security in wireless Wi-Fi networks has come a long way. In comparison to
wired network infrastructures, attackers are able to easily access Wi-Fi net-
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works if they are in the vicinity. To protect Wi-Fi networks and the data being
transfered over them, from the very beginning cryptographic protection mecha-
nisms providing properties such as confidentiality, integrity or authenticity have
been specified in the Wi-Fi IEEE 802.11 standard documents [7]. At the time
WEP (Wired Equivalent Privacy) quickly turned out to be insecure allowing
key recovery within minutes [1, 14], manufacturers started to implement several
non-standard fixes such as WEP2 or WEPplus [10]. Ultimately, a switch-over
to WPA (Wi-Fi Protected Access) employing the RC4-based TKIP (Temporal
Key Integrity Protocol) as interim solution and to the longterm solution WPA2,
in particular, has been suggested in the IEEE 802.11 standard documents [7].
Since 2012, WPA has been officially deprecated in the IEEE 802.11 standard and
suffers from security vulnerabilities on its own [18]. In contrast, WPA2 is FIPS
140-2 compliant [17], much stronger and widely used to protect today’s Wi-Fi in-
frastructures. The WPA2-Personal variant is designed for smaller networks and
uses a pre-shared key (i.e., a Wi-Fi password) to derive the necessary key mate-
rial for authentication, encryption and integrity protection. The Wi-Fi password
needs to be at least 8 characters long and the key material is mainly derived
through the state-of-the-art salted key derivation function PBKDF2 (Password-
Based Key Derivation Function 2) [9] in combination with the SHA1 hashing
algorithm [2] in HMAC configuration [3]. As a result, the security of a WPA2-
Personal protected Wi-Fi network heavily relies on the quality of the password.
Due to the computational complexity of the key derivation function and the use
of the Wi-Fi’s SSID as cryptographic salt, brute force attacks are very hard to
conduct in the presence of random passwords with increasing length. Incurring
significant costs well outside of what amateurs can afford, professional attack-
ers can turn to commercial high-end FPGA-based cluster solutions achieving
WPA-2 password guessing speeds of 1 million guesses per second and more [12].

In this paper, we focus on the WPA2-Personal key derivation function and
low-cost FPGA cluster based attacks that are not only affordable by professionals
but by amateurs as well. Especially considering second-hand FPGA boards that
have been used for cryptocurrency mining, those boards are now available to
amateurs at low cost and can be repurposed to mount attacks on cryptographic
systems. In the first part, we use a top-down approach to present WPA2-Personal
security at a high level and we subsequently break it down to low-level SHA1
computations in high detail. In the second part, we use a bottom-up approach
to show how these computations can be especially well addressed in hardware
with FPGAs and we present how our solution can be integrated into a scalable
low-cost system to conduct WPA-2 Personal brute force attacks. We evaluate
our system with respect to performance and power usage, we compare it to
results we obtained from GPUs and we conduct a real-world security evaluation
case study showing the practical security impact of our system. Specifically, the
contributions presented in this paper are as follows:

– We present a highly optimized design and architecture of a scalable and fully
pipelined FPGA implementation for efficient WPA2 brute force attacks that
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brings the performance of today’s highly expensive professional systems to
the low-cost FPGA boards affordable by amateurs.

– Our implementation on Kintex-7 devices indicates that on the same hard-
ware, our implementation is more than 5 times as fast in comparison to what
is currently marketed to be world’s fastest FPGA-based WPA2 password re-
covery system [5, 12].

– We implemented and evaluated our approach on three different low-cost
FPGA architectures including an actual FPGA cluster comprising 36 Spar-
tan 6 LX150T devices [20] located on a total of 9 second-hand repurposed
cryptocurrency mining boards.

– We evaluate our system with respect to the power consumption and per-
formance in comparison to GPU clusters, showing that FPGAs can achieve
comparable or higher performance with considerably less power and space
requirements, allowing attackers to create small and easy to use clusters.

– To highlight the practical real-world implications, we used the Wigle WiFi
network dataset [19] to conduct a case study involving more than 166, 988
distinct Wi-Fi networks in 7 countries with potentially weak default pass-
words. Our results indicate that our system could be used to break into each
of those networks requiring 3 days per network on our low-cost FPGA cluster
in the worst case.

2 State-of-the-Art and Related Work

Since WPA2 is commonly used, there are several publications and projects deal-
ing with WPA2 security and brute force attacks in particular. However, most of
them rather focus on GPU brute force approaches and do not cover special pur-
pose FPGA hardware, especially considering low-cost FPGA hardware that is
available to amateurs as well. For instance in [13], Visan covers typical CPU and
GPU accelerated password recovery approaches with state-of-the-art tools like
aircrack-ng3 or Pyrit4. He considers a time-memory tradeoff usable for frequent
Wi-Fi SSIDs and provides a performance overview of common GPUs and GPU
cluster configurations. In that respect, oclHashcat5 and the commercial Wireless
Security Auditor software6 need to be mentioned as well which are both pass-
word recovery frameworks with GPU acceleration and WPA2 support. Unlike
these GPU-based approaches, our system comprises of a highly optimized and
scalable FPGA implementation allowing higher performance at lower costs and
power consumption in comparison. In [8], Johnson et al. present an FPGA ar-
chitecture for the recovery of WPA and WPA2 keys. Although WPA support is
mentioned, their implementation seems to support WPA2 only which is compa-
rable to our system. However, while our implementation features multiple fully
pipelined and heavily optimized cores for maximum performance, Johnson et

3 http://www.aircrack-ng.org
4 https://code.google.com/p/pyrit
5 http://hashcat.net/oclhashcat
6 https://www.elcomsoft.com/ewsa.html

3

http://www.aircrack-ng.org
https://code.google.com/p/pyrit
http://hashcat.net/oclhashcat
https://www.elcomsoft.com/ewsa.html


al. only present a straight-forward sequential design leading to a significantly
less performance in comparison. In [6], Güneysu et al. present the RIVYERA
and COPACOBANA high-performance FPGA cluster systems for cryptanalysis.
They provide details on exhaustive key search attacks for cryptographic algo-
rithms such as DES, Hitag2 or Keeloq and have a larger cluster configuration
than we had available for our tests. Yet, in contrast to our work, they do not
cover WPA2 or exhaustive key search attacks on WPA2 in their work. As a
result, it would be highly interesting to evaluate our FPGA implementation on
their machines. Finally, Elcomsoft’s commercial Distributed Password Recov-
ery7 software needs to be mentioned due to its support for WPA2 key recovery
attacks on FPGA clusters [5, 12] and its claim to be world’s fastest FPGA-based
password cracking solution [4]. Although there is practically no publicly available
information on the internals of their WPA2 implementation, in [12] performance
data are provided. In contrast to their work, we do not only disclose our design,
architecture and optimizations of our FPGA implementation, but we also claim
that on the same professional FPGA hardware our implementation would be
more than 5 times as fast. In comparison to the professional system, our system
can achieve similar speeds on the low-cost repurposed cryptocurrently mining
hardware that is available to many amateurs.

3 WPA2-Personal Handshake

Whenever a Wi-Fi client (Station) would like to connect to an Access Point,
there are 802.11 management frames involved [7]. For instance in non-hidden
Wi-Fi networks, the Access Point typically transmits beacon frames to advertise
the network. In order to connect, a Station sends a probe request to determine
network capabilities such as supported rates or vendor specific information. After
that, in WPA2-Personal protected networks, Station and Access Point mutually
authenticate against each other with the 4-way handshake depicted in Fig. 1.

To start the mutual authentication process, the Access Point generates a 32
byte random ANonce and sends it to the Station. Similarly, the Station generates
a 32 byte random SNonce and uses both nonces as well as the secret password to
derive the PMK (Pairwise Master Key) and the Pairwise Transient Key (PTK)
with the help of the WPA2-Personal key derivation functions described in the
following Section 3.1. The nonces ensure that the handshake cannot by replayed
by an attacker at a later time. Afterwards, the Station sends the SNonce back
to the Access Point and utilizes the PTK truncated to the first 128 bits (denoted
Key Confirmation Key - KCK) to compute a Message Integrity Code (MIC)
over the packet data. At this point, the Access Point can already compare the
received MIC with the computed one to validate that the Station is authentic
and has knowledge of the secret password. In order to prove to the Station that
the Access Point knows the secret password as well, the Station sends a message
including ANonce and the corresponding MIC code. Since the Station can only
compute the correct MIC code if it knows the necessary PTK, the Access Point

7 https://www.elcomsoft.com/edpr.html
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Fig. 1: WPA2-Personal 4-Way Handshake

can use this information for authentication. If the authentication was successful,
the Station completes the handshake by sending a usually empty, but signed
(MIC) message back to the Access Point. The Station can now associate to the
Access Point and take part in the Wi-Fi network.

3.1 Key Derivation

In order to compute the PTK and its truncated variant (denoted the KCK) re-
quired to compute the MIC integrity code for provided packet data, the key
derivation algorithm visible in Fig. 2 is utilized in WPA2-Personal. It uses the
pre-shared secret key (i.e., the Wi-Fi network passphrase) and provided network
information such as the SSID (i.e., the Wi-Fi network name), nonces and the
MAC addresses as inputs. To achieve a high level of security, at least two factors
need to be considered in the key derivation. First, the key derivation algorithm
needs to be collision resistant and computationally expensive. Collision resistant
denotes the property that it is hard to find two different inputs that result in
the same hash output when the hash function is applied. If the hash function is
also computationally expensive, it will take an attacker longer to compute hash
outputs thereby slowing down the number of guesses he can make per second.
The longer and more complex the Wi-Fi password is, the more possible pass-
word combinations exist and the more hash computations the attacker needs to
make to find the correct password. Second, the key derivation algorithm needs
to be cryptographically salted so that, depending on the salt, different keys are
generated for the same password. The general idea of salting is to add a random
value to the message before the hash function is applied while the salt value is
stored for later use. As a result, the same password will lead to different hash
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outputs since the salt value is different. Without the use of a salt, attackers
could pre-compute lookup-tables for all possible passwords and corresponding
hashes. While the size requirements of this table would grow tremendously with
increasing password lengths, a practical time/memory tradeoff can be achieved
with a pre-computed rainbow table [11]. The general idea of a rainbow table is
to only store a small part of the possible hash value and password combinations.
This is achieved by choosing a random password candidate as starting point and
applying the hash function on it. However, instead of storing the hash value,
the key idea is to define a reduction function that uses the hash value as input
to create another valid password candidate. This process is continued to create
entire chains where each chain ends either if the given length has been achieved
or a password candidate has been created that is already a starting point for
one of the already created chains. Since only the starting point and endpoint
password candidates are stored, the storage requirements can be lowered. Once
all possible chains have been pre-computed, the attacker can start to look up
the password for a given hash value by computing the reduction function and
locating the resulting password candidate in the stored endpoints of the chains
in the rainbow table. As not all password candidates are stored in the table,
it might very well be the case that the candidate can not be found. The at-
tacker thus computes the hash output for the password candidate and applies
the reduction function on the corresponding output to get another password
candidate. This computationally expensive step is repeated until the password
candidate is found among the endpoint password candidates of the chains in the
table. Once found, the attacker takes the starting point password candidate and
recomputes the intermediary values in the chain. At some point the computation
will result in the hash value the attacker is looking for. The password will be
the previously computed input value prior to this hashing step or the starting
point password candidate itself (if it is the first hash value). Prior to computing
a rainbow table, an attacker can thus freely choose the time/memory tradeoff
between the required lookup time and the required storage space for the table.
For more information, we would like to point to Martin Hellman’s original paper
[11]. To mitigate these threats, WPA2-Personal relies on the salted PBKDF2 [9]
key derivation function. In the following, we describe the key derivation process
in detail and closely focus on the required computational effort due to its impact
on FPGA implementations and the achievable password guessing speed.

3.2 Breaking it down to SHA1 Computations

Internally, the PBKDF2 key derivation function employed in WPA2-Personal
utilizes 4, 096 iterations of the well known HMAC construction with the SHA1
cryptographic hash algorithm at its core to obtain 160 bit hash outputs (Fig.
3). Since the WPA2 Pairwise Master Key PMK needs to be 256 bits long, two
PBKDF2 rounds are necessary. Their output is concatenated, but from the sec-
ond iteration the output is truncated to 96 bits to achieve a 256 bit result. In
both PBKDF2 iterations the secret password is used as key while the SSID of
the Wi-Fi network concatenated with a 32 bit counter value serves as input. In
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HMAC-SHA1Packet Data

Fig. 2: WPA2-Personal Key Derivation Function

the first iteration, the counter value is one while in the second iteration it is two.
Consequently within both PBKDF2 iterations, there are 8, 192 HMAC-SHA1 it-
erations required to compute the PMK from the secret password and the network’s
SSID. With regard to the HMAC internals, Fig. 3 shows that a number of SHA1
iterations are necessary to obtain the MAC (Message Authentication Code). In
general to compute the SHA1 hash digest of a message, the first SHA1 iteration
is computed by using the initial SHA1 state and hashing the first part of the
message. Depending on the length of the message, additional iterations might
be necessary whereupon the previous SHA1 state output is used as state input
for the next iteration. Once the full message has been hashed, SHA1 finalization
needs to be applied by appending a ’1’ bit and the length of the message to the
message itself and filling up the rest of the 512 bit SHA1 input block with ’0’
padding bytes. For WPA2-Personal key derivation, in the first PBKDF2 round
the xor-transformation is applied on the password and the inner pad ipad. The
result is a 512 bit block serving as input to the SHA1 hash function in initial
state. The output is the HMAC inner state. Since the SSID may be no longer
than 32 bytes, the hashing of the SSID and the 32 bit PBKDF2 round counter
can be done together with the SHA1 finalization so that only one SHA1 iteration
is necessary.

In the next step, the outer HMAC state is computed by hashing the xor
of the password and the outer pad opad. Afterwards, the previously finalized
160 bit digest is hashed and finalized with the outer state. At this point the
MAC is ready. The second PBKDF2 iteration is computed in the same way with
the difference that the round counter value is set to two instead of one. Since
the password does not change during PBKDF2 iterations, the inner and outer
HMAC states stay the same allowing us to use cached states instead of having
to compute the states again. With that optimization in mind, it is required to
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Fig. 3: PBKDF2 core with SHA1 rounds in HMAC construction

compute at least 2 + 4, 096 ∗ 2 SHA1 iterations for the first PBKDF2 round and
4, 096 ∗ 2 SHA1 iterations for the second round (i.e., 16, 386 SHA1 iterations in
total) to obtain the PMK. This computational effort, the use of the SSID as salt
for key derivation and the security of the innermost SHA1 cryptographic hash
function are three of the main reasons why WPA2-Personal key derivation is
considered to be very strong against typical exhaustive key search attacks.

Once the PMK is available, the KCK is derived by applying a 128 bit Pseudo
Random Function (PRF). Internally, it just uses HMAC-SHA1 again with the
PMK as key. The hashed message is made up of the string “Pairwise key ex-
pansion”, a terminating zero byte, an arithmetically sorted tuple of the Access
Point and Station addresses as well as another sorted tuple of their nonces (i.e.,
ANonce and SNonce) including a finalizing zero byte. The PTK is the resulting
MAC and it is truncated to the first 128 bits to obtain the KCK. If the PMK is
available, the computation of the KCK takes 5 SHA1 iterations as due to the
length of the PMK the finalization of the inner HMAC state can not be combined
with the hashing of the PMK.

Whenever Access Point or Station would like to compute a MIC, they can do
so by utilizing HMAC-SHA1 on the message with KCK as key. The result of the
computation truncated to the first 128 bits is the MIC. The computational effort
depends on the length of the message. However, considering the messages from
the 4-way WPA2-Personal handshake, a total of 5 SHA1 iterations is required
to compute the MIC since, similar to the KCK computation, the finalization of
the inner HMAC state requires one additional iteration.

3.3 SHA1 Internals

Due to the high number of required SHA1 computations, it is essential to in-
crease their speed as much as possible. To compute a SHA1 hash, a number of
computational steps is necessary. Due to the high impact on our FPGA imple-
mentation, we provide a detailed overview of SHA1 internals. SHA1 [16] works
on 512 bit chunks and produces a 160 bit hash digest when finished. If the mes-
sage length is less than 512 bit, padding bits are used. For SHA1 finalization, a
’1’ bit, the padding bits (if necessary) and a 64 bit length field are appended.
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SHA1 has 80 internal rounds (denoted t) and requires a separate message work-
ing schedule Wt as well as a constant Kt for each of them. In the pre-processing
step, the message working schedule Wt is computed as follows:

Wt =

{
Mt 0 ≤ t ≤ 15
rol(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, 1) 16 ≤ t ≤ 79

The schedule W0 . . .W15 is the message broken up into 16 words with 32 bit
length each. For the remaining 64 words, message expansion is used by applying
the xor-operation on previous schedules and rotating the result one time to the
left. The constants Kt for the rounds comprise of a set of 4 words:

Kt =


5a827999 0 ≤ t ≤ 19
6ed9eba1 20 ≤ t ≤ 39
8f1bbcdc 40 ≤ t ≤ 59
ca62c1d6 60 ≤ t ≤ 79

After precomputation, the 80 SHA1 rounds are performed. Each round is
based on the compression round visible in Fig. 4 and works on five 32 bit words
denoted A to E where rol n denotes a rotate left by n operation and the �
operator denotes an unsigned 32 bit addition. In the initial iteration, a constant
initialization vector H0 to H4 is used as input for A to E. The difference between
the rounds is the function ft defined as follows:

ft =


(x ∧ y)⊕ (¬x ∧ z) 0 ≤ t ≤ 19
x⊕ y ⊕ z 20 ≤ t ≤ 39
(x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) 40 ≤ t ≤ 59
x⊕ y ⊕ z 60 ≤ t ≤ 79

After each round, the resulting words A to E are fed back as input to the next
round. Once all 80 rounds have been computed, the resulting words are added
to the initialization vector H0 to H4 and the concatenated result is the resulting
hash digest. Subsequent SHA1 computations are computed in the same way
except that instead of the initialization vector the hash digest from the previous
block is used.

3.4 Attacking the 4-Way Handshake

If an attacker would like to determine the secret WPA2-Personal password, a
4-way WPA2-Personal handshake between a Station and the Access Point needs
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Fig. 4: SHA1 Compression Round

to be obtained first. This can either be done passively or with the help of an
active de-authentication attack where the attacker spoofs the source address
of the Access Point and sends de-authentication frames to the Station. Since
those frames are not authenticated, the Station will falsely believe that the
de-authentication request came from the genuine Access Point and will follow
the request. However at a later time, it will re-authentication and thus give the
attacker the opportunity to intercept the handshake. As soon as the attacker has
the handshake, passwords can be guessed offline by deriving the key material for
the PMK and the KCK and computing the MIC for one of the observed packets
in the handshake. If the observed MIC is the same as the computed MIC for a
password candidate, the attacker has found the correct secret password for the
network. However, since a WPA2-Personal password needs to have a minimum
length of 8 characters and for each password candidate a total of at least 16, 386+
5+5 = 16, 396 SHA1 iterations are necessary to compute the corresponding MIC
over a handshake packet, exhaustive password guessing attacks are considered
to be increasingly infeasible with higher password complexity and length. In
the subsequent chapters, we show that the high computational effort can be
addressed with special purpose FPGA hardware so that a high number of real-
world WPA2-Personal protected networks with random passwords can be broken
into within days.

4 FPGA Implementation

Implementing an algorithm on FPGAs is significantly different from software im-
plementations. The FPGA comprises of different building blocks such as RAM
or configurable logic blocks containing LUTs (Look Up Tables), Flip-Flops, ded-
icated arithmetic logic or shift registers. Initially, the inputs and outputs of all
these building blocks are unconnected. During FPGA configuration, a bit-stream
is uploaded to the configuration memory of the FPGA that subsequently sets
up the interconnections using switch boxes.

Assuming at least some familiarity with the FPGA design, in the first step
the designer utilizes a hardware description language (HDL) such as VHDL to
describe the design. Based on the design, a synthesis tool creates a netlist that

10



transfers the design to a set of interconnected high-level logic components. The
netlist can thus be seen as a high-level schematic comprising the information
which components are interconnected to each other through signals. In the next
step, the components in the netlist are mapped to the building blocks of the spe-
cific targeted FPGA device such as LUTs, dedicated shift registers or memories.
Afterwards, similar to the work that needs to be done when designing a printed
circuit board from a schematic, the components within the implementation need
to be placed within the FPGA and the interconnects between those blocks need
to be routed. The mapping, placing and routing steps are especially critical as
often millions of interconnects need to be made and the signal run time for each
of them needs to stay within specification. If only one signal requires a longer
time from one register to the next one, the maximum clock frequency of the
whole FPGA implementation will decrease to the clock frequency supported by
the slowest path (i.e., the critical path). On the other hand the placement of the
components is of paramount importance as well. If two components are placed
non ideally and too far apart, their interconnects need not only be routed across
a large area, but the time it takes for a signal to be transferred will also increase
significantly thereby lowering the maximum clock speed of the entire implemen-
tation. Creating and especially optimizing high-speed FPGA implementations is
thus highly challenging as apart from the logic design physical constraints such
as the mapping, the signal routing or the electrical loads of signals need to be ad-
dressed as well. Since for large designs these steps often require multiple hours of
design tool run time, performing optimizations can be hard as each design adap-
tation often requires another full design tool run. Only after the entire design
flow has completed, the designer can get an impression whether the optimization
was beneficial or not. However, the advantage is that depending on the require-
ments of an algorithm such as memory usage or the number of logic cells, it is
often possible to achieve tremendous speedups, high scalability and lower power
usage by efficiently using the resources of the FPGA and carefully optimizing the
outcomes of the design steps from netlist generation to the final generation of
the FPGA bit stream file. Considering the SHA1 internals described in Section
3.3, the algorithm is especially well suited for FPGA implementation due to the
following reasons:

1. The algorithm has practically no memory requirements.
2. The rotate and shift operations utilized in SHA1 can be realized through

FPGA interconnects with minimal time delay
3. Algebraic logic functions (xor, and, or, not, etc.) require minimal effort and

can efficiently utilize the FPGAs LUTs

The most expensive operation are SHA1’s additions due to the long carry
chain between the adders. To implement the algorithm, a surrounding state
machine is required to control which inputs should be supplied to the logic in
different rounds. Considering that SHA1 has 80 rounds and we would like to
achieve maximum performance, there are two design options: Either the SHA1
algorithm is implemented sequentially or in a fully pipelined way.
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The advantage of a sequential implementation is that the FPGA can be com-
pletely filled up with relatively small SHA1 cores. However, the disadvantage is
that each of those cores would require its own state machine which takes up
a significant amount of space. In comparison, a fully pipelined implementation
does not require an internal state machine as each of the SHA1 rounds is im-
plemented in its own logic block. While this is a significant advantage enabling
parallel processing, the drawback is that a fully pipelined implementation has
much higher space and routing requirements. When using multiple cores (each
containing a full pipeline), only an integer number of cores can be placed so that
a significant amount of unused space might be left on the FPGA. In our imple-
mentation, we also experimented with filling up this space with sequential cores
but refrained from it due to the negative effect on the overall design complexity
and the lower achievable clock speeds.

Due to the typically higher performance that can be achieved through pipelin-
ing and the property that we get one full SHA1 computation output per clock
cycle per core, we targeted a heavily optimized and fully-pipelined approach.
However, while pipelining alone has a considerable performance impact in com-
parison to a sequential approach, the key of obtaining maximum design perfor-
mance are the optimizations.

4.1 FPGA Design

Our overall FPGA design is illustrated in Fig. 5 and has the following compo-
nents: A shared password generator, a global brute force search state machine
and an FPGA device specific number of brute force cores, each comprising a
WPA2-Personal state machine with password verifier and a SHA1 pipeline.
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Fig. 5: FPGA Design Overview
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Password Generator The password generator (Fig. 6) is realized as a fast
counter. Whenever the FPGA is idle, it can accept a new working block compris-
ing of all necessary data including the actual start password (start password)
and how many passwords (n) should be tested. Initially starting at the start pass-
word, whenever the password generator is enabled (enable) it will output a new
password (current password) and the current password number (count) in
each clock cycle. In case no more passwords can be fed into the brute force cores,
the generator can be paused at any time by disabling the enable input. Ulti-
mately, it will output new passwords until n passwords have been reached and
assert the done signal to indicate that all passwords within the current working
block have been generated.

Fig. 6: Password Generator Block

During the optimizations of our cryptographic cores in the design, at some
point the long carry chain in the password counter became the clock speed
limiting critical path. We were able to address the issue by parallelizing the
counter and implementing the password carry with static multiplexers outside
the sequential logic block. The sequential logic block can be seen as typical
register transfer logic (RTL). With the clock signal, the old counter value is
fetched from the source register, increased and finally output to the destination
register. The path in between accounts for the delay. Since we need to have a
carry overflow at the last valid password character (e.g., ’Z’) we need a set of
multiplexers that eventually reset the characters at each position of the password
string. However, if this multiplexer based reset logic is within the sequential
path it will also increase the time delay. By statically implementing the reset
logic outside this sequential path we were able to balance the overall worst-
case delays and achieved a password counter implementation that no longer
accounted for the critical path in our overall design. Another password generator
optimization approach we considered is utilizing multiple clock domains. The
general idea is that the overall design naturally spends most of its time computing
SHA1 iterations. At that time the password generator is disabled. We could
thus use a less critical slower clock to generate the passwords and output them
to clock synchronizing FIFO buffers directly placed next to the input of the
SHA1 pipelines. As soon as a SHA1 pipeline requires a new password input, it
can utilize its fast clock to drain the FIFO buffer which would in turn enable
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the password generator to refill the corresponding buffer at its slower clock.
The advantages of this approach would be the following: First, the complexity
of the password generator design can be further increased without negatively
impacting the critical path. However second, the big advantage is the routing of
the bus signals from the password generator to all the cores. Considering that
the password generator is located at the center of the design and the passwords
need to be distributed across the entire FPGA to all brute force cores, there is
a significant impact on the time-driven routing complexity and the interconnect
delays that negatively impact the maximum clock speed of the overall design. By
leveraging a slower clock, the passwords would be already located in the FIFO
buffers next to the SHA1 pipelines of each core but they could still be read
with the fast clock the SHA1 pipelines are operating on. However, since with
our previously mentioned password generator optimization the critical path was
no longer within the password generator domain, we did not implemented the
approach. It will be covered in future work.

Global Brute Force State Machine The task of the global brute force state
machine is to constantly supply all brute force cores with new password candi-
dates and check whether one of them found the correct password. Due to the
insignificant speed impact and the advantage of lower design complexity we chose
an iterative approach. Since our SHA1 pipeline comprises of 83 stages, we can
concurrently test 83 passwords per brute force core. With our iterative approach,
we enable the password generator and consecutively fill all brute force cores with
passwords. Once all cores have been filled, the password generator is paused and
we iteratively wait until all cores have completed. At that point, the password
filling process is restarted. If a core finds the correct password or the password
generator has reached the last password, the state machine jumps into the idle
state and can accept the next working block. The penalty for this iterative ap-
proach is 83 clock cycles per core since once a brute force core has completed,
we could immediately fill it with a new password. However, in comparison to the
long run time of each core the impact is insignificant.

WPA2-Personal State Machine with Password Verifier Each brute force
core has a WPA-2 Personal state machine with a password verifier. It is the most
complex state machine in the overall design. Its task is to compute the MIC code
for each password candidate with the help of the SHA1 pipeline in its center.
Each computed MIC is compared with the MIC from the WPA2-Personal 4-way
handshake to determine whether the password candidate was correct or not.
Figure 7 shows all necessary states and state transitions.

The state machine is divided into three WPA2-Personal key derivation phases:
PMK computation (1), PTK computation (2), and MIC computation (3). The
computation of the PMK has the highest computation effort due to the 2 PBKDF2
rounds with 4, 096 iterations requiring 16, 386 SHA1 iterations in total. Ini-
tially, 83 password candidates and the network’s SSID are fed into the SHA1
pipeline to compute the corresponding HMAC outer and inner states (OState
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Fig. 7: WPA2-Personal FPGA States

and IState). Since these states do not change over the PBKDF2 iterations,
the HMAC state computation needs to be done only once. In the first PBKDF2
round, the SSID and the PBKDF2 round counter (1) are used as salt. After that,
there are 4, 095 more iterations in which the digest output is used as input. At
that point, the second PBKDF2 round is computed by first computing the salt
with an increased round counter value (2) and subsequently performing 4, 095
iterations to obtain the PMK.

SHA1 Pipeline In each brute force core, the SHA1 pipeline occupies a large
amount of space due to the high number of pipeline stages. While SHA1 has 80
rounds and a fully pipelined implementation would thus have an equal number
of pipeline stages, we heavily optimized our pipeline to allow higher clock fre-
quencies and consequently achieve more performance. The SHA1 pipeline is the
key limiting factor of how fast our password guessing attacks can be conducted.
Within the brute force cores, each of our SHA1 pipelines has 83 stages due to
the optimizations we performed. Each core can thus compute 83 password can-
didates in parallel. The optimization approaches we applied are described in the
following:

The first stage of the SHA1 pipeline is a buffer stage so that the delays
of the different input logic blocks within the WPA-2 Personal state machine
are not added to the pipeline’s input logic and thereby does not increase the
overall time delay of the critical path. The second stage denoted ’Initiate’ is
an optimization of the 4 required (expensive) additions in the E word of each
SHA1 round. Instead of having all 4 additions in one stage, the structure of
the SHA1 algorithm allows to pre-compute the output of the f function. The
addition of the E word with the output of f and the key Kt enabled us to split
up the required 4 sequential additions into two rounds with 2 additions, thereby
significantly improving the maximum clock speed. Since the expansion steps for
the message working schedule Wt require only a small amount of logic, another
optimization is to do multiple message expansion steps in a single pipeline stage
so that it is not needed in the following few stages. As a result, the source
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data is not accessed in each stage and shift register inference is boosted causing
lower flip-flop fan-out as well as less power usage and lower area requirements.
Another approach we took is the pipeline stage denoted ’Add’ after the SHA1
rounds. After the last SHA1 round, the resulting digest is added either to the
constant initialization vector H0 (first iteration) or to the previous digest for
subsequent iterations. Due to these expensive additions, the design performance
can be improved if they are carried out in a separate pipeline stage. Instead of
forwarding the initial digest through all stages to the final addition stage, we
leverage a FIFO-based delay line utilizing the FPGAs Block-RAM resources.
This avoids excessive interconnect routing through all stages and thus makes
the design smaller, reduces the number of critical paths and allows us to achieve
higher clock frequencies more easily.

Additional FPGA Design Optimizations In the WPA2-Personal state ma-
chine, we directly use the output from the password generator and compute the
HMAC OState state first. At the same time, we store the password candidates
in a Block-RAM buffer for later IState computation. After that, we no longer
work with the passwords but use password offsets instead. The result is a lower
design density as no more additional interconnects are required for the password
in later stages. A similar approach is used to avoid excessive interconnects and
design density. Instead of having large buses, we either use Block-RAMs directly
or form RAM-based delay lines to keep the IState and OState states as well as
the computed PMKs and PTKs in memory. Instead of one large WPA2-Personal
state multiplexer directly controlling all SHA1 pipeline inputs and outputs, we
make use of several smaller and less complex multiplexers. Once again, this re-
duces overall design complexity and allows us to achieve higher clock speeds
more easily. The top-level design needs to communicate with the outside world.
Each time a new working block is added, all necessary Wi-Fi and WPA2-Personal
data needs to be transferred and subsequently forwarded to all brute force cores.
The result is a very broad bus spreading all over the FPGA design and caus-
ing severe design congestion. Since in our design only the password candidates
and the SSID are required early within the WPA2-Personal state machine, we
transfer the rest of the data over a small 16 bit bus leveraging inferred shift
registers. This significantly reduces the complexity of the interconnects between
the shared global state machine and the brute force cores across the FPGA. To
lower the amount of input and output data exchanged with the outside world,
we use a minimized Wi-Fi and WPA2-Personal data set that only includes the
variable data fields from the captured handshake. All other data is not only fixed
within the FPGA, but also kept locally in the cores. In addition, the FPGA does
not output the correct password, but a numeric offset from the start password
instead.

To avoid design congestion and to push the design to the highest clock speed
possible, we make use of custom parameters within the Xilinx design tools for
synthesis, mapping and routing such as the minimum inferred shift register size,
register balancing or the number of cost tables. In addition, we use floor plan-
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ning to support the mapper, placer and router in achieving higher clock rates.
Floor planning is important to place critical components requiring a fast inter-
connect in between next to each other. In general, we were able to obtain the
highest speed improvements by utilizing a star like topography: The password
generator is distributed over the very center of the FPGA and the brute force
cores are surrounding it. In addition we also used floor planning to avoid the
placement of time critical components in FPGA areas that are hard to reach
through interconnects. Especially considering the low cost Xilinx Spartan-6 and
Artix-7 FPGA devices, we could identify major regions that can not be used
to place components or interconnects. Consequently, we carefully placed critical
components like the SHA1 pipelines in a way that those regions do not negatively
impact the routing delay. In our FPGA implementations, we use a slow clock for
communication with the outside world and a fast clock for computation at the
same time. In our Spartan-6 implementation, the speed of the fast clock can be
adjusted dynamically during runtime by programming the clock multiplier. In
contrast, our Artix-7 implementation includes an automatic clock scaling mech-
anism to adjust the fast clock frequency with the device core temperature. Both
approaches allow the FPGA design to run at high speeds without the danger of
overheating.

4.2 Overall System Design

We implemented and practically evaluated our system on older model Xilinx
Spartan-6 as well as on newer model Xilinx Artix-7 FPGAs. The Spartan-6
FPGAs are located on low-cost repurposed cryptocurrency mining boards. For
comparison purposes, we created a full implementation for the more expensive
Xilinx Kintex-7 XC7K410T FPGA as well, but could not practically test it since
we did not have one of these FPGAs at hand. The overall system design for the
Spartan-6 FPGAs is visible in Fig. 8 and based on ZTEX [21] FPGA boards.
The Artix-7 design is similar but has only one XC7A200T FPGA on the board.

The system comprises of a PC with a host software and several FPGA boards
connected via the USB 2.0 high-speed interface. Each FPGA board has a fast EZ-
USB FX2 micro-controller with custom firmware to interface with the FPGAs.

Our custom host software comprises ∼2k lines of Java code and utilizes the
ZTEX SDK to allow easy communication with the micro-controller and the FP-
GAs. The host software accepts a configuration file that includes all necessary
Wi-Fi and WPA-2 Personal handshake data. At startup, it enumerates all con-
nected FPGA boards, uploads the micro-controller firmware if necessary and
configures the FPGAs with our bit stream. The software makes use of several
threads. Apart from the main program, there is a thread to generate password
working blocks for the FPGAs and additional threads for each FPGA board.
The password working blocks are kept in a pool with constant size. The device
threads can supply working blocks to FPGAs and mark them as being processed.
If an FPGA has finished a block, it is removed from the pool and the generator
automatically creates a new working block. If for some reason an FPGA fails,
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Fig. 8: System Overview (Spartan 6 System)

the block sent to the FPGA is still in the pool and just needs to be unmarked
so that the next free FPGA can process it instead.

The micro-controller firmware comprises ∼1k lines of C code and is responsi-
ble for USB communication with the host and communication with the FPGAs.
Each FPGA has an 8 bit write and an 8 bit read bus in addition to read and
write clocks, a write start control signal as well as FPGA select signals and sev-
eral programming signals to program the dynamic FPGA fast clock and the bit
stream. Whenever the host software selects an FPGA on a board, the micro-
controller asserts the corresponding select line in order to conduct subsequent
bus communication or programming actions.

5 Evaluation

We performed multiple evaluations with regard to our design performance, the
power usage and performance in comparison to GPUs as well as a Wi-Fi network
security evaluation in the form of a case study.

5.1 FPGA Performance and Power Evaluation

We evaluated the performance and the power usage of our design on multiple
FPGAs and FPGA boards. The first FPGA we targeted was an older model
Spartan-6 XC6SLX150T-3 device. Four of these FPGAs can be found on the
Ztex 1.15y board visible on the left side of Figure 9. The second FPGA we
used for our evaluation was an Artix-7 XC7A200T-2 device on the Ztex 2.16
board visible on the right side of the picture. For both FPGAs, we created an
optimized implementation and a configuration bit stream that can be uploaded
to the device. The main difference between the bit streams is the FPGA type,
the maximum clock frequency and most importantly the number of brute force
cores we were able to fit onto the device.
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Fig. 9: Ztex 1.15y Board (left), Ztex 2.16 Board (right)

To evaluate the performance and the power requirements, we used the ob-
tained timing and power reports by utilizing the Xilinx timing and power analy-
sis tools. In addition to these results, we also conducted practical measurements
on the FPGA boards. At first, we measured the idle wattage of each uncon-
figured board at the power supply to determine the idle power usage. In the
next step, we used a generated WPA2-Personal handshake with our software to
mount a brute force attack on each of our FPGA boards. We used large pass-
word working packages resulting in a 30 seconds runtime per FPGA to avoid I/O
bottlenecks. By measuring the wattage again during operation, we were able to
determine the overall power consumption. To reduce the influence of the power
consumption caused by losses in the power supplies or components other than
the FPGA, we obtained the power consumption of our FPGA implementation
through the difference between the overall idle consumption and the consump-
tion during operation. In Section 5.2, we use the same method to determine the
power consumption of GPUs to get results that can be compared to the FPGA
power consumption. To obtain brute force performance measurements as well,
we let each system run for at least 1 hour and computed the performance by
measuring the number of password guesses during that time. The result is the
average number of password guesses per second. In addition to these evalua-
tions, we executed the implementation on our FPGA cluster with 36 Spartan-6
XC6SLX150T FPGAs located on 9 Ztex 1.15y FPGA boards. The cluster setup
allowed us to perform measurements on a larger setup and to determine how
well our design scales with an increasing number of FPGAs. The setup is visible
in Fig. 10 whereat two of those boards are not inside of the cluster as we use
them for development purposes. During the tests, they were connected exter-
nally to the cluster. Using the power and performance measuring methodology
from above, we obtained measurement results for the cluster as well. To allow
comparison with the commercial Elcomsoft WPA2-Personal FPGA cluster pass-
word recovery system [5, 12], we created an implementation and a configuration
bitstream for the more expensive Kintex-7 XC7K410T-3 devices as well. How-
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ever, since we did not have a board with this type of Kintex-7 FPGA, we can
provide the Xilinx development tool’s timing and power analysis results only.

Fig. 10: Spartan-6 XC6SLX150T Cluster

5.2 GPU Comparison

To measure performance and power requirements of GPUs, we utilized cuda-
Hashcat8 v1.36 to mount brute force attacks on the same WPA2-Personal hand-
shake we used previously to test our FPGA implementations. We executed the
tool on machines with different Nvidia GPUs (GeForce GTX 750 Ti, GeForce
GTX770 Windforce OC, GRID K520) and measured the performance in pass-
words per second as well as the power consumption. We applied the same power
measurement methodology as during our FPGA evaluation. For the Amazon
EC2 GPU cloud machines with GRID K520 GPUs, we were unable to obtain
power measurements. The specific machine configurations and results are de-
scribed in detail in Section 6.

8 http://hashcat.net/oclhashcat
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5.3 Wi-Fi Security Evaluation - A Case Study

Driven by the high brute force speeds that can be achieved with FPGAs, we
wanted to evaluate whether there is a real-world security impact. While long
random passwords with a significantly large character set are practically infea-
sible to break within a reasonable time frame, the minimum WPA2-Personal
password length is only 8 characters [7]. If the character set is limited as well,
a random password can fall victim to brute force attacks within days or even
hours if the brute force speed is high enough. To our surprise, discussions within
our group suggested that the default WPA2-Personal passwords for many mobile
Wi-Fi modems and even ISP provided modems/routers not only have a limited
character set such as uppercase letters only, but the length of the variable part
of the password or the length of the password itself is also not more than 8
characters. Further investigation turned out that the largest ISP in our country
uses weak default passwords for many of its Wi-Fi cable modems with only 8
characters length and comprising only uppercase letters. An example is provided
in Fig. 11. The manual of the Wi-Fi enabled cable modem further confirmed our
finding [15].

Fig. 11: Bottom Side of a Cable Modem

While users can change these settings, the default SSID is UPC<n> where
n denotes a number with either 6 or 7 digits. Under the assumption that most
users also change the SSID of their network to something easier to remember
when changing their Wi-Fi password, any visible UPC<n> Wi-Fi network would
be an indication that the network is still using the weak default password.

To evaluate the practical security impact of our implementation, we used the
Wigle war driving dataset [19] to get an approximation of how many of those
likely to be insecure networks exist and whether those networks are limited to
our country. To do so, we created a rectangular scanning grid across the country
and queried the Wigle Web service [19]. Since the rectangular scanning grid also
included parts of neighboring countries as well, it allowed us to see whether the
same ISP is active in those countries and the potentially weak cable modems are
used there as well. The results of our case study are presented in Section 6.3.
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6 Results and Discussion

In the following, we present the results of the performance and power evaluation
of our FPGA implementations, we present the obtained GPU WPA2-Personal
brute force performance and power measurements results and comparison as well
as the outcome of the Wi-Fi security evaluation case study.

6.1 FPGA Performance and Power Results

System FPGAs Type Cost Cores Tool W Tool MHz Meas. W Act. MHz calc pwd/s pwd/s pwd/s W

Ztex 1.15y 1 XC6SLX150T-3 175 2 4.281 187 6.99* 180 21,956 21,871 3,128*
Ztex 1.15y 4 XC6SLX150T-3 700 8 17.124 187 27.96 180 87,826 87,461 3,128
9x Ztex 1.15y 36 XC6SLX150T-3 2,400 72 154.116 187 254 180 790,436 741,200 2,918
Ztex 2.16 1 XC7A200T-2 213 8 10.458 180 11.04 180 87,826 87,737 7,947
N/A 1 XC7K410T-3 2,248 16 25.634 216 N/A N/A 210,783 N/A N/A
N/A 48 XC7K410T-3 107,904 768 1,230.432 216 N/A N/A 10,117,584 N/A N/A

Table 1: Performance and Power Results of our Implementations for different
FPGA Devices and Systems/Boards

The results for our FPGA performance and power evaluation are visible in
Table 1. In the System and FPGA column the table shows on which systems
we conducted our tests and how many FPGAs there are on the correspond-
ing board and/or in the overall system. The FPGA device types are visible
in the Type column whereat the name before the hyphen is the Xilinx device
name and the number after the hyphen indicates the device speed grade (the
higher the better). The Cost column provides an approximate cost estimate per
FPGA in US$ we obtained by looking up the devices at common Xilinx distrib-
utors such as Digi-key9. However while the cost for 9 new Ztex 1.15y would be
appoximately 6, 300 US$, we considered our 9 second-hand Ztex 1.15y boards
previously used for cryptocurrency mining instead. We were able to obtain these
boards for 2, 400 US$ which we believe is what amateurs could do as well, de-
pending on how much boards they would like to acquire and how much they
are willing to spend. The Cores column shows how many cores we were able to
fit onto the device to achieve maximum performance. While more cores per de-
vice generally increase the performance, it can also cause the maximum clocking
speed to drop significantly due to mapping, placement and routing issues. The
table presents the implementations allowing us to achieve the maximum per-
formance per device. The Tool W and Tool MHz columns present the design
tool’s power and timing analysis results. For the Spartan-6 FPGAs, we used
the Xilinx ISE Suite 14.7 whereas for the newer 7-series devices Artix-7 and
Kintex-7, we used Vivado Design Suite 2015.1. In general, it appeared that the
newer Vivado tools produced better results, but since it doesn’t support older

9 http://www.digikey.com
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model 6-series devices, we were unable to use it for our Spartan-6 implementa-
tions. The Meas. W and Act. MHz columns present the results for the power
measurements we conducted on the FPGA boards/systems and the actual clock
speed we used to run the devices. The calc pwd/s and pwd/s columns provide
the WPA2-Personal performance in passwords per second whereas the first one
indicates the calculated and theoretic maximum performance of our implemen-
tation whereas the latter one shows the actual measured average performance
per board and/or system. In the last column pwd/s W, we use our actual power
and performance measurements to determine how much brute force speed can be
achieved per Watt which is especially important when scaling up our implemen-
tation to larger FPGA cluster systems. In the following, we discuss the results
of our implementations on a per-device basis.

Spartan-6 Results We used the Xilinx Spartan-6 XC6SLX150T-3 FPGA
as the target for our initial implementation due to the availability of a high-
performance FPGA cluster with 36 of these devices at our lab. The implemen-
tation on the Spartan-6 turned out to be especially challenging for multiple
reasons. We had to deal with long design tool runs (3 hours of more) each time
we made modifications to the design. Since the effects of many of our optimiza-
tions could not be tested through behavioral simulations alone, the duration of
the design tool runs significantly slowed down the development. In addition, the
internal switch boxes and types of slices in the Spartan-6 architecture are not
well suited for more complex and larger implementations in comparison to newer
7-series devices. The result was that for many of our implementation attempts
the device logic resources were sufficient, but the implementation still turned
out to be unroutable due to the number of required interconnects. An important
factor to achieve routable designs was our use of FPGA floor planning.

In summary, we were able to generate two implementations for the Spartan-6
XC6SLX150T-3. One with 3 cores and one with 2 cores. While the first one has
an additional core in comparison, it resulted in a much lower achievable clock
speed (62.5 MHz) due to placing and routing issues effectively reducing the
performance to that of a single core at high speed (180 MHz). In contrast, our
optimized 2 core variant visible in Fig. 12 is able to run at up to 187 MHz leading
to the highest performance we were able to achieve on the device. The picture
shows the ready-to-upload placed and routed design. On the left and right the 2
brute force cores are clearly visible. In between the password generator and the
global state machine are located. Although the dark areas indicate that there
would be sufficient space for an additional core, our experiments showed that
this would lead to lower performance as explained above.

The first 3 rows in Table 1 present the results we obtained through this
implementation. Due to cooling requirements, we ran the design with a reduced
clock speed of 180 MHz. Our measurements indicate that in this configuration,
our implementation requires a total of 27.96W for all 4 FPGAs on the Ztex
1.15y board. The power measurements per Spartan-6 FPGA are marked with
an asterisk to indicate that we were unable to measure them directly, but rather
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Fig. 12: Placed and Routed XC6SLX150T

derived the measurement results from our power measurements for the entire
Ztex 1.15y board with its 4 FPGAs. Our results show that our approach scales
well and can be easily run in a cluster configuration producing a performance
of 790, 436 password guesses per second on our cluster. The difference between
the calculated maximum performance and the measured performance is mainly
due to the I/O times between the PC, the microcontroller and the FPGAs. In
addition, our Spartan-6 implementation includes a dynamic frequency scaling
mechanism slowing down the FPGAs in case of device temperatures getting too
high. With better cooling inside the cluster, we believe that the gap between the
theoretic performance and the measured performance could be made smaller.

Artix-7 Results In comparison to our Spartan-6 implementations, our im-
plementations on the newer 7-series Artix-7 XC7A200T-2 FPGA required less
effort as we could not only start from our already highly optimized Spartan-6
design, but the architecture and the newer Vivado design tool are also better
suited for larger designs with increasing design complexity. Since device internals
such as the clocks or PLLs are different from the Spartan-6 architecture, we had
to adapt our implementation accordingly. The ability to read the device’s core
temperature from within the FPGA implementation was especially interesting.
It allowed us to implement frequency scaling mechanisms directly on the FPGA
not only preventing possible damage due to overheating, but also ensuring that
each device always runs at the maximum performance possible. While we don’t
have access to an Artix-7 FPGA cluster, this feature would be especially helpful
for high-performance cluster designs.
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Fig. 13: Placed and Routed XC7A200T

Our ready-to-upload placed and routed design is visible in Fig. 13. The black
blocks on the left and right are unusable areas. As routing around those areas
makes it hard to meet timing constraints, we utilized floor planning to provide
approximate locations for all of the 8 cores we managed to fit onto the device. All
of the cores have a small path to the center where the small block with the global
state machine and the password generator are located. The implementation can
be run at up to 180 MHz to achieve a theoretic maximum of 87, 826 password
guesses per second. We managed to create an implementation with 9 cores as
well, but similar to our Spartan-6 implementations the overall performance would
have dropped due to the lower maximum clock frequency caused by placing and
routing issues. With a measured performance of 87, 737 password guesses per
second, our results show that a single XC7A200T-2 device achieves not only
more performance than 4 of the older model Spartan-6 XC6SLX150T-3 FPGAs
altogether, but it also requires just 11.04 Watt during operation.

Kintex-7 Results In contrast to the low-cost Artix-7 FPGAs, Kintex-7 FP-
GAs are larger and allow higher performance but are also significantly more
expensive. Although we didn’t have any of those FPGAs at hand, we created
an implementation for the Kintex-7 XC7K410T FPGA for two reasons. First,
Elcomsoft’s marketed to be world’s fastest FPGA-based WPA2 password recov-
ery system relies on these FPGAs just the same and even provides performance
figures for it [12]. Our targeting of the same FPGAs thus allows direct per-
formance comparison between their implementation and ours. Their document
indicates that on the PicoComputing SC5/M505-48 cluster with 48 XC7K410T
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Fig. 14: Placed and Routed XC7K410T

FPGAs their implementation is able to produce 1, 988, 360 passwords guesses
per second [12]. Assuming that their implementation targets WPA2 employing
SHA1 instead of WPA1 employing the much less complex MD5 algorithm, our
implementation could achieve up to 10, 117, 584 passwords per second on the
same hardware and would thus be more than 5 times as fast. Second, we wanted
to obtain performance data for larger FPGAs as well. Although expensive, we
believe that Kintex-7 FPGAs are well in the price range for professional attack-
ers allowing them to achieve significantly more brute force attack performance
per FPGA in comparison to low-cost FPGAs such as the Artix-7. Our ready-
to-upload placed and routed design is visible in Fig. 14. It comprises 16 cores
running at up to 216 MHz. Similar to our Artix-7 implementation, the pass-
word generator and the global state machine are located in the center. However,
due to the size and the thin layout of those units, they are hardly visible in
the picture. At the same time, the image also suggests that with an increasing
number of cores, the centralized state machine and password generator becomes
a bottleneck due to the long bus interconnects reaching to the outside cores.
We believe that this problem could be easily addressed by either using multiple
shared state machines and password generators or by including FIFOs for the
password candidates in each of the brute force cores. Due to the long runtime
of each brute force core, the FIFO could be filled with a slow clock that can be
easily routed across long distances on the FPGA. At the same time, the brute
force cores would operate on the fast clock and drain the FIFOs. Due to their
long run time, the FIFOs could be easily re-filled through the slow clock before
the next set of password candidates would be required.
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6.2 GPU Results and Comparison

Fig. 15: Density of UPC<n> networks with potentially weak WPA2-Personal
Passwords

System pwd/s W pwd/s W

GeForce GTX750 Ti 52,446 106 495
GeForce GTX770 OC 62,420 184 339
Amazon EC2 - GRID K520 30,370 N/A N/A
Amazon EC2 - GRID K520 x4 109,073 N/A N/A

Table 2: Performance and Power Results on GPUs

The results of our GPU evaluation (Section 5.2) are visible in Table 2. We
performed the performance measurements by running cudaHashcat v1.36 on dif-
ferent systems and measuring the power consumption as the difference between
idle and busy WPA2 computations to get results independent from other compo-
nents in the system. The table shows the different GPU configurations (System)
we used for our tests. The pwd/s column shows the performance in passwords
per second and the W column indicates the power consumed by the GPU during
runtime in Watt. The performance per Watt is visible in the pwd/s W column.

In addition to running GPU measurements on our own machines, we also
conducted measurements on dedicated Amazon Elastic Cloud (EC2) GPU ma-
chines as well. While we could measure the performance on the machines just
the same, we were unable to obtain power measurements. Although using a high
number of GPU cloud machines appears promising to achieve high brute force
attack performance, the limiting factor is the cost. Although our combined ex-
periments on the dedicated Amazon EC2 machines took no longer than an hour,
the costs we accumulated for our tests were already US$ 14.92. Since realistic
brute force attacks might take considerably longer, the costs for an attacker
would be far lower for acquiring a powerful GPU system instead of using the
Amazon EC2 GPU nodes. In comparison to the results we obtained from our
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FPGA implementation, it is visible that GPUs can achieve the performance of
a state-of-the-art low-cost FPGA (i.e., Artix-7), but their power consumption
and performance per Watt is more than 10 times as high. At the same time,
the performance achievable with a single larger FPGA such as the Kintex-7
XC7K410T is no longer in the range of GPUs. Considering high-speed attacks
with clusters, we believe that the scalability for FPGA-based attacks is better
as well due to the small size of FPGAs, their lower power consumption and the
high performance they can produce.

6.3 Wi-Fi Security Case Study

Area Networks

Vienna 120,380
Austria + Border region 166,988

Table 3: UPC Networks with likely weak WPA2-Personal Passwords

The results for our real-world security evaluation case study are visible in
Table 3. Within the city of Vienna, we found 120, 380 Wi-Fi networks with the
SSID having the form UPC<n> in the Wigle [19] dataset. We were astonished
by the high density of these networks within the city (Fig. 15 on the right), but
assume that the real number of networks is even higher as not all networks are
covered in the Wigle dataset. In addition, we discovered that the security issue
is not only limited to the city of Vienna, but it is also persistent in the whole
country and even in the border regions to neighboring countries. The left picture
of Fig. 15 provides an overview of the network density. In total, we discovered
166, 988 of these networks within that area including neighboring countries. Due
to weak default configuration (Section 5.3), our case study suggests that our
FPGA cluster implementation could be used to break into each of those networks
in no more than 3 days considering the rate of 790, 436 guesses per second and the
small number of only 268 password combinations for each vulnerable network.
Running our implementation on the PicoComputing SC5/M505-48 cluster [12]
instead, the necessary worst-case time to break a network would be further
reduced down to 5.7 hours. Due to the severe security implications and the high
number of private networks involved, we already reported the problem to the
ISP and are currently in the process of reporting it to the national CERT team
as well.

7 Conclusion and Future Work

In this paper, we demonstrated that WPA2 passwords can be attacked at high
speed rates not only by expensive professional FPGA cluster solutions but sim-
ilar speeds can be achieved by amateurs on a budget as well, especially when
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considering second hand FPGA boards previously used for cryptocurrently min-
ing. We specifically targeted low-cost FPGA devices, conducted implementations
on 3 different FPGA architectures and evaluated our results with regard to per-
formance and power. Our GPU evaluation suggests that FPGAs can not only
achieve higher speeds at significantly less power, but they can also be used to
easily create small and afforable FPGA clusters in the reach of amateurs. We
conducted a real-world security evaluation showing that within the country and
its border regions, there are more than 166, 000 Wi-Fi networks with likely weak
WPA2-Personal passwords that could be attacked through the implementation
on our FPGA cluster within no more than 3 days each. Considering commer-
cially used FPGA cluster systems, the time could be further reduced to no more
than 5.7 hours depending on the cluster configuration and device types. How-
ever, we believe that besides the speedup we achieved it is more important to
consider that the WPA2-Personal brute force performance achievable on profes-
sional systems is now becoming feasible on the low-cost systems amateurs can
afford as well. We believe that these low-cost FPGA cluster based brute force
attacks are thus a serious threat to real-world systems and need to be especially
considered by manufacturers when choosing WPA2-Personal default passwords
for hundred thousands of devices. As counter measure, users need to increase the
length of their passwords, the password should be random and it should utilize
a large character set to increase password entropy. In future work, we are look-
ing forward to evaluate the security of other cryptographic systems as well. In
that regard, we plan to design and implement a powerful low-cost FPGA cluster
similar to COPACOBANA [6] but with low-cost 7-series devices instead.
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