ON THE REACTION OF BOTH THE IONS AND MOLE-CULES OF ACIDS, BASES AND SALTS¹

BY W. A. TAYLOR AND S. F. ACREE

I. On the Reaction of Sodium Ethylate and Methyl Iodide in Absolute Ethyl Alcohol at O°

Until comparatively recently chemical transformations were thought by most chemists to be purely ionic. This was a natural consequence of the development of the theory of electrolytic dissociation by Arrhenius, especially since the earlier work on the hydrolysis of sugars, esters and amides by acids and the saponifications of esters by bases showed that these reactions are, in dilute solutions, nearly proportional to the concentration of the ions of the catalyzers. The natural conclusion was drawn that the reactions are brought about simply by the ions present. Notable among the opponents of this theory were Kahlenberg, Michael and Armstrong. Kahlenberg's work² was especially important as, besides other cases, he studied a number of very rapid reactions in nonaqueous solvents in which no appreciable ionization could be detected. As a result of this he came to the conclusion that the purely ionic theory of all chemical reactions was not established beyond question.

The work of Brunel³ and Acree in 1905–6, of Johnson⁴ and Acree in 1907 and the later work of Shadinger, Nirdlinger, Rogers, Chandler, Marshall, Robertson, Harrison, Shrader and Brown, brought out an entirely new principle in catalysis, namely, that acceleration may take place through the action of the nonionized acids, bases, and salts, as well as through the ions. In the case of the rearrangement of acetylchloraminobenzene, Johnson and Acree found that the reaction took place almost entirely through the nonionized salt according to the equation

¹ Contribution from the Chemical Laboratory of Johns Hopkins University.

² Jour. Phys. Chem., 5, 339 (1901); 6, 1 (1902) and other articles.

³ Am. Chem. Jour., 43, 505 (1910).

⁴ Ibid., **38,** 259, 260 (1907).

$CH_{3}CONClC_{6}H_{5} + \overset{+}{H} + \overset{-}{Cl} \underbrace{\longleftrightarrow} CH_{3}CONHCl_{2}C_{6}H_{5} \longrightarrow CH_{3}CONHC_{6}H_{4}Cl + \overset{+}{H} + \overset{-}{Cl}.$

This theory has now been adopted generally to explain the "deviations" from the ionic reaction, and in the case of the hydrolysis of cane sugar by hydrochloric acid, Worley¹ has shown that the molecular reaction is so great that its velocity is about twelve times that of the ionic reaction, as is shown in the following table:

· · · · · · · · · · · · · · · · · · ·				
Molecular proportions H ₂ O:HCl	Molecular hydrolytic activity of acid	Degree of "ionization" $\mu_{v_i}'\mu_{oo}$		
30	385	0.725		
40	323	0.778		
50	290	0.813		
60	269	0.837		
80	243	0.859		
IOO	229	0.871		
2000	201	0.901		
Dilutions (mols H ₂ O)	Ki	. and the state of the state o		
30:60	ΙΟΟ	1136		
30:80	94	1154		
30:100	91	1160		
30:200	98 98	1143		
40:80	104	1092		
40:100	99	IIIO		
40:200	10,3	1095		
50:80	99	1121		
50:100	92	1145		
50:200	101	1112		
60:100	77	1154		
60:200	96	1159		
80:100	79	1245		
80:200	102	I I 02		
100:200	109	1042		
	Mean, 96	1138		

The work which was taken up in this laboratory to prove this theory quantitatively was chiefly the reactions of ethylates

¹ Phil. Mag., (6) **27,** 459 (1914).

and phenolates with alkyl halides. These substances were chosen because here we have a nonelectrolyte reacting with a univalent electrolyte whose ionization varies over a wide range. Then, too, in these cases, we are not hindered by troublesome side reactions, and the transformations are also easily controlled and easily and accurately determined.

In the present piece of work we took up the study of the reaction of sodium ethylate with methyl iodide at 0° , repeating the work of Miss B. M. Brown, to see if the same constants could be obtained by two independent workers.

If both the ethylate ions and the nonionized ethylate react we should have two reactions going on side by side, the velocity of one of which is proportional to the concentration of the ionized ethylate and the other proportional to the concentration of the nonionized ethylate, according to the equations

Ionic:
$$C_2H_5I + C_2\overline{H_5O} + \overline{Me} \longrightarrow (C_2H_5)_2O + \overline{Me} + \overline{I}.$$

Molecular: $C_2H_5I + C_2H_5OMe \longrightarrow (C_2H_5)_2O + \overline{Me} + \overline{I}.$

If we represent by K_i the velocity constant for the ionic reaction by K_m the velocity constant for the molecular reaction, and by K_N the total velocity constant, in solutions having unit concentrations, by x the change in concentration of the ethylate in time t, by C_{ethylate} the initial concentration of the ethylate in gram mols per liter, by $C_{\text{alkyl halide}}$ the initial concentration of alkyl halide in gram mols per liter, we have the equation

$$\frac{dx}{dt} = K_i \alpha (C_{\text{ethylate}} - x) (C_{\text{alkyl halide}} - x) + K_m (1 - \alpha) (C_{\text{ethylate}} - x) (C_{\text{alkyl halide}} - x).$$

If we represent $C_{ethylate}$ by A and $C_{alkyl halide}$ by B, we obtain on integrating the above equation

$$K_{N} = K_{i}\alpha + K_{m}(I - \alpha) = \frac{I}{At} \cdot \frac{x}{A - x} \text{ when } A = B$$

and $K_{N} = K_{i}\alpha + K_{m}(I - \alpha) = \frac{I}{(B - A)t} \ln \frac{A(B - x)}{B(A - x)}$
when $A > \text{ or } < B$.

We know the values of A, B and t and can find x by titration. By substituting these values in the equation above we therefore obtain the values for K_N .

By measuring the reaction velocities K_N over a wide range of concentrations we obtain a series of simultaneous equations with different values of K_N , α and $I - \alpha$, as follows:

$$K_{N} = K_{i}\alpha + K_{m}(I - \alpha)$$

$$K'_{N} = K_{i}\alpha' + K_{m}(I - \alpha'), \text{ etc.}$$

By solving these equations for K_i and K_m we obtain the following values:

$$K_{i} = \frac{K'_{N}(1 - \alpha) - K_{N}(1 - \alpha')}{\alpha' - \alpha}$$

and $K_{m} = \frac{K_{N}\alpha' - K'_{N}\alpha}{\alpha' - \alpha}$

Johnson and Acree¹ and Robertson and Acree² have given a full discussion of the derivation and application of these equations.

We find that by the use of these equations we obtain constant values for K_i and K_m for any given reaction. Furthermore, if this theory is correct, not only should we obtain constants for K_i and K_m for any given reaction, but K_i should be a constant for the reaction of a given alkyl halide with any ethylate; that is, the ionic velocity should be the same whether the ethylate ions come from sodium, potassium or lithium ethylates. On the other hand K_m may or may not be the same for different reactions. In fact we would expect the molecular velocities to be different in each case. The same, of course, would hold true with the phenolates as with all other analogous substances. That these relations do hold true is shown by the following tables of the values for K_i and K_m for given alkyl halides with different ethylates, phenolates, etc.:

¹ Am. Chem. Jour., 37, 410; 38, 258 (1907); 48, 352 (1912).

² Ibid., **49,** 474 (1913).

Reagents	Ki	K _m
Sodium ethylate and methyl iodide Sodium ethylate and methyl iodide	0.004861 0.004960	0.002940
Potassium ethylate and methyl iodide	0.005252	
Lithium ethylate and methyl iodide	0.005204	0.001974

Temperature o°

Temperature 25°

Sodium ethylate and ethyl bromide	0.00576	0.00233
Sodium ethylate and ethyl bromide	0.00543	0.00237
Potassium ethylate and ethyl bromide	0.00539	0.00296
Lithium ethylate and ethyl bromide	0.00574	0.00157
Sodium ethylate and ethyl iodide	0.0120	0.00427
Sodium ethylate and ethyl iodide	0.0122	0.00402
Potassium ethylate and ethyl iodide	0.0122	0.00457
Lithium ethylate and ethyl iodide	0.0122	0.00304
Sodium ethylate and methyl iodide	0.127	0.0594
Sodium ethylate and methyl iodide	0.129	0.0581
Potassium ethylate and methyl iodide	0.126	0.0687
Lithium ethylate and methyl iodide	0.137	0.0387
Sodium phenolate and methyl iodide	0.0282	0.00477
Potassium phenolate and methyl iodide	0.0283	0.00370
Lithium phenolate and methyl iodide	0.0287	0.00393
Sodium phenolate and ethyl iodide	0.00551	0.000987
Potassium phenolate and ethyl iodide	0.00518	0.001011
Lithium phenolate and ethyl iodide	0.00534	0.000910
Sodium thiourazole and ethyl iodide	0.435	0.170
Sodium thiourazole and ethyl iodide	0.463	0.158
Acetimidoethylester catalyzed by sodium		
ethylate	0.344	0.228
Benzimidoethylester catalyzed by sodium		
ethylate	0.1172	0.0976
<i>p</i> -Brombenzonitrile and sodium ethylate	0.160	0.161
p-Brombenzonitrile and potassium ethylate	0.163	0.144
<i>p</i> -Brombenzonitrile and lithium ethylate	0.159	0.093

Temperature 35°

Sodium phenolate and methyl iodide	0.0909	0.01310
Potass um phenolate and methyl iodide	0.1036	0.00983
Sodium phenolate and ethy. iodide	0.0183	0.00323
Potassium phenolate and ethyl iodide	0.0197	0.00270
Lithium phenolate and ethyl iodide	0.0174	0.00319

REINTERPRETATION OF THE WORK OF OTHERS

Work of Tubandt

.41 at 20°, c	
. 93 at 30°, c	0.41 at 20 0.93 at 30°
162.0 ¹	50.3 ¹
163.81	46.5 ¹
163.2 ¹	48.21
'11	
assium	
0.089	0.089
rückner	
0.005799 0.02896 0.06305 0.12877	0.002649 0.01028 0.02003 0.04354
0.5606 0.0121 0.05282 0.01025 0.01464 0.01426	0.1892 0.00294 0.01295 0.001912 0.002541 0.002407
•	0.002407
I.299	0.724
1.376	0.759
2.838	0.823
4.473	1.195
0.1458	0.1278
0.229	0.230
0.0128	0.000753
	162.0 ¹ 163.8 ¹ 163.2 ¹ 163.2 ¹ n assium 0.089 rückner 0.005799 0.02896 0.06305 0.12877 0.5606 0.0121 0.05282 0.01025 0.01464 0.01426 Steger 1.299 1.376 2.838 4.473 0.1458 0.229

¹ These values are given in terms of Stieglitz's constants.

The inversion of cane sugar		
by hydrochloric acid at 25°	31.2	83.8
by hydrobromic acid at 25°	31.4	93 · 4
by nitric acid at 25°	31.4	73.I
Work of Koelichen		
The inversion of diacetone alcohol		
by sodium hydroxide	0.2315	0.2315
by barium hydroxide	0.232	0.150

Salt Catalysis

It has been noted that the constants drop off slightly toward the end of the reaction in some cases but increase in others. Several theories have been proposed to explain this phenomenon, among which are a "salt effect," that is, (I) the catalytic effect of the salt formed in the reaction or of the ethylate ions or molecules themselves, and (2) the formation of olefines from the alkyl halides.

Arrhenius¹ and later Euler² and Stieglitz³ thought that the "salt effect" was due to the change in activity or ionization of the water by the action of the salt. Acree⁴ has shown that this explanation is untenable because in some cases it would call for a change in the ionization of water many times greater than could probably be caused in this way and also because the same salts in the same concentration sometimes exert a positive and sometimes a negative effect, and hence would have to increase the ionization of water in some cases and decrease it in others, an evident *reductio* ad absurdum. It has also been shown by Acree that in many cases the salt effect is entirely normal, that is, corresponding to the change in ionization of the reacting substances by the salt formed. In other cases an "abnormal salt effect" was observed, that is, a "salt effect" which was either too large or too small to correspond to the change in ionization of the reacting substances by the salt formed. Acree also showed that Stieglitz's own work proves

¹ Zeit. phys. Chem., 1, 110 (1887); 4, 226 (1889); 31, 197 (1899).

² Ibid., **32**, 348 (1900).

³ Am. Chem. Jour., **39**, 29, 166, 402, 437, 586, 719 (1908); **32**, 221 (1904).

⁴ Ibid., **41**, 475 (1909).

that the temperature coefficient of the hydrolysis of imidoester salts is normal, whereas, on account of the increase in K_m with rise in temperature, the velocities at 18° and 25° would have to be 5 and 9 times, respectively, as large as those observed if the water caused hydrolysis through its ions alone. One side reaction, which may in part explain this decrease in reaction velocity, is the formation of olefines from the alkyl halide. This possibility was pointed out by Shadinger, Marshall, and especially by Robertson.

To check the accuracy of the values for " K_N found" they were compared with the values of " K_N calculated." The latter are found by substituting the proper values of K_i , K_m , α and $I - \alpha$, for the different concentrations of the ethylates in the equation

$$K_{N} = K_{i}\alpha + K_{m}(I - \alpha).$$

From these two values, the calculated and found, the percent error is calculated by using the calculated value of K_N as the standard.

The percent of reaction due to the ions and to the molecules is found by dividing the values of K_i , α and $K_m(\mathbf{1} - \alpha)$, respectively, by the calculated values of K_N for the different concentrations of ethylate.

EXPERIMENTAL Preparation of Absolute Ethyl Alcohol

The use of the purest alcohol obtainable was necessitated, since it has been shown by several workers¹ in this laboratory and also by Goldschmidt,² Lapworth,³ Bredig and Fraenkel,⁴ Kailan,⁵ Gyr,⁶ and others that reaction velocities are in many cases markedly affected by the presence of small quantities of

¹ Ber. deutsch. chem. Ges., **41**, 3227, 3228 (1908); Am. Chem. Jour., **41**, 457, 483 (1909); Ibid., **39**, 711 (1906); Zeit. phys. Chem., **60**, 728 (1907).

² Ber. deutsch. chem. Ges., **39**, 711 (1906); Zeit. phys. Chem., **60**, 728 (1907).

³ Jour. Chem. Soc., 93, 2163, 2187 (1908); Proc. Chem. Soc., 24, 101, 152.

⁴ Biochem. Zeit., **6**, 308; Zeit. phys. Chem., **60**, 202 (1907).

⁵ Ber. deutsch. chem. Ges., **39**, 1055 (1906); Sitzungsber. Akad. Wiss., Wien, **116**, II, 155.

⁶ Ber. deutsch. chem. Ges., **41**, 4322 (1908).

water. The method which has given best results is to boil up the alcohol with pure lime (400 grams of oxide to the liter) for several days, distill off the alcohol and then repeat the operation, using less oxide the second time. By this method it is easily possible to obtain alcohol containing less than 0.04 percent of water.

Preparation of Standard Hydrochloric Acid

The hydrochloric acid used in the titrations was made by the method of Hulett and Bonner,¹ by distilling a 20 percent solution of the acid and thus obtaining a solution of known concentration. This was collected in paraffin bottles which had been thoroughly soaked out and which were kept sealed after the distillation was finished. The acid was made up to the desired strength by weighing out the proper amounts of the constant boiling mixture and of water, and the concentration was checked by silver chloride determinations. The twenty liter bottle in which the acid was kept had been soaked out for several months with dilute acid.

Preparation of the Sodium Ethylate Solution

Sodium ethylate was prepared by dissolving pure sodium in absolute alcohol. As the sodium crust was cut off under kerosene the oil was first roughly removed by wiping the sodium with filter paper. To remove the last traces it was dipped into absolute alcohol before adding it to the alcohol used in making up the ethvlate solution. The solution was standardized by drawing off measured quantities of the ethylate by means of a specially constructed pipette, to be described later, pouring it into water and titrating the sodium hydroxide formed against the standard acid. The flask containing the ethylate was placed in the 0° bath and alcohol was added to bring the mixture to the proper concentration. The ethylate solution was made up fresh each day, as it turns dark on standing. Shrader has found that this change in color does not materially affect the reaction velocity but that it interferes greatly in determining the end point in titrations.

¹ Jour. Am. Chem. Soc., **31**, 390 (1909).

Preparation of the Alkyl Halide Solution

The alkyl halide solutions were made up by weighing the required amount of the alkyl halide into alcohol in a glass stoppered measuring flask and diluting to the mark with alcohol. Miss B. M. Brown found that 0.3 percent excess methyl iodide must be added to make up for the loss of the alkyl halide by vaporization.

The Bath

The bath used for this work at o° was made of copper and lined with tin. It was protected on all sides by pads of lamb's wool and felt. It was kept filled with finely crushed ice and water and was agitated by a specially arranged stirrer. The temperature was found to remain constant to within a few thousandths of a degree.

Machine Pipette

Hecht, Conrad and Brückner, in carrying out their work on reaction velocities, mixed the solutions of ethylates and alkyl halides in one large flask and withdrew portions at definite time intervals for titration. By this method there is a great possibility for loss of alkyl halide on opening the flask, especially at higher temperatures. Therefore, in the work in this laboratory, small flasks of 20 cc or 40 cc capacity were used to contain the individual reaction mixtures.

For transferring the ethylate solution from the large flask in which the solution was made up to the small reaction flasks an ordinary pipette, surrounded by a jacket, which was filled with crushed ice and water, was used. The jacket was refilled once or twice while the solution was being transferred to the different flasks.

On account of the great volatility of methyl iodide, solutions of this substance cannot be transferred to the reaction flasks by means of the pipette described above, as much would be lost in the operation. To obviate this loss a machine which has been fully described by Robertson was used for measureing out the alkyl halide solution into the small flasks already containing the ethylate. A stream of water from the bath was kept running through the machine in order to keep the tem-

perature of the solution at o°. Even then a small amount of alkyl halide was lost, but, as mentioned above, this was offset by adding 0.3 percent excess of methyl iodide when making up the solution. The small flasks were removed from the bath after definite time periods, the contents were poured into about 200 cc of cold water, and the sodium hydroxide formed from the remaining ethylate was titrated with the standard hydrochloric acid in order to determine the values of x. In these titrations 0.5 N acid was used with methyl orange as the indicator.

0n	the	Reactions	of	Sodium	Ethylate	and	Methyl	Iodide
				at	0 °			
		Thorn I				- T . D		

TABLE I		TABLE II			
0.5 N Sodium Ethylate and 0.5 N Methyl Iodide at 0°			dium Ethy Tethyl Iodio	late and 0.5 N de at 0°	
	A = 10	.00		A = 10	.00
		· -···			
t	X	K _V	t	x	K _V
150	2.070	0.001740	150	2.038	0.001706
180	2.354	0.001709	180	2.323	0.001680
210	2,647	0.001714	240	2.916	0.001715
240	2.903	0.001704	264	3.110	0.001708
·	, ,		290	3.314	0.001694
		e, 0.001717 = 0.003434			ge, 0.001701 = 0.003402
	TABLE	III		TABLE	IV
	odium Eth Methyl Iod	vlate and 0.25 lide at 0°		odium Eth Methyl Iod	ylate and 0.25 ide at 0°
	A = 10	.00		A = 10	.00
t	x	K _V	t	x	K _V
6o	0.515	0.000905	60	0.516	0.000906
120	0.967	0.000901	120	0.976	100000.0
210	I.606	0.000911	210	1.610	0.000913
270	1.980	0.000914	270	I.972	0.000909
309	2.158	0.000891	357	2.460	0.000913
397	2.700	0.000901	384	2.592	0.000911
	0	e, 0.000904 = 0.003616			re, 0.000909 = 0.003636

TABLE V

TABLE VI

o.25 N Sodium Ethylate and o.25 O.25 N Sodium Ethylate and o.25 N Sodium Ethylate and o.25 N Methyl Iodide at o° N Methyl Iodide at o°

	A = 10		A = 10.00		
t	x	Kv	t	x	Kv
118	0.958	0.000898	60	0.522	0.000918
180	1.418	0.000918	120	0.982	0.000908
240	1.788	0.000906	180	1.379	0.000899
1277	5.287	0.000899	240	I.772	0.000894
			300	2.139	0.000903
	Avera	ze, 0.000905	360	2.448	0.000900
	、 、	= 0.003620	0	• •	
		0		Avera	age, 0.000902
					= 0.003608
	TABLE	VII		TABLE	0
0.125 N		Ethylate and	0.125 N		Ethylate and
		Iodide at o°			Iodide at o°
Ũ	A = 10		Ū	A = I	
t	x	K _V	t	· x	Kv
90	0.420	0.000487	90	0.426	0.000494
150	0.652	0.000465	150	0.670	0.000479
210	0.912	0.000478	270	1.145	0.000479
330	I.344	0.000470	330	1.352	0.000473
390	1.568	0.000476	390	1.568	0.000476
	Avera	ge, 0.000475		Avera	ge, 0.000480
		= 0.003800			= 0.003840
Summ		odium Ethyla	te and]		
		Found for Sc			

V	K _N	K_N average
2	0.003434 0.003402	0.003418
4	0.003616 0.003636 0.003620	
	0.003608	0.003620
8	0.003800 0.003840	0.003820

V	α	ι — α
I	0.136	0.864
2	0.237	0.763
4	0.335	0.665
8	0.435	0.565
16	0.531	0.469
32	0.633	0.367

TABLE X-THE IONIZATION OF SODIUM ETHYLATE AT 0°1

TABLE XI— K_i and K_m Found for Sodium Ethylate and Methyl Iodide at 0°

V	:	Ki	K _m
V = 2: V = 4		0,00499	0.00293
V = 2: V = 8		0.00496	0.00294
V = 4:V = 8	:	0.00495	0.00295
		·	
	1	Av., 0.00496	0.00294

TABLE XII—K_N CALCULATED AND FOUND FOR SODIUM ETHYLATE AND METHYL IODIDE AT 0°

v		K _N found	K _N calculated	Error in percent
2		0.003418	0.003419	-0.03
4		0.003620	0.003616	+0.11
8		0.003820	0.003818	+0.05

TABLE XIII—PERCENT OF REACTION DUE TO IONS AND TO MOLE-CULES

V	Percent of reaction due to αK;	Percent of reaction due to $(1 - \alpha)K_m$
2	34.38	65.62
4	45.95	54.05
8	56.51	43.49

¹ Robertson and Acree: Diss., J. H. U., 1910; Am. Chem. Jour., 49, 474 (1913); Jour. Phys. Chem., 19, 406 (1915).

II. Reinterpretation of the Work of Hecht, Conrad and Brückner on the Reaction of Alkyl Halides with Sodium Ethylate at Different Temperatures

As was mentioned above, some of the earliest work on the velocities of the reactions of alkyl halides with ethylates was done by Hecht, Conrad and Brückner,¹ but they did not interpret their results according to the ionic theory, as they considered these substances nonelectrolytes (nichtleitende Körper). Since we have shown by actual conductivity measurements that the ethylates are electrolytes, it was interesting to take their data and interpret² it on the basis of the reaction of both the ions and nonionized molecules of the sodium and potassium ethylates.

To test this theory we used our conductivity measurements at 0°, 25°, and 35° and calculated the ionization of the ethylate at the temperatures employed by Hecht, Conrad and Brückner. We then substituted these values for α and those found for K_N by Hecht, Conrad and Brückner in the equations

(1)
$$K_i = \frac{K'_N(1-\alpha)-K_N(1-\alpha')}{\alpha'-\alpha}$$
 and (2) $K_m = \frac{K_N\alpha'-K'_N\alpha}{\alpha'-\alpha}$

and learned that we obtain constants for K_i and K_m which may be considered to check very well with the values found in this laboratory for the same reaction, if we remember the fact that this earlier work had so many sources of error which have since been eradicated.

From their data on the reaction of sodium ethylate and methyl iodide at 0° we obtain $K_i = 0.005799$ and $K_m = 0.002649$, while, for the same reaction, the values found in this laboratory by Miss Brown³ are $K_i = 0.004861$ and $K_m = 0.003033$ and the authors have found the values $K_i = 0.004960$ and $K_m = 0.002940$. From their data on the reaction of sodium ethylate and methyl iodide at 24° we obtain $K_i = 0.129$ and $K_m = 0.0435$, while for the same reaction at 25° the values found in this laboratory by Miss Brown are

¹ Zeit. phys. Chem., **5**, 289 (1890).

² Jour. Chem. Soc., 105, 2582 (1914).

³ Diss. J. H. U., 1913.

 $K_i = 0.129$ and $K_m = 0.0581$ and by Robertson $K_i = 0.127$ and $K_m = 0.0594$. From their data on the reaction of sodium ethylate and ethyl iodide at 24° we obtain $K_i = 0.0121$ and $K_m = 0.00294$, while the same reaction at 25°, the values found in this laboratory by Marshall,¹ are $K_i = 0.0120$ and $K_m = 0.00427$, and by Shrader² $K_i = 0.0122$ and $K_m = 0.00402$.

It is therefore seen that their work, which was not done from the standpoint of ionic reaction, can be explained very satisfactorily indeed by the theory that both the ions and molecules react side by side.

Hecht, Conrad and Brückner worked out their values for K_N , the reaction velocity, by the use of a purely empirical formula

(3)

$$\begin{array}{l} K'_{\rm N} \,=\, K_{\rm N} \,+\, a\, \log\, ({\rm V'}/{\rm V}) \\ K''_{\rm N} \,=\, K_{\rm N} \,+\, a\, \log\, ({\rm V''}/{\rm V}) \\ K'''_{\rm N} \,=\, K_{\rm N} \,+\, a\, \log\, ({\rm V''}/{\rm V}) \end{array}$$

in which K'_N and K_N are the reaction velocities at any dilutions, "a" is an empirical constant, obtained by solving these simultaneous equations, and V'/V is the ratio of the volumes of the two solutions; that is, if we are comparing two solutions, say V = 10 and V = 2, the V'/V used in the formula above would be the ratio of 10 to 2, which is 5.

As this formula is purely empirical we attempted to find the value of the Hecht, Conrad and Brückner factor "a" in terms of Acree's formula to see if we could find what this term "a" really means; for although their formula is empirical, it seems to hold in practice and it should be possible to give it some rational physical basis.

Representing by K'_N and K_N the reaction velocities of two substances at different dilutions we have by Acree's formula:

(4)
$$K_{N} = K_{i}\alpha + K_{m}(I - \alpha)$$

(5) and
$$K'_N = K_i \alpha' + K_m (\mathbf{I} - \alpha')$$

Subtracting we have,

(6)
$$K'_{N} - K_{N} = K_{i}(\alpha' - \alpha) - K_{m}(\alpha' - \alpha)$$
$$= (K_{i} - K_{m})(\alpha' - \alpha).$$

¹ Jour. Phys. Chem., 19, 589 (1915).

² Diss. J. H. U., 1913.

368 W. A. Taylor and S. F. Acree

According to Hecht, Conrad and Brückner,

$$K'_{N} = K_{N} + a \log (V'/V)$$

or $K'_{N} - K_{N} = a \log (V'/V)$

Equating these two values for $K'_N - K_N$ we get,

(7)
$$a \log V'/V = (K_i - K_m)(\alpha' - \alpha)$$

(8) and hence,
$$a = \frac{(\mathbf{K}_i - \mathbf{K}_m) (\alpha' - \alpha)}{\log (V'/V)}$$
.

We then tested this equation (8) to see if we obtain a constant for "a" by substituting the proper values for K_i , K_m , α , α' and V'/V. The tables on pages 372, 375, and elsewhere show that the values for "a" are really quite constant; since $K_i - K_m$ is also a constant we see that in the work of Hecht, Conrad and Brückner and in the cases studied by us the difference in ionization of two given solutions seems to be proportional to the logarithm of the ratio of their volumes. This empirical relation seems to hold over a limited range, especially in the more concentrated solutions, both with those electrolytes which obey the Ostwald dilution law and those which do not. That it cannot hold over all ranges follows at once from the fact that

$$\frac{(\mathrm{K}_{i}-\mathrm{K}_{m})(\alpha'-\alpha)}{\log(\mathrm{V}'/\mathrm{V})},$$

or "a," becomes gradually smaller and approaches zero for those solutions which are nearly completely ionized. We consider this to be a very important empirical relationship, which we shall develop for all of the cases where the reaction velocities and conductivities are available, whether the substances be organic or inorganic acids, bases and salts.

We then used Formula 3 for obtaining the calculated or theoretical values for K'_N , K''_N , K''_N , etc., by taking any given value as K_N and using the average of the values of "a" found above. For uniformity we have called all these values of K'_N , K''_N , K'''_N , etc., simply "(1) K_N calculated" in the tables. It will be seen from the tables given on pages 372, 375 and elsewhere, that these values for K_N calculated are very close to those found experimentally. From the " K_N found" and the "(1) K_N calculated," as explained above, the per cent error was determined, 0.00 error showing the value used as K_N in Equation 3.

Under the heading "(2) K_N calculated" we give the values of " K_N calculated" for any given value of "V" by the use of the summation of the equations under (3). The sum assumes the form

$$\mathbf{K'_N} + \mathbf{K''_N} + \mathbf{K'''_N} + \mathbf{K^a_N} = n\mathbf{K_N} + a\log\left\{\frac{\mathbf{V'V''V''}}{\mathbf{V''}}\right\}$$

in which *n* is the number of different concentrations studied and K_N is the reaction velocity, $V \times K_V$, calculated for any particular value of V. Under "(2) Error in per cent" is given the deviation of the " K_N found" from the "(2) K_N calculated."

It is clearly recognized that all the values given in the tables below are not accurate beyond the second or third significant figure, even though four are sometimes given.

To test further the relations between the formula used by Hecht, Conrad and Brückner and that used by us, we used some of the work which was done in this laboratory, in which we have eliminated all sources of error as completely as possible, and obtained the values of "a" from Equation 8, and of "K_N calculated" from Equation 3. In our work on sodium ethylate and methyl iodide at o° the values for "a" and for "K_N calculated," obtained from Equations 8 and 3, are given in the following tables:

TABLE XIV---''a'' Found for Sodium Ethylate and Methyl Iodide at 0°

	''a''
V = 2: V = 4V = 2: V = 6V = 4: V = 8	0.000658 0.000664 0.000671
	Average, 0.000664

TABLE XV— K_N Found, " K_N Calculated," Obtained by Using "a" in the Equation $K'_N = K_N +$ "a" Log (V'/V) and Error in Percent

v	K _N found	K _N calculated	Error in percent
2	0.003418	0.003418	0.00
4	0.003620	0.003618	+0.06
8	0.003820	0.003818	+0.05

In the work of Shrader on sodium ethylate and ethyl iodide at 25° we find again this close agreement. The average value found for "a" is 0.002297. We give in the following table the values for K_N calculated, the values for K_N found experimentally and the error in percent:

V	K _N found	K _N calculated	Error in percent
I :	0.00521	0.00521	0.0
2	0.00595	0.00590	+0.8
4	0.00657	0.00659	—o.3
8	0.00723	0.00728	0.7
16	0.00800	0.00797	+0.4
32	0.00865	0.00866	O.I

It is seen that the values for "a" are very constant and that the agreement between the values for K_N found and those calculated is excellent. These are only two of many cases which have been recalculated and in all we find this same excellent agreement.

We therefore find that the empirical formula

 $K'_N = K_N + a \log (V'/V)$

used so successfully by Hecht, Conrad and Brückner can be transformed into our equations, which have as a rational basis the idea that both the anions and the molecules of the ethylates react with the alkyl halides. This is a beautiful example to illustrate the fact that all valid empirical formulas can be put on a rational basis by the proper study of the questions involved.

Ions and Molecules of Acids, Bases and Salts 371

On the Reactions of Sodium Ethylate and Methyl Iodide at 0° Table I—K_N Found for Sodium Ethylate and Methyl Iodide at 0°

	AT O		
Conc. NaOC ₂ H ₅ V		K_N found	
I		0.002958	
2		0.003426	
IO		0.003996	
20		0.004348	
TABLE II—THE IC	NIZATION OF SODIU	M ETHYLATE AT 0°	
V	α	Ι — α	
I	0.1362	0.8638	
2	0.2372	0.7628	
ю	0.4587	0.5413	
20	0.5766	0.4234	
	K_i	\mathbf{K}_m	
V = I : V = 2	0.006942	0.002324	
V = I : V = IO	0.005738	0.002518	
V = 1: V = 20	0.005616	0.002528	
V = 2: V = 10	0.005388	0.003120	
V = 2: V = 20	0.005498	0.002780	
V = 10: V = 20	0.005612	0.002626	
	Av., 0.005799	0.002649	
) Methyl Iodide a		

I	0.002958		0.003078	-4.05
2	0.003426		0.003395	+0.91
10	0.003996	i	0.004099	-2.57
20	0.004348		0.004465	2.69

372

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLE-CULES

V	Percent of reaction due to αK_i	Percent of reaction due to $(1 - \alpha)K_{\pi}$	
I	25.66	74.34	
2	40.51	59.49	
10	64.89	35.11	
20	74.88	25.12	

Table VI—"a" Found for Sodium Ethylate and Methyl Iodide at 0°

	"a"
V = I: V = 2	0.001057
V = I : V = IO	0.001016
V = I : V = 20	0.001066
V = 2: V = 10	0.000998
V = 2: V = 20	0.001069
V = 10: V = 20	0.001233

Average, 0.001073

Table VII— K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N +$ "a" Log (V'/V) and Error in Per Cent

v	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
I	0.002958	0.002958	0.00 + 4.42 - 0.86 - 0.15	0.002981	-0.77
2	0.003426	0.003281		0.003306	+3.63
IO	0.003996	0.004031		0.004379	-8.73
20	0.004346	0.004354		0.004593	-5.38

On the Reactions of Sodium Ethylate and Methyl Iodide at $12\,^\circ$

Table I—K_N Found for Sodium Ethylate and Methyl Iodide at 12 $^\circ$

Conc. NaOC₂H₅ V	K _N found
2	0.01496
20	0.02014

V = V V 2 20 TABLE V	$2:V = 2$ $-K_{N} CAL$ K_{N} 0.0 0.0	Iodi 20 CULATED A	360 275 9 FOR SODIUM IDE AT 12° K; 0.02896 ND FOUND FOI IODIDE AT 1 K _N calcula 0.01468 0.02012	O. O. ETHYLATE R SODIUM J 2° ted E: 32	Km 0.01028
20 CABLE III- $V =$ CABLE IV- V 2 20 TABLE V	$2:V = 2$ $-K_{N} CAL$ K_{N} 0.0 0.0	0.5 K _m Found Iodu 20 CULATED A METHYL found 01469 02014	275 FOR SODIUM $DE AT 12^{\circ}$ K_i 0.02896 ND FOUND FOI IODIDE AT 1 K_N calcula 0.01468 0.02012	O. ETHYLATE R SODIUM J 2° ted E: 32	4725 AND METHY K_m 0.01028 ETHYLATE AN rror in percent +0.07
V = V $V = V$ V V V V Z Z $TABLE V$	$2:V = 2$ $-K_{N} CAL$ K_{N} 0.0 0.0	K _m Found IoDi 20 CULATED A METHYL found 01469 02014	For Sodium ide at 12° K; 0.02896 ND FOUND FO IODIDE at 1 K _N calcula 0.01468 0.02012	ETHYLATE R SODIUM I 2° ted E; 3 2	AND METHY K_m 0.01028 ETHYLATE AN rror in percent +0.07
V = V V V 2 20 $TABLE V$	$2:V = 2$ $-K_{N} CAL$ K_{N} 0.0 0.0	IOD) 20 CULATED A METHYL found 01469 02014	IDE AT 12° K_i 0.02896 ND FOUND FOUND FOUND FOUND AT 1 IODIDE AT 1 K_N calcula 0.01468 0.02012	R SODIUM] 2° ted E: 3 2	Km 0.01028 ETHYLATE AN rror in percent +0.07
Y V 2 20 TABLE V	-K _N Call K _N 0.0 0.0	CULATED A METHYL found 01469 02014	0.02896 ND FOUND FO IODIDE AT 1 K _N calcula 0.01468 0.02012	ted E;	0.01028 ETHVLATE AN rror in percent +0.07
Y V 2 20 TABLE V	-K _N Call K _N 0.0 0.0	CULATED A METHYL found 01469 02014	ND FOUND FOI IODIDE AT I K _N calcula 0.01468 0.02012	ted E;	ETHVLATE AN rror in percent +0.07
V 2 20 TABLE V	K _N 0.0 0.0	METHYL found 01469 02014	IODIDE AT 1 K _N calcula 0.01468 0.02012	2° ted E; 3 2	rror in percent +0.07
2 20 Table V	0.0	01469 02014	0.01468	32	+0.07
20 Table V	0.0	2014	0.02012	2	
20 Table V	0.0	2014	0.02012	2	
	Perce	INT OF REA	CTION DUE T	_	
			CULES		
Conc. N V	IaOC₂H₅ ∕		rcent of reactionPercent of reactiondue to αK_i due to $(\mathbf{I} - \alpha)$		
2		4	.6.55		53 · 45
20		7	5.92	24.08	
`able VI—	-" <i>a</i> " Fot		DDIUM ETHYLA AT 12°	ate and M	Iethyl Iodi
				''a'	,
V	V = 2:V	= 20		0.005	445
TION K	$-K_{\rm N}$ Fo $'_{\rm N} = K_{\rm N}$	UND, $K_N C$ + "a" Lo	ALCULATED BY DG (V'/V) AN	r Using ''a' d Error ii	' in the Equ n Percent
V KI	_N found	(1) K _N calc lated	u- Error in per- cent	(2) K _N call lated	cu- Error in pe cent
	.01469 .02014	0.01469 0.02013		0.01469	

TABLE II—THE IONIZATION OF SODIUM ETHYLATE AT 12°

On the Reactions of Sodium Ethylate and Methyl Iodide at $18\,^\circ$

TABLE I-K_N Found for Sodium Ethylate and Methyl Iodide At 18°

Conc. NaOC₂H₃ V	K _N found
2	0.03020
IO	0.03844
20	0.04642

TABLE II-THE IONIZATION OF SODIUM ETHYLATE AT 18°

·····	a and an and a second sec	
. V	α	I — <i>a</i>
2	0.2382	0.7618 0.5810 0.3810
10	0.4190	0.5810
20	0.6190	0.3810

TABLE III—K; AND K_m Found for Sodium Ethylate and Methyl Iodide at 18°

	K_i	K _m
V = 2: V = 10 V = 2: V = 40 V = 10: V = 40	0.06490 0.06264 0.06162	0.01934 0.02004 0.02072
	Av., 0.06305	0.02003

TABLE	$IV-K_N$	CALCULATED	AND	Found	FOR	Sodium	Ethylate
		AND METH	YL IC	DDIDE AT	ť 18°)	

V	$\mathbf{K}_{\mathbf{N}}$ found	${f K}_{N}$ calculated	Error in percent
2	0.03020	0.03026	0.19
IO	0.03844	0.03804	+1.04
40	0.04642	0.04645	

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLE-CULES

Conc. NaOC ₂ H ₅ V	Percent of reaction due to αK _i	Percent of reaction due to $(I - \alpha)K_m$
2	49.63	50.37
IO	69.44	30.56
40	84.04	15.98

Table VI—"a" Found for Sodium Ethylate and Methyl Iodide at 18°

	''a''	
V = 2: V = IO	0.01113	
V = 2: V = 40	0.01259	
V = IO: V = 40	0.01429	
	Average, 0.01267	

Table VII— K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N + "a"$ Log (V'/V) and Error in Percent

V	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in per- cent
2	0.03020	0.02993	+0.9	0.02991	+ 0.97
10	0.03844	0.03879	0.9	0.04639	17.1
40	0.04642	0.04642	0.00	0.04721	1.67

On the Reaction of Sodium Ethylate and Methyl lodide at 24°

TABLE I—K_N Found for Sodium Ethylate and Methyl Iodide At 24°

Conc. NaOC₂H₅ V	K_N	Conc. NaOC₂H₅ V	K _N
I	0.05512	20	0.08696
2	0.06276	40	0.09448
5	0.07182	80	0.10226
10	0.07950		

V	α	(1 — α)
I	0.1470	0.8530
2	0.2346	0.7654
5	0.3335	0.6665
IO	0.4170	0.5830
20	0.5075	0.4925
40	0.6040	0.3960
80	0.7030	0.2970

TABLE II—THE IONIZATION OF SODIUM ETHYLATE AT 24°

TABLE III—K; AND K_m Found for Sodium Ethylate and Methyl Iodide at 24°

	Ki	K _m
V = I: V = 2	0.1294	0.04230
V = I : V = 5	0.1215	0.04194
V = I : V = IO	0.1312	0.04184
V = I : V = 20	0.1304	0.04212
V = I : V = 40	0.1284	0.04244
V = I : V = 80	0.1274	0.04264
V = 2:V = 5	0.1328	0.04126
V = 2: V = 10	0.1330	0.04122
V = 2:V = 20	0.1306	0.04194
V = 2:V = 40	0.1281	0.04260
V = 2:V = 80	0.1273	0.04296
V = 5: V = 10	0.1331	0.04114
V = 5: V = 20	0.1297	0.04280
V = 5: V = 40	0.1276	0.04386
V = 5:V = 80	0.1276	0.04434
V = 10: V = 20	0.1275	0.04510
V = 10: V = 40	0.1262	0.04608
V = 10: V = 80	0.1258	0.04630
V = 20: V = 40	0.1253	0.04740
V = 20: V = 80	0.1255	0.04726
V = 40: V = 80	0.1256	0.04700
	Av., 0. 12877	0.04354

V	$\mathbf{K}_{\mathbf{N}}$ found	K _N calculated	Error in percent
	0.05512	0.05605	—-1.68
2	0.06276	0.06352	
5	0.07182	0.07194	0.16
10	0.07950	0.07905	+0.57
20	o.o8696	0.08676	+0.23
40	0.09448	0.09498	0.52
80	0.10226	0.10340	I.I7

Table IV—K_N Calculated and Found for Sodium Ethylate and Methyl Iodide at 24 $^{\circ}$

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLE-CULES

Conc. NaOC₂H₅ V	Percent of reaction due to $\alpha \mathbf{K}_i$	Percent of reaction due to $(\mathbf{I} - \alpha) \mathbf{K}_m$
I	33.75	66.25
2	47.53	52.47
5	59.66	40.34
IO	67.89	32.11
20	75.28	24.72
40	81.84	18.16
80	87.51	12.49

TABLE VI--- "a" FOUND FOR SODIUM ETHYLATE AND METHYLATE

	Iodide	AT 24 ⁰	
	''a''		<i>``a`</i> `
V = I: V = 2 V = I: V = 5 V = I: V = 10 V = I: V = 20 V = I: V = 40 V = I: V = 80 V = 2: V = 5 V = 2: V = 10 V = 2: V = 40 V = 2: V = 80 V = 2: V = 80	0.02478 0.02272 0.02299 0.02359 0.02429 0.02488 0.02116 0.02222 0.02324 0.02324 0.02416 0.022489	V = 5: V = 10 V = 5: V = 20 V = 5: V = 40 V = 5: V = 80 V = 10: V = 20 V = 10: V = 40 V = 20: V = 40 V = 20: V = 80 V = 40: V = 80 Average,	0.02362 0.02461 0.02551 0.02613 0.02560 0.02645 0.02645 0.02730 0.02765 0.02801 0.02801

Table VII— K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N +$ "a" Log (V'/V) and Error in Percent

v	K_N found	(1) K _N calcu- lated	Error in percent	(2) K _N c alcu- lated	Error in percent
I 2	0.05512 0.06276	0.05470 0.06216	+0.77 +0.96	0.05486 0.06233	+0.47 +0.69
5	0.07182	0.07202	-0.28	0.07220	-0.52
IO	0.07950	0.07949	0.00	0.08538	6.89
20	0.08696	0.08696	0.00	0.09208	-5.56
40	0.09448	0.09442	+0.44	0.09879	-4.36
80	0.10220	0.10189	+0.30	0.10549	-3.12

On the Reaction of Sodium Ethylate and Methyl Iodide at 36 $^\circ$

Table I—K_N Found for Sodium Ethylate and Methyl Iodide at $36\,^\circ$

Conc. NaOC ₂ H ₅ V	K _N found	Conc. NaOC ₂ H ₅ V	K _N found
I	0.2344	20	0.3730
2	0.2663	40	0.4050
4	0.2984	80	0.4370
5	0.3088	160	0.4692
IO	0.3408	IOOO	0.5540

TABLE II-THE IONIZATION OF SODIUM ETHYLATE AT 36°

\mathbf{V}	α	Ι α
I	0.1543	0.8457
2	0.2322	0.7678
4	0.3036	0.6964
5	0.3218	0.6782
IO	0.3972	0.6028
20	0.4829	0.5171
40	0.5801	0.4199
80	0.6842	0.3158
160	0.7866	0.2134
1000	0.9900	0.0100

TABLE III— K_i AND K_m	Found for	SODIUM	ETHYLATE	AND	Methyl
	Iodide A	1T 36°			

		10DIDE A	r 30		
			Ki		K _m
V =	I : V = 2		0.5818		0.1710
V =	I:V = 4		0.5970		0.1656
V =	I:V = 5		0.6100		0.1659
V =	I:V = 10		0.5568		0.1668
$\dot{V} =$	I:V = 20		0.5916		0.1693
V =	I:V = 40		0.5730		0.1725
Ý =	I:V = 80		0.5324		0.1754
V =	I:V = 160	1	0.5484		0.1771
V =	I:V = 1000		0.5602		0.1754
V =	2:V = 4	1	0.5968		0.1625
Ý =	2:V = 5		0.5626		0.1565
V =	2:V = 10		0.6126		0.1616
V =	2:V = 20		0.6068		0.1677
V =	2:V = 40		0.5724	i	0.1740
V =	$_2: V = 80$		0.5562		0.1787
V =	2 :V = 160	1	0.5620		0.1815
V =	2:V = 1000		0.5576		0.1775
V =	4: V = 5		0.6700	i	0.1247
V =	4:V = 10		0.6138		0.1609
V =	4:V = 20		0.5572		0.1722
V =	$_{4}:V = 40$		0.5742		0.1813
V =	$_{4}: V = 80$		0.5518		0.1878
V =	4: V = 160		0.5446		0.1911
V =	4:V = 1000		0.5574		0.1853
V =	$\frac{1}{5}: V = 10$		0.5968		0.1963
V =	5:V = 20		0.5754		0.1806
V =	5:V = 40		0.5614		0.1501
V =	5: V = 80		0.5486		0.1950
V =	5:V = 160		0.5434		0.1978
V =	5:V = 1000		0.5580		0.1907
V =	10:V = 20		0.5666		0.1916
V =	10: V = 40		0.5514		0.2014
V =	10: V = 80		0.5428		0.2076
V =	10:V = 160		0.5392		0.2098
V =	10:V = 1000		0.5576		0.1980
V =	20: V = 40		0.5432		0.2142
V =	20: V = 80	1	0.5376		0.2196
V =	20:V = 160		0.5302		0.2200
V =	20: V = 1000		0.5574		0.2248
V =	40: V = 80		0.5342		0.2267
V =	40: V = 160		0.5356		0.2247
V =	40: V = 1000	1	0.5578		0.2491
V =	80:V = 160		0.5362		0.2414
V =	80:V = 1000		0.5586	ļ	0.2234
V = z	160:V = 1000]	0.5584		0.1676
		Average,	0.5606		0.1892

METHYL IODIDE AT 36°						
v		$\mathbf{K}_{\mathbf{N}}$ found	K _N calculated	Error in percent		
I		0.2344	0.2464			
2		0.2664	0.2732	-2.4		
4		0.2984	0.3020	— I . I		
5	:	0.3088	0.3087	0.0		
IO		0.3408	0.3366	+ I . 2		
20		0.3730	0.3686	+ I . I		
40		0.4050	0.4046	+0.I		
80		0.4370	0.4434	— I . 4		
160		0.4692	0.4814	-2.5		
1000		0.5540	0.5568	o.5		

Table IV—K_N Calculated and Found for Sodium Ethylate and Methyl Iodide at 36°

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLECULES

Conc. NaOC ₂ H ₅ V	Percent of reaction due to αK_i	Percent of reaction due to $(1 - \alpha)K_m$
I	35.11	64.89
2	47.64	52.36
4	56.36	43.64
5	58.42	41.58
IO	60.20	39.80
20	73.48	26.51
40	80.41	19.59
80	87.00	13.00
160	91.22	8.78
1000	99.06	0.94

Ions and Molecules of Acids, Bases and Salts 381

TABLE VI-"a"	Found for Sodium Ethylate and Methyl Iodide
	AT 36°

MI 30						
	''a''		''a''			
V = I : V = 2	0.1064	V = 5: V = 10	0.100 1			
V = I : V = 4	0,1070	V = 5: V = 20	0.1054			
V = I : V = 5	0.1066	V = 5: V = 40	0.1176			
V = I : V = Io	0.0948	V = 5: V = 80	0.1068			
V = I : V = 20	0.1064	V = 5: V = 160	0.1068			
V = I : V = 40	0.1065	V = 5:V = 1000	0.1065			
V = I : V = 80	0.0993	V = 10: V = 20	0.1065			
V = I : V = 160	0.1066	V = 10: V = 40	0.1064			
V = I : V = 1000	0.1070	V = 10: V = 80	0.1066			
V = 2: V = 4	0.1029	V = 10: V = 160	0.1064			
V = 2: V = 5	0.0914	V = 10: V = 1000	0.1064			
V = 2: V = 10	0.1064	V = 20: V = 40	0.1063			
V = 2: V = 20	0.1102	V = 20: V = 80	0.1062			
V = 2: V = 40	0.1064	V = 20: V = 160	0.1042			
V = 2: V = 80	0.1065	V = 20: V = 1000	0.0991			
V = 2: V = 160	0.1107	V = 40: V = 80	0.1064			
V = 2: V = 1000	0.1068	V = 40: V = 160	0.1066			
V = 4: V = 5	0.1025	V = 40 : V = 1000	0.0905			
V = 4: V = 10	0.1064	V = 80: V = 160	0.1003			
V = 4: V = 20	0.0986	V = 80: V = 1000	0.0959			
V = 4: V = 40	0.1084	V = 160 : V = 1000	0.0997			
V = 4: V = 80	0.1063					
V = 4: V = 160	0.1064	Averas	ge, 0.1046			
V = 4:V = 1000	0.1064		,			
, 4., 1000	0.1004					

Table VII—K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N + "a"$ Log (V'/V) and Error in Percent -----

V	K_{N} found	(1) K _N calcu- lated	Error in per- cent	(2) K_N calculated	Error in per- cent
I	0.2344	0.2357	—-o.56	0.2368	I .0I
2	0.2664	0.2672	—o.30	0.2683	——O.7I
4	0.2984	0.2987	O.II	0.2998	o.46
5	0.3088	0.3088	0.00	0.3099	0.35
IO	0.3408	0.3403	+0.14	0.3414	—-0.I7
20	0.3730	0.3718	+0.32	0.3854	3.22
40	0.4050	0.4033	+0.42	0.4167	2.8I
80	0.4370	0.4347	+0.52	0.4480	2.45
160	0.4692	0.4662	+0.64	0.4793	2.II
1000	0.5540	0.5495	+0.81	0.5634	—1.67

On the Reaction of Sodium Ethylate and Methyl Iodide at 24°

Table I—K $_N$ Found for Sodium Ethylate and Ethyl Iodide at 24 $^\circ$

Conc. NaOC ₂ H ₅ V	 	K _N	i	Conc. NaOC₂H₅ V		K _N	-
I 2 5		0.004326 0.004946 0.006105		10 20		0.006842 0.007624	-

TABLE II—THE IONIZATION OF SODIUM ETHYLATE AT 24°

V	α	Ι — α
I	0.148	0.852
2	0.235	0.765
5	0.336	0.864
IO	0.422	0.578
20	0.512	0.488

TABLE III—K; AND K_m Found for Sodium Ethylate and Ethyl Iodide at 24°

	Ki	K _m
V = I : V = 2	0.0104	0.00328
V = I : V = 5	0.0124	0.00293
V = I : V = IO	0.0121	0.00297
V = I : V = 20	0.0120	0.00299
V = 2: V = 5	0.0137	0.00226
V = 2: V = 10	0.0127	0.00258
V = 2:V = 20	0.0123	0.00269
V = 5: V = 10	0.0117	0.00326
V = 5: V = 20	0.0118	0.00323
V = 10: V = 20	0.0118	0.00318
Average,	0.0121	0.00294

V	K _N found	K _N calculated	Error in percent
I 2	0.004326 0.004946	0.004294	+0.7 -2.8
5	0.004940 0.006105 0.006842	0.006014	+1.2 +0.6
20	0.007624	0.007625	0.0

Table IV—K_N Calculated and Found for Sodium Ethylate and Ethyl Iodide at 24 $^\circ$

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLECULES

Conc. NaOC₂H₅ V	Percent of reaction due to αK _i	Percent of reaction due to $(1 - \alpha)K_m$
I	41.70	58.30
2	55.86	44.14
5	67.60	32.40
IO	75.08	24.92
20	81.25	18.75

TABLE VI—"a" Found for Sodium Ethylate and Ethyl Iodide at 24°

		<i>``a`</i> '
V = I: V = 2		0.002647
V = I : V = 5		0.002464
V = I : V = IO		0.002510
V = I : V = 20	;	0.002563
V = 2: V = 5		0.002325
V = 2: V = 10		0.002451
V = 2:V = 20		0.002537
V = 5: V = 10		0.002616
V = 5: V = 20		0.002678
V = 10: V = 20		0.002738
	Average,	0.002553

 V	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
I	0.004326	0.004302	+0.5	0.004437	-2.50
2	0.004946	0.005071	2.4	0.005206	4.99
5	0.006105	0.006110	0.0	0.006534	-6.56
10	0.006842	0.006855	—O.2	0.007143	—4 . 2 I
20	0.007624	0.007624	0.0	0.008417	9.42

Table VII— K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N +$ "a" log (V'/V) and Error in Percent

On the Reaction of Sodium Ethylate and Methyl lodide at 36 $^\circ$

Table I—K_N Found for Sodium Ethylate and Ethyl Iodide at 36°

Conc. NaOC₂H₅	K _N found	Conc. NaOC ₂ H ₅	K _N found
I	0.01817	20	0.03234
2	0.02148	40	0.03594
4	0.02486	80	0.03926
5	0.02586	160	0.04258
IO	0.02918	1000	0.05126

Table II—The Ionization of Sodium Ethylate at 36°

Z.	α	Ι α
I	0.1543	0.8457
2	0.2322	0.7678
4	0.3036	0.6964
5	0.3218	0.6782
IO	0.3972	0.6028
20	0.4829	0.5171
40	0.5801	0.4199
80	0.6842	0.3158
160	0.7866	0.2134
1000	0.9900	0.0100

TABLE III— K_i AND K	, Found for Sodium Ethylate and Ethy	ĽL
	IODIDE AT 36°	

IODIDE AT 36°				
	K _i		K_m	
V = I : V = 2	0.05408	-	0.01162	
$V = I \cdot V = 2$ $V = I \cdot V = 4$	0.05604		0.01126	
V = 1: V = 4 $V = 1: V = 5$	0.05698	i.	0.01109	
V = I : V = IO	0.05648		0.01118	
V = I : V = 20	0.05462		0.01152	
V = 1: V = 40	0.05346	:	0.01173	
V = I : V = 80	0.05182		0.01203	
V = I : V = 160	0.05080		0.01221	
V = I : V = I000	0.05164		0.01202	
V = 2: V = 4	0.05782		0.01048	
$\dot{V} = 2 \cdot \dot{V} = 5$	0.05900		0.01013	
V = 2: V = 10	0.05730	1	0.01064	
V = 2: V = 20	0.05474	i i	0.01142	
V = 2: V = 40	0.05338		0.01183	
V = 2: V = 80	0.05168		0.01234	
V = 2: V = 160	0.05070		0.01264	
V = 2: V = 1000	0.05164		0.01235	
V = 4: V = 5	0.06312		0.00818	
V = 4 : V = 10	0.05700		0.01084	
V = 4: V = 20	0.05390		0.01219	
V = 4 V = 40	0.05276	-	0.01273	
V = 4 V = 80	0.05120		0.01337	
V = 4 : V = 160	0.05040		0.01372	
V = 4 V = 1000	0.05164		0.01318	
V = 5: V = 10	0.05572		0.01169	
V = 5: V = 20	0.05312		0.01291	
V = 5: V = 40	0.05230		0.01330	
V = 5: V = 80	0.05092		0.01396	
V = 5: V = 160	0.05024		0.01428	
V = 5: V = 1000	0.05162		0.01362	
V = 10: V = 20	0.05140		0.01453	
V = 10: V = 40	0.05144		0.01449	
V = 10: V = 80	0.05034		0.01522	
V = 10: V = 160	0.04992	1	0.01551	
V = 10: V = 1000	0.05162		0.01438	
V = 20: V = 40	0.05148		0.01445	
V = 20: V = 80	0.05010		0.01573	
V = 20 : V = 160	0.04976	i	0.01605	
V = 20: V = 1000	0.05162		0.01432	
V = 40: V = 80	0.04932	1	0.01744	
V = 40: V = 160	0.04956	ł	0.01732	
V = 40 : V = 1000	0.05162	1	0.01426	
V = 80 : V = 160	0.04948		0.01707	
V = 80 : V = 1000	0.05164	1	0.01241	
V = 160 : V = 1000	0.05168	1	0.00901	
Avera	ge, 0.05282		0.01295	

Table IV—K_N Calculated and Found for Sodium Ethylate and Ethyl Iodide at 36°

v	K _N found	K _N calculated	Error in percent
I	0.01817	0.01910	
2	0.02148	0.02220	3.34
4	0.02486	0.02505	—o.76
-5	0.02586	0.02577	+0.35
10	0.02918	0.02878	+ I . 38
20	0.03234	0.03220	+0.13
40	0.03594	0.03607	0.36
80	0.03926	0.04022	-2.44
160	0.04258	0.04431	4.06
1000	0.05126	0.05358	-4.52

TABLE V—PERCENT OF REACTION DUE TO IONS AND TO MOLECULES

Conc. NaOC₂H₅ V	Percent of reaction due to K _i	Percent of reaction due to $(I - \alpha)K_n$
I	42.67	57.33
2	55.24	44.76
4	64.01	35.99
5	65.95	34.05
10	72.89	27.11
20	78.59	21.41
40	84.94	15.06
80	89.85	10.15
160	93.76	6.24
1000	97.59	2.41

×,

Ions and Molecules of Acids, Bases and Salts 387

TABLE	VI—''a''	Found	FOR SODIUM	ETHYLATE	AND	Ethyl	Iodide
			AT 36°				

· · · · · · · · · · · · · · · · · · ·	''a''		<i>"a"</i>
V = I: V = 2 V = I: V = 4 V = I: V = 5 V = I: V = 10 V = I: V = 20 V = I: V = 40 V = I: V = 160 V = I: V = 1000 V = 2: V = 40 V = 2: V = 5 V = 2: V = 20 V = 2: V = 40 V = 2: V = 40 V = 2: V = 100 V = 2: V = 100 V = 2: V = 1000 V = 2: V = 20 V = 2: V = 1000 V = 4: V = 5	"a" 0.01100 0.01111 0.01101 0.0101 0.0108 0.01100 0.01079 0.0101 0.01122 0.01100 0.01101 0.01087 0.01109 0.01109 0.01108 0.01104 0.01033	V = 5: V = 10 V = 5: V = 20 V = 5: V = 40 V = 5: V = 160 V = 5: V = 1000 V = 10: V = 20 V = 10: V = 40 V = 10: V = 40 V = 10: V = 160 V = 20: V = 40 V = 20: V = 40 V = 20: V = 160 V = 20: V = 160 V = 40: V = 80 V = 40: V = 1000 V = 40: V = 1000	"a" 0.01101 0.01074 0.01115 0.01115 0.01111 0.01102 0.01047 0.01123 0.01123 0.01117 0.01111 0.01102 0.01196 0.01148 0.01133 0.01103 0.01106 0.01095
V = 4:V = 5V = 4:V = 10V = 4:V = 20V = 4:V = 40V = 4:V = 80V = 4:V = 160V = 4:V = 1000	0.01033 0.01085 0.01068 0.01105 0.01105 0.01104 0.01100	V = 40 : V = 1000 V = 80 : V = 160 V = 80 : V = 1000 V = 160 : V = 1000 Average	0.01102 0.01122 0.01088

Table VII—K_N Found, K_N Calculated by Using "a" in the Equation K'_N = K_N + "a" Log (V'/V) and Error in Percent

V	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
I	0.01817	0.01799	+ i . 00	0.01818	0.05
2	0.02148	0.02131	+0.79	0.02150	O.IO
4	0.02486	0.02463	+0.93	0.02489	O.I2
5	0.02586	0.02570	+0.62	0.02589	O.I2
IO	0.02918	0.02902	+0.55	0.02921	0.IO
20	0.03234	0.03234	O . OO	0.03386	4 - 49
40	0.03594	0.03566	+0.78	0.03716	3.25
80	0.03926	0.03898	+0.71	0.04046	2.96
160	0.04258	0.04230	+0.66	0.04375	2.69
1000	0.05126	0.05109	+0.33	0.05262	2.58

On the Reaction of Sodium Ethylate and Propyl Iodide at $36\,^\circ$

TABLE I-KN FOUND FOR SODIUM ETHYLATE AND PROPYL IODIDE AT 36° Conc. NaOC₂H₅ Conc. NaOC₂H₅ K_N K_N V V 0.002977 40 80 160 0.006717 I 0.003670* 2 0.007420 0.004383* 0.008123 4 1 0.005312* IO *Only experimental values found were V = 2 0.003696V = 4 0.004350 $V = 10 \quad 0.005330$

+Values given for K_N above were calculated by the formula of Hecht, Conrad and Brückner.

TABLE II—THE IONIZATION OF SODIUM EYHYLATE AT 36°

V	α	I — α
I	0.1543	0.8457
2	0.2322	0.7678
4	0.3033	0.6967
IO	0.3972	0.6028
40	0.5801	0.4199
80	0.6842	0.3158
160	o.7866	0.2134

IODIDE AT 30					
	Ki	K _m			
V = I: V = 2	0.01050	0.001604			
V = I : V = 4	0.01096	0.001521			
V = I : V = IO	0.01111	0.001494			
V = I : V = 40	0.01040	0.001621			
V = I : V = 80	0.01007	0.001683			
V = I: V = 160	0.00986	0.001721			
V = 2: V = 4	0.01137	0.001341			
V = 2: V = 10	0.01131	0.001359			
V = 2: V = 40	0.01039	0.001637			
V = 2: V = 80	0.01004	0.001743			
V = 2:V = 160	0.00984	0.001803			
V = 4: V = 10	0.01127	0.001382			
V = 4: V = 40	0.01025	0.001826			
V = 4: V = 80	0.00994	0.001964			
V = 4 V = 160	0.00997	0.002036			
V = 10: V = 40	0.00994	0.002261			
V = IO: V = 80	0.00974	0.002394			
V = 10: V = 160	0.00966	0.002445			
V = 40 : V = 80	0.00955	0.002799			
V = 40 : V = 160	0.00957	0.002767			
$V = 80 \cdot V = 160$	0.00959	0.002723			
		·			
Average	, 0.01025	0.001912			

TABLE III— K_i and K_m Found for Sodium Ethylate and Propyl Iodide at 36°

Table IV—K_N Calculated and Found for Sodium Ethylate and Propyl Iodide at 36°

V	K _N four 1	K _N calculated	Error in percent
I	0.0029;7	0.003205	7.I
2	0.0036;0	0.003948	-7.1
4	0.004383	0.004455	-1.6
10	0.005312	0.005243	+1.3
40	0.006717	0.006777	
80	0.007420	0.007650	3.0
160	0.008123	0.008509	4.5

Conc. NaOC₂H₅ V	Percent of reaction due to αK_i	Percent of reaction due to $(1 - \alpha)K_m$
I	49.59	50.51
2	60.58	39.42
4	70.12	29.88
10	78.03	21.97
40	88.16	11.84
80	92.12	7.88
160	95.22	4.78

TABLE V-PERCENT OF REACTION DUE TO IONS AND TO MOLECULES

	<i>``a</i> ''		''a''
V = I : V = 2 V = I : V = 4 V = I : V = I0 V = I : V = 40 V = I : V = 80 V = I : V = 160 V = 2 : V = 4 V = 2 : V = 40 V = 2 : V = 40 V = 2 : V = 80	0.002154 0.002063 0.002025 0.002216 0.002321 0.002392 0.001969 0.001968 0.002229 0.002352	V = 4: V = 10 V = 4: V = 40 V = 4: V = 80 V = 4: V = 160 V = 10: V = 40 V = 10: V = 80 V = 10: V = 160 V = 40: V = 80 V = 40: V = 160 V = 80: V = 160	0.001965 0.002308 0.002441 0.001947 0.001946 0.001946 0.001946 0.002883* 0.002859* 0.002836*
V = 2:V = 160	0.002428	Average,	0.002247

* Omitting marked values 0. 002145.

TABLE VII-K _N	Found, K _N	CALCULATED	BY USING "a'	' in the Equa-
tion $K'_N = 1$	$K_N + a^{\prime\prime}$	Log (V'/V)	AND ERROR I	N PERCENT

V	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
I	0.002977	0.003167	-5.9	0.003071	
2	0.003670	0.003823	-4.0	0.003747	2.05
4	0.004383	0.004458	—ı.6	0.004424	0.92
IO	0.005312	0.005312	0.0	0.005318	0.10
40	0.006717	0.006603	+1.7	0.006926	-3.02
80	0.007420	0.007249	+2.3	0.007534	1.51
160	0.008123	0.007894	+2.9	0.008142	-0.23

390

Conc. NaOC₂H₅ V	K_{N} found	Conc. N V		K _N found
I	0.004220		80	0.010510
4 10	0.006212 0.007530	IO	00	0.014140
TABLE II—THE	E IONIZATION O	f Sodium	Ethyla	ATE AT 36°
V	α			Ι — α
I	0.154	-		0.8457
4	0.303			
				C O
10	0.397			0.6028
	0.397 0.684 0.990 K _m Found fo	.2 10 r Sodium		0.3158 0.0100
10 80 1000	0.397 0.684 0.990	.2 200 PR SODIUM AT 36°		0.3158 0.0100 ATE AND CE
10 80 1000 BLE III—K _i AND	0.397 0.684 0.990 K _m Found fo Iodide 4	.2 10 r Sodium		0.3158 0.0100 ATE AND CE K _m
V = I: V = A	0.397 0.684 0.990 Km Found fo Iodide 2	2 200 R SODIUM AT 36° K _i 0.01550		0.3158 0.0100 ATE AND CE K _m 0.002160
V = I: V = V	0.397 0.684 0.990 Km FOUND FO IODIDE 2 4	2 200 R SODIUM AT 36° K <i>i</i> 0.01550 0.01574		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002116
IO 80 1000 BLE III— K_i AND V = I: V = I V = I: V = I V = I: V = I	0.397 0.684 0.990 Km FOUND FO IODIDE 2 4 10 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002116 0.002386
IO SO IOOO BLE III— K_i AND V = I:V = I V = I:V = I V = I:V = I V = I:V = I	0.397 0.684 0.990 Km FOUND FO IODIDE 2 4 10 80 1000	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002116 0.002386 0.002386
IO SO IOOO BLE III— K_i AND V = I:V = I V = I:V = V V = I:V = V V = I:V = V V = I:V = V	0.397 0.684 0.990 Km FOUND FO IODIDE 2 4 10 80 1000 10	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002116 0.002386 0.002386 0.002386
IO SO IOOO BLE III— K_i AND V = I:V = I V = I:V = V V = I:V = V	0.397 0.684 0.990 Km FOUND FO IODIDE 2 10010 80 1000 10 80 1000 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002166 0.002386 0.002386 0.002386 0.001936 0.002776
IO SO IOOO BLE III— K_i AND V = I:V = I V = I:V = V V = I:V = V	0.397 0.684 0.990 Km FOUND FO IODIDE 2 1000 1000 1000 1000 1000	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002166 0.002386 0.002386 0.002386 0.001936 0.002776 0.002770
IO SO IOOO BLE III— K_i AND V = I:V = I V = I:V = V V = I:V = V	0.397 0.684 0.990 Km FOUND FO IODIDE 2 100106 80 1000 1000 80 1000 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.3158 0.0100 ATE AND CE K _m 0.002160 0.002166 0.002386 0.002386 0.002386 0.001936 0.002776

On the R	eaction of	Sodium	Ethylate	and Cetyl	Iodide	at 36°
TABLE I-	-K _N Found	FOR SC	DIUM ETH	YLATE AND	Cetyl	Iodide

culated and Found for Sodium Ethylate and Cetyl Iodide at 36° BLE IV ·KN _

7	7	K _N found	K _N calculated	Error in percent
	I	0.004220	0.004406	-4.40
	4	0.006212	0.006213	0.01
	10	0.007530	0.007346	+3.30
	80	0.010510	0.010810	-2.85
10	oo	0.014140	0.014740	4.24

Conc. NaOC ₂ H ₅ V	Percent of due to		Percent of due to (1 –	
1 4 10 80 1000	51.2 71.5 79.1 92.6 98.3	53 55 56 32	48.7 28.2 20.8 7.3 1.6	17 36 34 58
TABLE VI—"a" FOU	ND FOR SODIU AT 3		ATE AND CET	yl Iodide
			''a''	
V = I:V $V = I:V$ $V = I:V$ $V = I:V$ $V = 4:V$ $V = 4:V$ $V = 4:V$ $V = I0:V$ $V = I0:V$ $V = 80:V$	= 10 $= 80$ $= 1000$ $= 10$ $= 80$ $= 1000$ $= 80$ $= 1000$		0.003308 0.003303 0.003303 0.003303 0.003303 0.003311 0.003286 0.003313 0.003303 0.003392	
TABLE VII— K_N Four TION $K'_N = K_N$	ND, K _N Calcu + "a" Log (V	Average, lated by (V'/V) and	0.003313 Jsing "a" in Error in Pe	
V K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
4 0.006212 10 0.007530 80 0.010510 1000 0.014140 On the Reaction of	0.006217 0.007532 0.010524 0.014154	-0.03 0.14 0.10	0.006205 0.007523 0.011994 0.014986	+ 0.10 + 0.10
TABLE I-K _N FOUN	d for Sodiu			
Conc. NaOC ₂ H ₅ V K	N found	Conc. NaOC V	$_{2}H_{5}$ K _N	found
4 0.	003994 006018 007294	80 1000		10190 3700

TABLE V—PERCENT OF REACTION DUE TO IONS AND TO MOLECULES

TABLE II-T	HE IONIZATION	of Sodium	ETHYLATE AT 36°			
V		α	ι — α			
I		. 1543	0.8457			
4		. 3036	0.6964			
4 IO		. 3972	0.6028			
80		.6842	0.3158			
1000		. 9900	0.0100			
	AND K _m FOUN		Ethylate and Octyl			
· · · · · · · · · · · · · · · · · · ·		Ki	K _m			
V = I:V	= 4	0.01545	0.001902			
V = I:V	= 10	0.01548	0.001997			
V = I:V	= 80	0.01388	0.002188			
V = I:V	= 1000	0.01382	0.002200			
V = 4:V	= 10	0.01551	0.001879			
	= 80	0.01365	0.002690			
V = 4:V	= 1000	0.01381	0.002616			
$V = IO \cdot V$	= 80	0.01337	0.003286			
V = 10:V	= 1000	0.01381	0.002996			
V = 80:V	= 1000	0.01382	0.002322			
	Average	, 0.01426	0.002407			
TABLE IV-K _N	Calculated an Octyl	nd Found for Iodide at 36°	Sodium Ethylate and			
V	K _N found	K _N calcu	lated Error in percent			
I	0.003994	0.0042	-6.03			
4	0.006018	0.0060	+0.22			
IO	0.007294	0.0071	114 +2.49			
80	0.010190	0.0105	510 —3.14			
1000	0.013700	0.0141	140 -3.21			
TABLE V—PERCENT OF REACTION DUE TO IONS AND TO MOLECULES						
Conc. NaOC ₂ H V	•	t of reaction e to αK;	Percent of reaction due to $(I - \alpha)K_m$			
I	i	51.95	48.05			
4		72.09	27.91			
IO		79.61	20.39			
80		2.83	7.17			
1000		99.84	0.16			

THE IONIZATION OF SODILIM FTHVLATE AT 26° тт ጥ

TABLE VI—"a" FOUND FOR SODIUM ETHYLATE AND OCTYL IODIDE AT 36°

		''a''
V = I: V = 4		0.003360
V = I : V = IO		0.003276
V = I : V = 80		0.003250
V = I : V = I000	i	0.003230
V = 4: V = 10	i. I	0.003203
V = 4: V = 80		0.003200
V = 4:V = 1000		0.003200
V = 10: V = 80		0.003205
V = 10:V = 1000		0.003200
V = 80: V = 1000	1	0.003289
		·····
	Average,	0.003241

TABLE VII— K_N Found, K_N Calculated by Using "a" in the Equation $K'_N = K_N + "a"$ Log (V'/V) and Error in Percent

V	K _N found	(1) K _N calcu- lated	Error in percent	(2) K _N calcu- lated	Error in percent
4	0.006018	0.005945	+1.22	0.005981	+ 0.62 + 0.32
10	0.007294	0.007271	+0.39	0.007271	
80	0.010190	0.010212	-0.32	0.011644	-12.55
1000	0.013700	0.013757	-0.42	0.014571	-5.98

Conclusions

1. The fact that chemical reactions may be accelerated through the action of the nonionized acids, bases and salts, as well as through the ions, is further proved by our work on sodium ethylate and methyl iodide at 0° .

2. The values found for K_i and K_m for the above reaction were: $K_i = 0.004960$ and $K_m = 0.002940$, while the values found by Miss B. M. Brown for the same reaction were $K_i = 0.004861$ and $K_m = 0.003033$. It will be seen that the two sets of values check very closely.

3. By a reinterpretation of the work of Hecht, Conrad and Brückner, from the standpoint that both ions and molecules react, it was found that we obtain constants for K_i and K_m which may be considered to check very well with the values

found in this laboratory for the same reaction, if we remember the fact that this earlier work had so many sources of error which have since been eradicated.

4. Hecht, Conrad and Brückner worked out their values for K_N , the reaction velocity, by the use of a purely empirical formula

$$\mathbf{K}_{N}^{'} = \mathbf{K}_{N} + a \log (\mathbf{V}^{\prime}/\mathbf{V})$$

 $\mathbf{K}_{N}^{''} = \mathbf{K}_{N} + a \log (\mathbf{V}^{''}/\mathbf{V})$ etc.,

in which K'_N and K_N are the reaction velocities at any dilutions, "a" is an empirical constant, obtained by solving these simultaneous equations, and V and V' are the volumes containing unit masses of the solutes. In terms of Acree's equation

$$a'' = \frac{(\mathbf{K}_i - \mathbf{K}_m)(\alpha' - \alpha)}{\log (\mathbf{V}'/\mathbf{V})}.$$

By substituting the values for K_i , K_m , α' , α , V' and V in the above equation it was found that the values for "a" are quite constant; since $K_i - K_m$ is also a constant, we see that the difference in ionization of two given solutions seems to be proportional to the logarithm of the ratio of their volumes. This empirical relationship holds over a limited range, especially in the more concentrated solutions. That it cannot hold for more dilute solutions follows from the fact that

$$\frac{(\mathbf{K}_i - \mathbf{K}_m)(\alpha' - \alpha)}{\log (\mathbf{V}'/\mathbf{V})}$$

or "a" becomes gradually smaller and approaches zero for those solutions which are nearly completely ionized.

5. It is seen that the empirical formula $K'_N = K_N + a \log (V'/V)$ used by Hecht, Conrad and Brückner can be transformed into our equations, which have as a rational basis the idea that both the anions and molecules of the ethylate react with the alkyl halides.