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 Epoxy resin composites with 30 wt. % of triglycine sulfate (TGS) and up to 1 wt. % of 

graphite nanoplatelets (GNP) were fabricated and studied by means of broadband dielectric 

spectroscopy (20 Hz – 3 GHz). It was demonstrated that the dielectric properties are mainly governed 

by the Maxwell-Wagner relaxation at lower frequencies (below 1 MHz) and by diffuse ferroelectric 

soft mode at higher frequencies (above 1 MHz). The ferroelectric origin of the phase transitions was 

also confirmed by piezoelectric investigations. Although the phase transition temperature is 

independent of GNP concentration, the piezoelectric and dielectric (above 1 MHz) properties of 

composites are strongly improved by GNP in a broad temperature range. This gives evidence for the 

strong synergy between GNP and ferroelectric particles. The synergy effect appears due to the better 

distribution of TGS particles in ternary composites and the creation of electric fields by GNP inside 

the composite.  

 

 

1 Introduction 
Composite materials based on dielectric polymer matrices filled with different types of 

conductive inclusions are among the most attracting solids in modern materials science. The main 

reason is the possibility of improving the properties of the polymer on the one hand, and the quite 

simple preparation procedure on the other hand. One of the most promising types of inclusions is 

graphite and its close relatives: carbon nanotubes [1, 2, 3], onion-like carbons [4], and graphite 

nanoplatelets [5, 6, 7]. When polymer matrices are filled with nanostructured carbon inclusions, the 

resultant composites demonstrate enhanced dielectric, conductive, thermal and mechanical properties. 

On the other hand, composites with ferroelectric inclusions are also widely studied (see [8] 

and refs. therein). The broad range of possible applications of these materials in microelectronics 

includes, for example, microwave substrates [9], 3D antennas, embedded capacitors and inductors 

[10, 11], and electromagnetic shields [12]. 

Designing ternary composites with carbon and ferroelectric inclusions embedded into polymer 

matrices is a way to combine the advantages of both fillers [13, 14, 15, 16]. Several authors indeed 

demonstrated significant improvement of electromagnetic wave absorption properties of such 



systems, for instance. Also, the addition of a third phase in nanocarbon / polymer composites may 

drasticaly change the distribution of carbon particles and, as a result, their dielectric properties. [17, 

18]. Even the optimal amount of third phase may be figured out[19]. 

Triglycine sulfate (TGS) is one of the most well-studied ferroelectric crystal with a 

second-order ferroelectric phase transition close to 322 K [20]. The ferroelectric phase transition is of 

order-disorder type with strong dielectric dispersion in the microwave frequency range and a typical 

critical slowing-down effect [21]. TGS crystals also present huge values of dielectric permittivity, 

piezoelectric and pyroelectric coefficients, enabling a wide range of applications, including highly 

sensitive infrared sensors. It is also known that polycrystallinity [22], moisture [23, 24], and doping 

with either organic or inorganic impurities [25] may significantly affect TGS properties. It is therefore 

worth investigating the possibility of designing composite materials based on epoxy resin filled with 

both TGS particles and conductive inclusions. As for the latter, graphite nanoplatelets (GNP) were 

used. The main ideas are the following: (i) being embedded in epoxy resin, TGS can be protected from 

ambient moisture; (ii) by introducing various amounts of conductive filler, the dielectric and 

ultrasonic properties of the composites can be controlled so that polymer composites with improved 

dielectric and electromagnetic properties can be produced through an easy and cost-effective method. 

 

2 Experimental 
  

2.1 Materials 
 A single TGS crystal was first dissolved in distilled water. Next, the solution of TGS was 

evaporated overnight in an oven heated at 90  C. After complete evaporation of water, the solid 

residue was collected and ground in an agate mortar for 2-3 minutes. As a result, a powder of TGS 

crystallites was obtained. According to scanning electron microscopy (Fig. 1 (a)), the average size of 

TGS crystallites was around 50 m . 

GNP particles were obtained by a succession of grinding and sonication steps applied to a 

suspension of exfoliated graphite in cyclohexane. GNP particles had an average diameter of 10 m  

and a typical thickness of 0.1 m . In other words, their aspect ratio was as high as 100 [26]. 

 

2.2 Composites preparation 
 The composites were prepared as follows. GNP and TGS particles were sonicated in 

isopropyl alcohol for 3 hours. Next, degassed epoxy resin (Buehler EpoThin 2) was introduced into 

the solution, and the blend was sonicated for 1 additional hour. The homogeneous solution was then 

placed into an oven at 60-70  C until complete evaporation of the alcohol. After evaporation, the 

system was sonicated again for one more hour. When homogenisation was finished, the curing agent 

was introduced and the obtained system was carefully stirred manually for 5 minutes and poured into 

the moulds for curing. Composites were cured overnight at room temperature first, than for 5 hours at 

80  C. 

Based on the aforementioned protocol, samples with either 0 or 30 wt. % of TGS and 0, 0.5, or 

1 wt. % of GNP were prepared. Scanning electron microscopy (Fig. 1 (b,c)) demonstrated that both 

GNP and TGS inclusions were well-dispersed. No percolation paths between TGS crystallites were 

observed, so the connectivity of the composite may be assumed to be 0-3, since the polymer matrix is 

interconnected along the 3 directions, while TGS crystallites are not, along any direction.  In the 

following, samples were referred to as GNPwt GNP- TGSwt TGS, where wt means weight percent. 

 

2.3  Broadband dielectric spectroscopy 
 Dielectric properties of the samples were measured in the frequency range 20 Hz – 1 MHz 



with an HP4284A LCR meter. Samples with a typical thickness of 1.2 mm and cross section of 25 mm
2  were studied. In the frequency range 1 MHz – 3 GHz, samples were analysed by a coaxial dielectric 

spectrometer with an Agilent 8714ET vector network analyser. In this case, samples had typical cross 

section and thickness of 2 mm2 and 0.3 mm, respectively. Temperature measurements were performed 

in a home-made furnace, using a heating / cooling rate of 1 K/min. Silver paste was applied for 

making electrical contacts with the samples.  

2.4  Piezoelectric properties 
The temperature dependence of piezoelectric sensitivity was investigated by using a 

pulse-echo ultrasonic setup according to the procedure described elsewhere [27, 28]. A Z-cut LiNbO 3  

piezoelectric transducer was used for sending 10 MHz ultrasonic waves to a quartz buffer. The 

ultrasonic waves excited a 0.25 mm-thick composite plate working as a receiving ultrasonic 

transducer attached to another end of the quartz buffer. The thickness of the composite was close to 

half of the ultrasonic wavelength in epoxy at 10 MHz frequency. The piezoelectric voltage in the form 

of 10 MHz radio-pulses was measured by an Agilent DSO3202A digital scope incorporated into the 

electronic pulse-echo setup for automatic temperature measurements. . 

 

3  Results and Discussion 
  

3.1  Dielectric properties at room temperature 
The frequency dependence of the complex dielectric permittivity for all studied composites at 

room temperature is presented in Fig. 2  

As it can be seen from the figure, the addition of either TGS or GNP led to an increase of both 

real and imaginary parts of the complex dielectric permittivity. In order to understand the influence of 

the addition of each component on the dielectric properties of composites, the following approach was 

used. The behaviour of the TGS / epoxy binary system may be predicted by Jayasundere and Smith 

model of 0-3 composite with dielectric matrix and piezoelectric inclusions [29]. On the other hand, the 

concentration behaviour of the dielectric properties of GNP / epoxy composites may be described with 

a simple universal power law, or with the Maxwell-Garnett equation [30]. But in the case of ternary 

TGS - GNP / epoxy system, the combination of those models might fail at high filler concentrations 

due to the following reasons. Considering a composite whose total volume is equal to 0V , then the 

volumes occupied by TGS and GNP particles are is TGSV  and TGSVVV 
0= , respectively. Therefore, 

the local volume concentration of GNP in the region between TGS particles should be higher than in a 

binary GNP / epoxy system having the same overall concentration of GNP. The percolation network 

should thus appear at a comparatively lower weight concentration. On the other hand, TGS crystals 

may introduce additional barriers preventing contacts between conductive GNP clusters. These two 

effects are antagonistic so that the final properties of ternary composites should be more sensitive to 

the microstructure than binary ones. 

In the present case, a slight enhancement of dielectric properties was observed for 

xGNP-30TGS composites with respect to xGNP-0TGS at lower frequencies (below 1 MHz), mainly 

because: (i) the studied concentration range (0-1 wt. %) of GNP was lower than the percolation 

threshold [31], (ii) the amount of TGS was quite high, so it is most likely that TGS particles acted as 

additional barriers in the conductive GNP network. 

The dielectric permittivity and dielectric losses strongly decreased with frequency for all 

composites. Two different dielectric dispersion trends could be distinguished: one at lower 

frequencies (20 Hz - 1 MHz), where the dielectric permittivity was strongly frequency-dependent, and 

another one at higher frequencies (above 1 MHz), where dielectric losses were quite low (lower than 

1) and the dielectric permittivity was almost frequency-independent. 



The dielectric dispersion at lower frequencies can be caused by the dynamics of ferroelectric 

domains, similarly as in pure TGS crystals, or by the Maxwell-Wagner relaxation due to the high 

electrical conductivity of GNP, the random orientation of TGS crystallites, and their finite value of 

electrical conductivity. However, the contribution of ferroelectric domains dynamics should be 

neglected because the dielectric dispersion remains far above the phase transition temperature. 

Therefore, the main contribution at low frequencies comes from the Maxwell-Wagner relaxation. It 

means that the differences in dielectric properties of composites at lower frequencies are mainly 

related to the structure of conductive clusters. 

On the other hand, at higher frequencies at which the impact of GNP on the dielectric 

permittivity is more significant, the contribution of ferroelectric soft mode, typical of TGS crystals, 

might also be substantial. In other words, the ferroelectric polarization of TGS clusters may be 

affected by the presence of GNP because: 1) the distribution of TGS crystallites is better due to the 

presence of GNP, 2) GNP particles (due to their high electrical conductivity) create electric fields 

inside the composite, which affect the polarization inside TGS crystallites. Both contributions should 

be important in the present composites. 

 

3.2  Dielectric properties above room temperature 
 

The maximum of dielectric permittivity close to T=322 K for all studied composites is typical 

of the ferroelectric transition in pure TGS crystals, except the substantially lower dielectric 

permittivity peak value due to the random orientation of TGS crystallites (see Fig. 3). The variation of 

dielectric permittivity near the Curie point CT  reads: 
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 both in paraelectric and ferroelectric phase (Fig. 3), although with a different value of the constant C. 

The corresponding parameters of the fits of Eq. (1) are collected in Table 1. 

 

Table 1. Parameters of the fits of Eq. 1 to the data of Fig. 3; C and C' are the constants of Eq. 1 

for para- and ferroelectric phases, respectively. 

 

Sample C’, K; 

ferroelectric 

phase 

C, K; 

paraelectric 

phase 

0GNP-30TGS 854.24 3235.42 

0.5GNP-30TGS 3023.05 4509.23 

1GNP-30TGS 2217.91 10428.83 

The Curie constants C and C’ increased with the GNP concentration, due to the rise of 

dielectric permittivity. The Curie-Weiss behaviour is usually related to ferroelectric soft mode: either 

resonant or relaxational [32]. For TGS crystals, the relaxational soft mode is usual [32]. 

It can also be seen that the addition of GNP did not affect the temperature of the phase 

transition. However, it increased the absolute value of the complex permittivity in a broad temperature 

range, especially the real part, while the shape of the curves roughly remained the same. This should 

be due to the strong synergy effect between TGS particles and GNP. Indeed, the contribution of the 

Maxwell-Wagner relaxation (which appears at the dielectric / GNP interface) to the dielectric 

permittivity should not present any anomaly close to the ferroelectric phase transition temperature. 

Such a contribution should strongly increase with temperature. This was not the case for the 

composites investigated here. 

The temperature dependence of dielectric permittivity of 0.5GNP-30TGS at different 



frequencies is shown in Fig. 4. The same typical behaviour was also observed for all investigated 

composites. 

It is clearly seen that at higher frequencies (above 1 MHz), a more pronounced maximum of 

permittivity appears at a certain intermediate temperature close to 322 K. In contrast, at lower 

frequencies (below 1 MHz), the dielectric properties are mostly governed by the Maxwell-Wagner 

relaxation, i.e., are thermally activated and almost not affected by the ferroelectric phase transition.  

The frequency dispersion in the high-frequency range (above 1 MHz) can be well described by 

the universal Jonscher law:  

 1)())((=)(=)( 

 TniTA   (2) 

where A(T) is a temperature-dependent parameter, and   is a suitable "high-frequency" value of the 

permittivity at which the low-frequency losses become negligible. The exponent n(T) is weakly 

temperature-dependent and is smaller than unity. This law states that real and imaginary parts of 

)(  have the same frequency dependence:  
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The universal law is associated with many-body interactions between dipoles or charges responsible 

for polarisation in dielectrics. The parameters of Eq. (3) describing the frequency dependence are 

collected in Table 2. 

 

Table 2. Parameters of the fits of Eq. 3 to the data of Fig. 5.  

  

Temperature, 

K  

0GNP-30TGS  0.5GNP-30TGS  1GNP-30TGS 

 n 
   n  

  n  
   

315 0.92791  3.3  0.81849  8.1  0.74336  9.1 

320 0.92083  3.4  0.80642  8.1  0.75913  9 

322 0.9177  3.5  0.81328  8.3  0.79987  9 

325 0.92083  3.4  0.81328  8.2  0.82416  8.8 

330 0.92711  3.1  0.80304  8.1  0.81218  8.7 

335 0.9177 3.2  0.8091 8.1 0.81648 8.6 

340 0.90521  3.4  0.80059  8.0  0.81788  8.6 

 

It can be seen that the values slightly depended on temperature, especially   demonstrated 

maxima close to the phase transition temperature for all studied samples. However, those values 

strongly depended on the GNP concentration. Firstly,   obviously increased with the concentration, 

but at the same time, the value of n decreased. This may be explained as follows: below the 

percolation threshold, the GNP loading made the real part of the permittivity increase faster than the 

imaginary part. 

At lower frequencies the Maxwell-Wagner relaxation of composites takes place. For 

Maxwell-Wagner relaxations analysis, it is more convenient to use the diectric modulus ** 1/= M  

formalism (see Fig. 6). 

The imaginary part of the dielectric modulus demonstrate a maximum at certain frequency. 

The relaxation times can be calculated as the inverse of the frequency at which the imaginary part of 

the electrical modulus is the highest, i.e., maxf1/= . The variation of the relaxation times at different 

temperatures was tracked out and the results are presented in Fig. 7. 

Such behaviour of the electrical modulus frequency dependence was observed only in ternary 



composites. The interfacial polarisation likely occurred at the conductive GNP clusters and TGS 

interfaces. The relaxation time  obtained from the electrical modulus is proportional to the resistivity 

R and to the capacitance of conductive clusters C, i.e.,  /CRC  . Now, the capacitance only 

depends on the geometry of the GNP clusters. Assuming a spherical shape, which for GNP is a rough 

approximation, aimed at capturing the underlying physics, rС 04 , where r is an effective radius. 

Bigger conductive clusters thus lead to lower electrical conductivity and to higher capacitance, and 

hence to longer relaxation times [33]. Therefore, the biggest clusters are present in composites only 

containing TGS inclusions, and the smallest ones are in 0.5GNP-30TGS. The Maxwell-Wagner 

relaxation is related to the onset of conductivity at higher temperatures or higher GNP concentration. 

 

3.3  Piezoelectric properties 
Fig. 8 presents measurement results of piezoelectric properties of composite materials.  

The temperature dependence of the piezoelectric voltage at 10 MHz frequency exhibited the 

ferroelectric phase transition at 322 K. Above the transition temperature, the piezoelectric signal of 

non-polarized samples vanished, but it kept a finite value in the paraelectric phase for the polarised 

samples. The signal in the paraelectric phase is caused by the electrostriction effect [34]. It can be 

demonstrated that the detected piezoelectric signal varies with temperature in the same manner as the 

order parameter 0  [28, 35]. 

It was clearly seen that adding GNP provides a strong synergy effect. Composites with only 

TGS particles indeed did not show piezoelectric response without external polarisation field. Addition 

of 0.5 wt. % of GNP significantly changed the situation: a weak piezoelectric response appeared even 

without external electric field. Finally, adding 1 wt. % of GNP provided a strong piezoelectric 

response without external polarisation. Even more, the difference between responses with and without 

polarisation decreased when increasing the GNP amount. 

Similarly, as in the case of dielectric properties, two possible reasons of this behaviour can be 

indicated. On the one hand, the loading of GNP obviously impacts the distribution of TGS crystals. 

Being more homogeneous, composites with TGS and GNP provide the highest piezoelectric response. 

On the other hand, the addition of GNP might improve the mechanical and electrical properties of 

epoxy. 

Two possible mechanisms of influence of the epoxy properties may be figured out. Firstly, by 

excitation with ultrasonic waves, the TGS crystals generate charges on their surfaces. The nearby 

regions thus accumulate the charges. Since the concentration of GNP is quite low (below the 

percolation threshold), the GNP loading provides a capacitive impact, while conductivity of the 

samples remains low and appearance of the loss currents is impossible. Due to higher capacitance, the 

GNP / epoxy composite media which surrounds the TGS crystallites may accumulate electric charges 

better. The field created by those charges provides additional polarisation of TGS. Thus, the increase 

of GNP concentration should provide higher piezoelectric response of samples without external 

polarisation. Secondly, it is known that addition of carbon inclusions improves the mechanical 

properties of the polymers. Due to that, the ultrasonic waves might propagate throughout with fewer 

losses than in pure polymers. So, through hardening by GNP addition, composites should present 

higher piezoelectric properties. 

 

4 Conclusion 
 Epoxy resin composites with 30 wt. % inclusions of TGS and up to 1 wt. % inclusions of 

GNP demonstrate ferroelectric properties. The ferroelectric phase transition in these composites was 

confirmed by the dielectric anomaly and the appearance of piezoelectric properties in the low 

temperature phase (below the Curie point). The dielectric properties are mainly governed by the 



Maxwell-Wagner relaxation (below 1 MHz) and the ferroelectric soft mode (above 1 MHz). Although 

the ferroelectric phase transition temperature in ternary composites is the same as in pure TGS 

crystals, GNP and TGS particles demonstrate an evident synergy effect in dielectric and piezoelectric 

properties. Below their percolation concentration, more GNP nanoparticles lead to an increase of both 

dielectric permittivity and piezoelectric signals in a broad temperature range. The effect can be 

explained by a better distribution of particles, an improvement of the mechanical properties, and the 

creation of internal electric fields by GNP. Therefore, GNP addition should be considered as a 

relevant and easy way of improving the ferroelectric properties of ternary polymeric composites with 

ferroelectric and GNP inclusions. 
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Figure 1: Scanning electron microscopy images of: (a) TGS crystallites; (b) GNP particles; and (c) 

composite material loaded at 30 and 0.5 wt.% of TGS and GNP, respectively. 



 
Figure  2: Frequency spectra of dielectric permittivity of pure epoxy and of composite materials filled 

with 30 wt. % of TGS and different amounts of GNP at room temperature. Inset: comparison of 

dielectric constant of xGNP-30TGS and xGNP-0TGS at a frequency of 16667 Hz. 



 
Figure  3: Temperature dependence of the dielectric permittivity of composite materials filled with 

30 wt. % of TGS and different amounts of GNP above room temperature, and at frequency 1 GHz. 

Solid lines are fits with Eq. (1). 



 
Figure  4: Temperature dependence of the dielectric permittivity of composite materials filled with 

30 wt. % of TGS and 0.5 wt. % of GNP at different frequencies. 



 
Figure  5: Frequency dependence of the dielectric permittivity of composite materials filled with 30 

wt. % of TGS and 0.5 or 1 wt. % of GNP at different temperatures. Solid lines are fits with Eq. (2). 



 
Figure  6: Frequency dependence of the electric modulus of composite materials filled with 30 wt. % 

of TGS and 0.5 or 1 wt. % of GNP at 300 K. Solid and open symbols are for real and imaginary parts, 

respectively 



 
Figure  7: Temperature dependence of the relaxation time for the same ternary composites as in Fig. 

6. 



 
Figure  8: Piezoelectric response of composite materials either polarised with an external field of 400 

V/mm (solid symbols) or not polarised (open symbols). 
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