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On the Flexure and the Vibrations of a Curved Bar.

By Professor HOBACE LAMB, M.A., F.R.S.

[Head May 10th, 1888.]

The flexure of a curved bar has been treated in a general manner
by Kirchhoff, Clebsch, and Thomson and Tait, but the special appli-
cations which have been made of the theory are very few. In this
paper I propose to discuss the flexure in its own plane of a uniform
bar whose axis forms in the unstrained state an arc of a circle. After
establishing tho general equations and the terminal conditions, some
simple statical problems are solved, and I then proceed to discuss the
vibrations of a " free-free " bar, with special reference to the case
where the total curvature is slight. This latter problem is interest-
ing as bearing on some observations by Chladni, referred to by
Tyndall in his book on " Sound," Chap. iv.

Taking the centre of the circle as origin, and denoting the radius
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by a, let the polar coordinates of any point of the bar be changed by
the flexure from (a, 0) to (a + R, 0 + G), where R, 6 are small. If we
neglect the extensibility of the bar, these quantities are not indepen-
dent, but are connected by the relation

The rotation experienced by any element add is easily found to be

e+e",

the accents denoting differentiations with respect to 6, whence, for
the change of curvature, we have

The formula for the potential energy is therefore

The applied forces at any point of the bar may be specified by the
radial component P and the tangential component Q> both estimated
per unit length. We may also include the case where finite forces
are concentrated in an infinitely short element of the length; these
may be denoted by Po, Qo. The force on either end may be analysed
into a radial component P, . a tangential component Q, and a
couple N.

The variational equation of motion is then

f (RSR+a?eSe)oadd+SV= | (PSR+QaSQ) add

where a is the mass per unit length, and the square brackets [ ]
refer to the extremities.

If we substitute R = — a0', and integrate by parts in the usual

• Eayleigh, Sound, § 233.

t Or from the approximate formula, — = -.
p r r2 dd*
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way, we find

f {<m8 ( e - 0 " ) - — (e"+2elv+evi)} ae dd

+S r<ra8e'+— (e'+2e'"+ev)l so
L a J

- s [e"+elv] ae'+s [e'+e'"] te"
= f (Q+ ^ ) di

where tlie integrated terms on the left-hand side refer as well to the
points of discontinuity (as regards the form of 6) at which the forces
Pot Qo ac^> a a to the extremities of the bar. The differential equation

4*o be satisfied at each point of the bar is therefore

<ra,8(e~e")-— (e'^e^+e*1) =a8 (Q + ^ V
a \ do I

The terminal conditions are

B

B

cra8e'+ —(9 '+ 29'" +9V) = -Pa?+Qa+N,
a

(0"+0iv) = Pa,
a

a

whilst at a point of discontinuity we have

«x> . B ,( ) = QQa,
a J

[9' + 9'"]==0,

the square brackets indicating that the differences of the values of
the enclosed quantities on the two sides of the point in question are
to be taken. These latter conditions may bo simplified with the help
of the obvious geometrical condition that the values of O, 0', 0 '
must be continuous.

As a first example, consider the equilibrium of the bar subject to
applied force at its extremities only. The general equation becomes

iT + 0V I=O,
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while the terminal conditions reduce to

a1

•£(e'+G'") =a

The differential equation gives

e = O+Dd + (JB+Fd) cos

from whioh the terms in 0, B% and 0 may, for the present purpose, be
discarded as expressing a mere displacement of the bar as a whole.
There remain three simple types of solution, from which the most
general case can be derived by superposition. In the first place, if
the applied forces reduce to two equal and opposite couples =fcjST at
the extremities, we find

A JVafl p Net?

i.e., the bar remains circular in form, but its radius is altered by the
fraction Na/B. Next, taking the origin of 0 at the middle of the
bar, consider the case where 6 is an odd function, viz.,

If there be no couples at the ends (0 = ± a), we have

D= 2Fcoaa,
- B n rtT, B .

whence ± Q = 2F —r cos a, P = 22r-=- sin a.

The resultant force at either extremity is along the chord. De-
noting it by X, we have

H = ^~ (cos a + | cos 0-£0sin 0).

In particular, if a =%*,

• . R. =

whilst, if a = it, a6. = f
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Finally, we have the solution

G==.H8sin0,
which gives

If we write

we have the case of a bar bent by equal
and opposite forces Y applied at the
extremities of rigid pieces attached to
the ends, in the manner shown in the
figure. The case of a nearly complete
circle (a = n) is worth notice.

As an example of points of discontinuity, take the case of a circular
hoop deformed by a pair of equal and opposite forces at the extremi-
ties of a diameter. The differential equation is, as before,

e"+2eiv+evl = o,

whilst the dynamical conditions to be satisfied at the points of dis-
continuity are

[e'+2e///+ev] = o,

[e'+e'"] = o.
Combined with the geometrical conditions, these show that G, G', G",
6"', 6V aro to be continuous, whilst

[ ] oa

Taking the diameter in question as initial line, we may assume,
from 0 = 0 to 0 = 7T,

G = 0+D0+ (E+Fd) cos 0 + (G + Ed sin 0),

and from 0 = 0 to 0 = — TT,

G = C1 + A0+( i ? i + - F i 0 ) C O 8 0 + (A + -ffx0sin0).

The foregoing conditions then lead to*
0x-0 - 4U, E,-E = -4ff,

• [Oct. 1888.—A numorical error has boon, corrected hore.]
VOL. XIX.—NO. 328 . 2 B
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D1 = D = -H, F=Fl = 0, G^G,
IT

where IT = P 0 a s / 4 B .

Hence we may write, from 0 = 0 to 0 = 7r,

whilst, from 0 = 0 to 0 = — 7r,

We have here omitted certain terms of the form

K+LcosB+H&md,

which are common to both expressions, and represent a mere dis-
placement without deformation. The corresponding values of R are

B = " ^W ( f ~ *sin

and B = - ^
UJJ

We thence ascertain that the diameter 0 = 0 is increased by the
amount (TT9—8)/4TT. Poa

a/B, whilst the perpendicular diameter is
shortened by (4 —7r)/27r . Poa*/B.*

As a final statical example, we may calculate the deformation, due
to its own weight, of a hoop suspended from a point of the circum-
ference. Taking the radius through this point as initial lino, we have

P = — go cos 0, Q = go sin 0,

so that the differential equation is

^ ! s i n 0.

Wo therefore write, omitting unnecessary terms,

0 = D0 + F6 cos 0 + S 0 sin d + Kd* sin 0,

where K = — *y—.

# [Oct. 1888.—This agrees with tho result quoted by Pearson from somo un-
published lectures of Saint Venant, History of Elasticity, { 1575.]
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The dynamical conditions to be satisfied at the point of suspension
are

To these we must add the geometrical conditions that G, 0', 6 " are
to be continuous. We thence find

Po = - 8?r - ^ E = 2ira<rg.

In order that E', ( = — a0"), may be zero at the point of suspension,
we must add to 0 the terms 4nrK(l—cos 6). We thus obtain

0 =£:{(0-7r)2 sin0 + 4 (0-TT) cos 0 -4 (0-7r)-.7r8 sin0}.

It easily follows that the vertical diameter is increased by
(IT1—8) g<ra*/4B, whilst the horizontal diameter is shortened by
{4-ir)gaa'/2B*

Let us next examine the flexural vibrations of the bar, supposed
free from external force except at the extremities. If we assume
that 0 a eipt, and write

the differential equation is

0TI + 20W + (1 - &V) 0" + /cV 0 = 0.

At a. free end we have the conditions

" = 0,

0" '+0 / =O,

* [Oct. 1888.—Comparing with the solution of the preceding problem, we learn
that the elongation of the vertical, and the shortening of the horizontal, diameter are
each half what they would have been if the weight of the hoop had been concen-
trated in its lowest point.]

2 B 2
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the first of which may, in virtue of the differential equation, be re-
placed by

The conditions to be satisfied at a clamped end are, of course,

e = o, e' = o, e" = o.
Assuming that 9 = 2 A ew, we find

X8+2X*+X9+fcW(l--X9)=0.

The roots of this are functions of fca, and the elimination of the
arbitrary constants from the six boundary conditions (three for each
end) gives an equation to determine ha, and thence the frequency
p/2ir.

The interpretation of the solution in the general case would be
difficult, but we may obtain some results of interest by proceeding to
a first approximation in the case where the total curvature of the bar
is slight. Fixing our attention more particularly on the case of a
" free-free " bar, we see, by comparison with the known theory for
the case where the bar is straight, that trp'/B = m*/l* nearly, where
Z, = 2act, is the length, and m is a root of a certain transcendental
equation. Hence h*a*= (m/2aa)*, nearly, and is therefore large.
One root of the cubic in Xs is therefore nearly equal to unity; and
the remaining roots are given by

A3 + l = =fc7<;W nearly.

Continuing the approximations by ordinary methods, we find

where f = fcW-#-4^- A«

1 9

If we take the origin of 0 at the middle of the bar, the fundamental
modes will fall into two classes, according as 6 is an odd or an even
function of 9. The former class is the more important as including
the gravest mode, and is therefore taken first. We therefore assume

0 = F sinh fid + Q sin vd+H sinh «r0.
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The conditions at the extremities (0 = =fc a) then give

TP d- TT
— cosh/ua cos va H cosh vra = 0
fX V W

fi8 (/i9 + 1 ) F s inh fxa + v9 (v9—1) Q sin va + tar9 (w9 + 1 ) ff sinh wo = 0

(i ( /* 9 + l )Fcosh /ua- -v (v9— 1) (Jcos va+ur (t3-9 + l ) JETcoshtira = 0 ,

whence, by elimination of F, 0, E,

= 0.

If we expand this according to the constituents of the last column,
we find that the parts corresponding to the three constituents are of
the orders k7a7, Wd?} kBas, respectively. Hence, subject to au error of
order l/k*a*, we may retain only the first of these, which gives

fia tanh (xa = — va tan va.

To solve this by approximation, put

kaa = \im + re,

where m is a root of tanh \m — — tan \m,

and x is small. This makes

• I 3 «2

ua = 1caa — z , —
kaa

— cosh f«a,

/i8 (ft9 + l ) sinh fxa,

u (j*8-f 1) cosh ua,

cos va,
V

• v9(v9—l)sinva,

— v (v8—l)cos va,

«8

Vf

_1
TT

( • »

( « '

cosh ©a

+ 1) sinh tara

+1) cosh vra

a
>

a
and similarly va = |m+cc+|- — .

Substituting in the equation, and retaining only the first powers of
as and a8, we find, after a little reduction,

a; = — 3 -^- (1 + \m tan \m) tan \m.

The values of m are approximately 3^/2, 7TT/2, ll7r/2, &c, so that x
is always negative. For the lowest root we have m = 4f7300, whence

03 =--17438a8.
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To find the alteration of pitch due to the curvature, we have

Hence, if pol%ir be the frequency of the corresponding mode for a
straight bar

2 i 4+ 2 » \ s = 1 + 42 | n e a r l y *
p0 m/ m

so that the pitch is loivered. For the gravest mode

The position of the nodes (B = 0) is determined by

cosh p.6, v cos vd, w cosh xsd

= 0,

(/A2 + 1 ) cosh jia, — v (va — 1) cos va, vr (wa -f 1) cosh

— COsh ua, COS va, — COsh Vfu
/i v vr

or cosh |ua COS

Recalling the approximate values of ^, va, w', we find that, subject to
an error of the same order (l/fc4a4) as before, this reduces to

(*»"—1) cos facosh/u0 + (f»a4-l)cosh/ua cos vd = 0,

or cos va cosh /u0 + cosh ft a cos vd = -j—2 cos v0 cosh /ua,

approximately. To solve this, write 0/a = z + e, where 3 is a root of

cos £m cosh \mz + cosh \m cos |»w = O.f

* This calculation may be verified by the method explained in Lord Eayle igh ' s
Sound, § 8 9 ; assuming as a hypothetical type tha t Ii has the same form as for a
straight har, viz.,

JK oc cos hm cosh — + cosh i»j cos —.
2o 2a

f In comparing with the ordinary theory for a straight bar, it must be borne in
mind that the origin is now at the middle point. Cf. Greenhill, Messenger of Mathe-
matics, Dec. 1886.
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We have already found

f —

va = |m+(as + 44
m

whence /id = fia (z + e)

( 2 \
cc—f — )

Substituting in the above equation, expanding, and retaining only
the first powers of x, aa, e, we find, after effecting some reductions by
means of the equation

tanh \m = — tan ^m,

\m (tanh \mz + tan \mz) e

= — [x—%- — ) ztanhibuz— ( « + f — ) ztan \mz
\ m I \ on I

. o a2 , i ^ a8

+ d— tanfm —4—-
vi m

In the gravest mode

m = 4-7300 = 271° 0' 40",

z = -55164,

whence \mz - T3046 = 74° 45' 20",

tan \mz = 3'6694, tanh \mz = -86295,

tan |m = - -98251.

Using the value already found for x, we obtain finally

e =--07959 a2,

so that the position of the nodes is given by

± 0 / a = -55164--O7959a9.

The conclusions that the effect of curvature is to lower the pitch,
and at the same time to make the nodes approach the middle of the
bar, are in agreement with the observations of Chladni.*

The asymmetrical fundamental modes may be treated more

* Akusiik, § 99.
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briefly. Assuming

9 = Fcoshp6 +0cosv$+Ecosh w0,

the terminal conditions lead to

— sinh pa, — sin va, — sinh Ufa

* " "• • • = o ,

A*9 (/t*9+1) cosh pa, v* (v3—1) cos va, vr% (ta*+1) Cosh tsra

/u (/K3 +1) sinh /ua, v 0*9—1) sin "«> w fa9 +1) sinh tsra

whence, to the same degree of approximation as before,

pa coth pa = va cot va,

"Writing A;ao = | w + y ,

where m is a root oi coth |m = cot \m,

and 7/ is small, we find
2

y = — 3 -~ (\m cot f w—1) cot !?».
in

The effect of the curvature is to alter the frequency in thd ratio

JL = l.f-J£, nearly. .
JPo m . .

It is easily seen that y is always negative, so that the pitch is in all
cases lowered.

[.Note added Oct. 1888.—It has been assumed throughout that
the elongation of the elements of the bar may be neglected. It may
be shown that the amount of elongation which actually occurs is of
no importance in the problems above considered, except in one very
special case. Take, for example, the problem discussed near the
foot of p. 368. The stretching (or compressing) force will be greatest
at the middle of the bar, where its value is X, and the energy per
unit length due to the stretching will there be X*/2q<i>, where q is
Young's modulus, and to the sectional area. Again, the bending
moment is also greatest at the.middle, where it is X(l—cos a) a, so
that the energy due to the bending is, per unit length,

= £ - g - (1 -cos a)a = | - j - (1-cos d)8,

where K is the proper radius of gyration of the section. The ratio of
the former energy to the latter is *ca/a9 (1 — cos a)3, which in any
practical case is small, unless indeed a be small. In the problem to
which the figure near the top of p* 369 refers, the corresponding ratio
is readily found to be K8/a9, which is always small]


