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Abstract

The antiderivative of a divergence free multivector (e.g. vector, bivector, spinor) field is shown to fail
to be curl free by at most a (generalized) harmonic function. This result implies that any vector valued
current density J that is divergence free possesses a bivector valued antiderivative F that satisfies ∂F = J
under suitable boundary conditions. In four dimensions, this is Maxwell’s equation. This reinforces an
existing result and generalizes to conserved currents on manifolds of arbitrary dimensions. This not only
indicates that charge conservation is itself sufficient for an axiomatic foundation for Maxwell’s equations;
by means of Noether’s theorem, this result associates to every symmetry in four dimensions a bivector
field satisfying Maxwell’s equations, up to specific units.

Work In Progress This paper is a work in progress, and is being openly developed on Github at
https://github.com/lukeburns/maxwells-equations. Contributions are warmly welcomed, whether
by means of opening an issue or pull request.

1 Introduction

The question Can Maxwells equations be obtained from the continuity equation? was first asked by
José A. Heras in [1], who concluded yes and provided a construction by means of a generalization of
Helmholtz decomposition. In [2], Heras presents an axiomatic approach to electrodynamics beginning
with the continuity equation. The purpose of the current paper is to affirm and generalize the result of
Heras to manifolds of any dimension by means of a generalized Helmholtz decomposition of geometric
calculus, as well as to discuss its implications beyond electrodynamics.

After establishing a mapping between n-vector fields and differential forms of degree n, which allows
for the result of this paper to be translated directly into differential forms, I present two key results of
geometric calculus: a generalized Integral Formula and Helmholtz decomposition for fields.

Using these results, I show that all divergence free fields fail to be coexact (i.e. the curl of some
other field) by at most a monogenic term. Monogenic fields are characterized by the property that they
are fully determined by boundary conditions, analogous to complex analytic functions. I present some
conditions under which these fields are coexact. A field whose antiderivative is curl free is dubbed faithful,
by which it follows that the derivative of a curl free field is faithful, and the antiderivative of a faithful
field is curl free. This establishes an equivalence between the statements “an electromagnetic field F is a
curl free bivector field” and “an electromagnetic current J is a faithful vector field,” both of which fully
determine the structure of Maxwell’s equations.

I then show that a conserved vector field J is faithful on a simple manifold of arbitrary dimension
under suitable boundary conditions. Not only does this reinforce the result of Heras that the continuity
equation implies Maxwell’s equations; it points to an intimate connection between symmetry and bivector
fields like Maxwell’s. Noether’s theorem associates to every symmetry a conserved current. In this paper,
an explicit expression is given that associates to every conserved current a curl free bivector field that
is its antiderivative. This means that to every symmetry there is an associated bivector field that is
identical to an electromagnetic field, up to its units.

2 Fields and forms

If Fn ≡ 〈F 〉n is the grade n part of the multivector field (hereafter, just field) F =
∑
Fn in an arbitrary

geometric algebra G, then its corresponding differential form fn of degree n is a scalar field given by [3]
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fn ≡ dnx† · Fn, (1)

which is the projection of the n-vector field Fn onto the directed measure dnx† = dxn ∧ · · · ∧ dx1,
where dxi are vector valued differentials.

The hodge star operation ∗ acts on fields as

∗ F ≡ F †I, (2)

where I is the pseudoscalar of some oriented vector manifold.1

The exterior derivative d behaves identically to the curl

dfn ≡ dn+1x† · (∂ ∧ Fn), (3)

and the “adjoint operator” δ behaves identically to (minus) the divergence

δfn ≡ dn−1x† · (−∂ · Fn). (4)

The word form will be reserved for scalar fields corresponding to some n-vector field via Equation
1. Lowercase letters will be used for forms and uppercase letters for fields. Subscripts denote grade of a
multivector (degree of a form).

3 Derivatives

A field F is called curl free (or closed) when

∂ ∧ F = 0 (5)

and divergence free (or coclosed) when

∂ · F = 0, (6)

where ∂ = ∂x is the derivative with respect to the vector x. This operator is unique to geometric
calculus, and the entire subject is a study of the properties of this operator. It’s also often called the Dirac
operator and can be written ∂ = ek∂k where ∂k = ∂

∂xk = ek · ∂ with respect to coordinates xk = ek · x.2

A field for which

∂F = ∂ · F + ∂ ∧ F = 0 (7)

is called monogenic. It possesses the property of complex analytic functions that, in any region, it
is fully determined by its values on the boundary of that region. Hence, the form ω is closed if dω = 0,
coclosed if δω = 0, and monogenic if dω = δω = 0.

A field H that satisfies

∂2H = 0 (8)

might be called harmonic, although the term is inappropriate in mixed signature spaces. For instance,
in Minkowski space, ∂2H = (∂2

t − ~∇2)H = 0 is the wave equation and its properties differ dramatically
from the usual harmonic functions in Euclidean spaces. Nonetheless, we will abuse the term here for lack
of a better one. A form γ is then harmonic if dδγ + δdγ = 0.

4 Potentials

If a field J is written as

J = ∂ ·G+ ∂ ∧H, (9)

then G and H are called potentials for J . By extension, if a form ω is given by

ω = dα+ δβ (10)

then α and β will be called potentials for ω.

1See Chapter 4 of [3], or Section 6.5 of [5].
2See p. 252 of [3] for a coordinate free, integral definition of ∂.
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A field J is called exact when

J = ∂ ∧ F (11)

and coexact when

J = ∂ · F, (12)

whereby a form ω is exact if ω = dα and coexact if ω = δβ. Two curl free fields are called cohomologous
if their difference is an exact field. It should now be obvious that two divergence free fields are called
cocohomologous if their difference is a coexact field.3

5 Antiderivatives

A field F is called an antiderivative of J if

J = ∂F = ∂ · F + ∂ ∧ F, (13)

which is unique up to a monogenic term. That is, F + C such that ∂C = 0 is also an antiderivative.
Furthermore, given an antiderivative, one has possession of constraints on F . For every Jk = 0,

Jk = ∂ · Fk+1 + ∂ ∧ Fk−1 = 0. (14)

As an example, if J = Jn is an n-vector field, then

Jn = ∂F = ∂ · Fn+1 + ∂ ∧ Fn−1, (15)

and the constraints due to Jn−2 = Jn+2 = 0 and Fn−3 = Fn+3 = 0 are

Jn−2 = ∂ · Fn−1 = 0 and Jn+2 = ∂ ∧ Fn+1 = 0. (16)

Of course, F could contain terms of higher and lower grades, but they make no contribution to Jn, so
under the restriction that it only has grades which contribute to Jn, F is of the form F = Fn−1 + Fn+1.

If jn and fn are the forms given by Jn and Fn, then Equation 15 is equivalent to

jn = −δfn+1 + dfn−1, (17)

and Equation 16 is equivalent to

δfn−1 = dfn+1 = 0. (18)

Given potentials fn−1 and fn+1 under these constraints, one is in possession of an antiderivative of
jn.

6 The Fundamental Theorem

Let M be an m-dimensional smooth oriented vector manifold with a piecewise smooth boundary ∂M
and L be a linear function, differentiable on M and ∂M. Then, [3] [4] [5]∫

L(ẋ, dmx∂̇) =

∮
L(x, dm−1x), (19)

where L(ẋ, dmx∂̇) denotes right and left differentiation all x dependent terms in L by ∂.
Stokes’ theorem of differential forms is∫

〈L(ẋ, dmx∂̇)〉 =

∮
〈L(x, dm−1x)〉, (20)

for scalar valued integrands.

3This is made up.
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7 Integral Formula

Let J be a field on a simple (not self-intersecting) manifold M subject to the same criteria in the
fundamental theorem. Suppose J satisfies the equation

∂F = J. (21)

Then F is given by [3]

F (x) = (−1)mI−1(x)

(∫
g(x, x′)dmx′J(x′)−

∮
g(x, x′)dm−1x′F (x′)

)
, (22)

where g is a Green’s function of ∂ satisfying ∂g(x, x′) = −g(x, x′)∂′ = δ(x−x′). This result says that
any integrable field has an antiderivative, and it’s given by Equation 22.

8 Helmholtz decomposition

The integral forumla tells us that J has an antiderivative F such that

J = ∂F = ∂ · F + ∂ ∧ F = (−1)mI−1

(∫
gdmx∂2F −

∮
gdm−1x∂F

)
. (23)

In addition, we can say

∂ · F = (−1)mI−1

(∫
gdmx∂(∂ · F )−

∮
gdm−1x∂ · F

)
(24)

and

∂ ∧ F = (−1)mI−1

(∫
gdmx∂(∂ ∧ F )−

∮
gdm−1x∂ ∧ F

)
, (25)

which gives a generalized Helmholtz decomposition into divergence free (or coclosed) and curl free
(or closed) fields, ∂ ·F and ∂ ∧F respectively. This is because ∂ ∧ (∂ ∧M) = ∂ · (∂ ·M) = 0 for any field
M . Additionally, this decomposition comes with constraints given by Equation 14.

A corresponding result for forms follows. If J = Jn is an n-vector field with an antiderivative F , then

jn = −δfn+1 + dfn−1, (26)

with the constraints dfn+1 = δfn−1 = 0. Note that this is a stronger result than Hodge decomposition
due to the constraints on fn−1 and fn+1, and it is not restricted Riemannian manifolds.

9 Antiderivatives of divergence free fields

The above result implies that antiderivatives of divergence free fields fail to be curl free, and antideriva-
tives of curl free fields fail to be divergence free, by at most a harmonic function H satisfying ∂2H = 0.

Suppose J = ∂F is divergence free (the dual result for curl free fields follows analogously). Then,

∂ · J = ∂ · (∂F ) = ∂ · (∂ ∧ F ) = ∂(∂ ∧ F ) = 0, (27)

which means that C ≡ ∂ ∧ F is monogenic and J is cohomologous with C

J − C = ∂F − C = ∂ · F, (28)

because their difference is coexact.
Employing the integral theorem, C has an antiderivative H such that

C = ∂H. (29)

With G ≡ F −H, this implies that F can then be written

F = G+H (30)

where ∂G = ∂ · F and ∂2H = 0. Hence, F fails to be curl free by at most a harmonic function H.
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As an example, if C is an r-vector field, then C can be written C = ∂ · (x∧C)/r = ∂ ∧ (x ·C)/(n− r),
and C is both exact and coexact, in which case4

J = ∂F = ∂ · (F + x ∧ C/r) (31)

is coexact — although, F is not curl free.
If C = 0 on the boundary, then C = 0 everywhere, and its antiderivative is curl free

J = ∂F = ∂ · F. (32)

Let us call a field J faithful if its antiderivative is curl free. Faithful fields are coexact, and all
divergence free fields differ from faithful fields by at most a monogenic field, which depends solely on the
manifold and boundary conditions. Note, however, that coexact fields are not necessarily faithful. Of
course, we might choose to call a field the antiderivative that is divergence free cofaithful, though that
admittedly doesn’t quite have the same ring to it.5

10 Maxwell’s equations

Maxwell’s equations follow from directly from the statement that “an electromagnetic field F is a curl
free bivector field and its derivative is its current J .” To say that it is curl free means that

∂ ∧ F = 0, (33)

and its derivative J is

J = ∂F = ∂ · F, (34)

which are Maxwell’s equations with no magnetic monopoles or currents. Of course, Maxwell’s equa-
tions imply the continuity equation

∂ · J = ∂ · (∂ · F ) = 0, (35)

which means charge is conserved.
F is the antiderivative of J , so to say that F is curl free is the same as saying J is faithful. Hence,

the above is equivalent to a dual statement “an electromagnetic current J is a faithful vector field and
its antiderivative is an electromagnetic field F .”

Under suitable boundary conditions, a divergence free vector field is faithful. Suppose J is a conserved
current. Then by Equation 16 and Equation 30, its antiderivative F can be decomposed into

F = F0 + F2, (36)

where F0 is harmonic.
Equation 23 tells us that, in four dimensions, J can be written

J = ∂F = I−1

(∫
gd4x∂2F −

∮
gd3xJ

)
. (37)

If we integrate over all of spacetime, the boundary term vanishes for suitable charge distributions,
and J is given by

J = ∂F = I−1

∫
gd4x∂2F, (38)

which is only dependent on ∂2F = ∂2(F0+F2) = ∂2F2, since F0 is harmonic. Hence, J is independent
of F0, and J can at last be written as

J = ∂F = ∂ · F, (39)

and J is faithful.

4Under what conditions are monogenic fields (co)exact?
5Might be better to abandon the word faithful altogether for something more descriptive.

5



11 Symmetry

Noether’s theorem associates to every symmetry a current J satisfying ∂ ·J = 0. Equation 22 provides a
direct expression for the antiderivative F of J such that ∂F = J , which is a bivector satisfying Maxwell’s
equations (under suitable boundary conditions). What are the implications of this?
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