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UNIPOLAR INDUCTION. '

BY W. F. G. SWANN.

SYNOFSIS.

Unipolar Induction; Theory of the Uniform Motion of a System of Amperian
Current Whirls. —The paper forms an inquiry as to the extent to which the so-called
"Moving Line Theory" is the equivalent of the Maxwell-Lorentz theory. The
latter gives the electric force on a fixed unit of charge in the form:

IaUB = ————grad/,c8t

where U is the Maxwellian vector-potential, and f is the electrostatic potential.
At first sight it might appear that f would be zero in the case of a magnet which

+as uncharged +hen at rest. It is shown, however, that the mere fact of the absence
of resultant force upon a charge which accompanies a magnet in uniform rectilinear
motion requires a rearrangement of electric density in the amperian whirls (or their
equivalents) which constitute the molecular magnets; and, this rearrangement is
such as to endow the magnetic doublets mith the properties of electric doublets as well,

the axes of corresponding magnetic and electric doublets being perpendicular to
each other. These electric doublets result in'a finite value for f. It appears that,
when P is included zn thzs may, the Maxwell-Lorentz, theory is the equivalent of the

"Moving-Line Theory" for the case of a single magnetic doublet in uniform motion.
Application to Rotating Magnetic Systems, and Relation to the "Moving Line

Theory"; the Part Played by the Motional Intensity. —The above considerations
may be extended to the case of a magnetic doublet (amperian current whirl) revolving
about an axis parallel to its own and outside itself. In such application me must,
however, calculate the motion of the lines of magnetic inductzon as though they partook
only of the translatory motion of the doublet in its orbit, and not of its rotation about
its own center. In the form in which the theory is usually applied to problems of
rotation, the motion attributed to the magnetic lines is the. same as if the lines
from the elementary whirls were pinned down at the places where they pass through
the axis of rotation of the system. In other words, the motion of the lines is calcu-
lated as though it partook of the rotational velocity of the frame of the whirl about its
own center as well as of the translatory velocity of the whirl in its orbit. Bearing
these considerations in mind, w'e may extend the idea to a system of amperian
whirls, such as a magnet rotating in bulk.

If, in the case of a conducting magnet, we for the moment ignore the motional
intensity which would act upon a unit of charge in the conductor as a result of
its motion in its own magnetic field, the field due to the electric doublets would
result in a distribution of electricity throughout the conductor of such a nature as
to annul the electric field at all internal and external points, The motional intensity
then superposes upon this condition an electrostatic distribution which is thus the
sole representative of the ultimate egect. In general, this electrostatic distribution
results in a potential other than zero at the axis-of rotation, so that if this axis is

' Presented at the meeting of the American Physical Society, October Ii, Igip.
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earthed, an additional charge will come to the system, and this charge will also con-
tribute to the electric field. In the "Moving Line Theory" as ordinarily applied,
the electric intensity acting upon a unit of charge at rest turns out to be equal and
opposite to the motional intensity acting upon the unit of charge as a result of its
motion in company with the material of the rotating system, and it therefore results
that, on this theory, there is no electrostatic distribution in the rotating body.

Discussion of Experimental Results Heretofore Obtained. —Recent experiments
upon the subject of Unipolar Induction are discussed in terms of the conclusions
arrived at in the paper. One of the main conclusions reached is to the effect that,
in all experiments where a null effect +as obtained, the nature of the apparatus was

such as to shield og any egect which might legitimately have been expected.

Calculation of Effects for a Rotating Sphere. —The electrical field of a uniformly

rotating, and uniformly magnetized sphere is . calculated and discussed, under

various conditions, axis insulated, axis earthed, inductively magnetized, and perma-

nently magnetized.

Magnetic Doublet Rotating about an Axis Passing through its Center, and Perpen-
dicular to its Own Axis.—It is shown that, the electric field may be calculated for this
case from the "Moving Line" law provided that the doublet is split into two imag-
inary poles and the lines for each are treated separately. It is necessary, however,

to make the calculation on the basis that the lines from the poles partake only of the

linear velocity of the poles in the~r orbits, and riot of the rotational velocities about
the centers of rotation. In this form, the "Moving Line" law is applicable to a
magnetic doublet moving in any arbitrary manner so long as the velocities are not
comparable with that of light.

INTRODUCTION.

C ONSIDERING any magnetic system which, when at rest, is un-

charged, the question primarily involved in the so-called problem
of unipolar induction is this: Is it possible to calculate the electric
field produced at an external point by uniform rotation, or for that
matter by any kind of uniform motion, by supposing the lines which

represent the magnetic induction 8 to be rigidly attached to the system,
and by utilizing the expression

& = —-fi'&1
C

where V is the velocity of the line perpendicular to its length, and c is

the velocity of light.
Such a law is by itself szzgczezzt to predict Faraday's law that the

electromotive force integrated around a circuit shall be equal to the
rate of change of induction through it; but, without further specification
of the laws of electromagnetism, its necessity is not obvious. Most
practical problems are concerned only with the electromotive force
integrated around a circuit; and, for these, the relation (t) wou1d lead
to the correct result even though it might be erroneous as applied to
obtain the field at a single point.

The class of experiments which have usually been associated with
attempts to decide the validity of (r) are those in which a symmetr'ical
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system, such as a cylindrical bar magnet, is caused to rotate about its
axis of magnetization, and devices are employed for the purpose of
detecting any electrical field which may be generated in the vicinity of
the magnet. Some of the most recent work on this matter has been.

done by E. H. Kennard, " S. J. Barnett, ' and G. B. Pegram. ' The sym-

metry of the problem is such that there is no rate of change of magnetic
Aux through any circuit, so that, even if the electric intensity were zero

everywhere, Faraday's law would not be violated in this case.
A perusal of the literature on this subject suggests that many physicists

have a feeling that there is a fundamental element of uncertainty as to
what should happen in experiments of this kind; that there is, in fact,
a question to which our electromagnetic scheme has no answer. This
attitude may perhaps arise from a feeling that since Faraday's laws only
expresses the field integrated round a circuit, the electromagnetic equa-
tions may not possess the power to dissect out the integral into its
component elements. Such would indeed be the case were we entirely
dependent upon Faraday's law; but, the electromagnetic theory involves
another set of circuital relations besides Faraday's law, and these, corn-
bined with Faraday's law, enable the equations to be integrated so that
the value of Z is determined at each point. This immediately suggests
the power of these equations to answer any problem as to the value of 8
at a point, provided that the problem is stated with sufhcient definiteness.
It is of interest to inquire therefore as to the extent to which the recog-
nized electromagnetic theory has the power to provide an answer to
questions of this kind. ' It will conduce to clarity to first formulate the
general bases which the electromagnetic theory provides for the discus-
sion of the problem. It is desirable to do this in some detail since such
confusion as arises comes often from a misinterpretation of the exact
meaning of the symbols and definitions occurring in the theory.

' E. H. Kennard, Phil. Mag. , 23, 937, I9I2: 33, I7g, I9I'7.
' S. J. Barnett, PHYs. REv. , 35, 323, Igx2.
3 G. B. Pegram, PHYs. REv. , Io, 595, I9I7.
4 I discussed certain aspects of this matter at the W'ashington meeting of the American

Physical Society on April 2x, xgx6, in connection with a paper by Prof. G. F. Hull, on "The
E.M.F. Generated by the Rotation of a Cylindrical Magnet about its Axis. " Subsequently,
at the meeting of the Physical Society in October, xgx6, and in PHYs. REv„xo, 595—6oo
I9I7, Prof. G, B. Pegram expressed, quite independently, conclusions almost identical with
those previously expressed by myself. A similar idea is also expressed on page x, x6o of a
'Report on Electromagnetic Induction" by Prof. S. J. Barnett, presented at the joint

meeting of the American Physical Society and of the Institute of Electrical Engineers,
October Io, xgxg. I mention this not of course as a matter of priority, but because, in what
follows, I shall find it necessary to disagree to some extent as to the completeness of the con-
clusions drawn by Professors Pegram and Barnett, and incidentally therefore with those
I had formerly expressed; for, although they represent an important part of the matter.
they form by no means the whole story.
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GENERAL FUNDAMENTALS CONCERNED.

With electric and magnetic quantities in Heavisidean electrostatic
and electromagnetic units respectively, the two sets of circuital relations

are, in the case of free B.ther:

I BB
c Bf

pg +—=. Curl II

I BII = Curl 8
c 8t

and, in addition, we have:
p = Div. E. (4)

An additional relation Div. II = o is simply added to exclude, from the
problems we are interested in considering, all those in which the magnetic
field arises from ordinary scalar potentials, i.e. , from distributions of
hypothetical magnetic "charges. "

II is the force on a fixed Heavisidean unit magnetic pole, and Z the
force on a fixed Heavisidean electrostatic unit of charge. It is important
to observe that though B sometimes arises totally from electrostatic
considerations and sometimes from the existence of changing magnetic
fields as well, the relation (4) is universally true and is, in fact, the defini-

tion of p which, without some such definition, would have no meaning in

the case of moving charges.
There are two forms in which (2) and (3) are customarily integrated.

In the first form, which corresponds to that adopted by Maxwell, we

have:
I BUI' = ————Grad P,c Bt

where

IU=-
47rc

(ttt+ &)ddr.
r

Here P is the true electrostatic potential of the charges. It is the
potential which the various volume elements of charge mould exert at
the time in question if, at that instant, they were suddenly brought to
rest and pinned down in the positions which they happened to occupy.
The vector potential U is not expressed entirely in terms of the motions
of the charges, but involves also an integration of BE/Bt throughout space.

Div. U is zero at all points so that the density p, which is equal to
Div. Z is also minus the divergence of Grad P.
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In the second or Lorentzian form, we have:

I BAB = ————Grad q,c Bt

where

(8)

—dv

and

(io)

Here, ho~vever, the square brackets are to be taken as indicating that,
in seeking the value of y or A at the time t, we must not put in the values
of p and u in the.various volume elements at the time t, but to each
volume element we must assign the value which existed there at the
time r(c earlier than t Thus y is. no longer the electrostatic potential
in the sense that P is. Div. A is not in general zero, so that the density
is not given in general by Div. Grad. p. The two formulas (5) and (8)
are merely different ways of expressing the same quantity Z. The
Lorentzian form has in some cases the advantage in that it gives A and q,
and consequently E, explicitly in terms of the positions and velocities of
the charges without invoking the knowledge of 8 at all points, as a
direct determination of U would require. In both cases II is of course
the curl of the corresponding vector potential.

E is the force on a unit charge fixed with respect to the observer;
and, it is not always realized that neither the circuital relations (2) and

(3), nor their analytical equivalents (g) or (8) have the power to tell us

anything at all about the force on a charge which moves relatively to the
observer. The force on a moving charge is E+ [V HJ/r, , where the
vectors refer to the parts not contributed by the charge itself but, in

giving the name "Force" to this vector, we do not endow it with any
properties which tell us in what way this so-called force influences the
motions 'of the charges. The assumption which is made by Lorentz
is that the electron moves in such a way that the force (as defined above)
which it exerts on itself as a result of the motion is equal and opposite
to the force which the external 6eld exerts upon it. The expression for
the former can be developed in terms of the acceleration and higher
derivatives of the velocity of the electron. It turns out that the term
proportional to the acceleration is the most important of all the terms

' The division of a field into tw~o parts, that due to a certain charge, and that due to the
remainder of the charges is a matter of definition. The field of a given charge is defined

as the portion obtained by utilizing the parts of cp and A contributed to the integrals by the
charge in question.



in the case of many types of motion; and, by giving the name "Mass"
to the coef6cient of the acceleration, the assumption of Lorentz becomes
thrown into the familiar form "Force equals Mass multiplied by Accelera-
tion. " It is on account of the act of forcing the Lorentzian assumption
into this form that we arrive at such apparently artificial concepts as
"Longitudinal " and "Transverse" mass.

The assumption of Lorentz is not derivable from the circuital relations.
Such theoretical basis as it has rests upon the fact that, neglecting certain
objections which it is not the purpose of this paper to discuss, it becomes
predicted by the same application of the Hamiltonian principle to the
problem of the electromagnetic held as, with the proper choice of the
Lagrangian function, brings out the Faraday law. In the case of a
single coordinate, but only in this case, it can be deduced from the prin-
ciple of the conservation of energy as might be expected since, for the
case of a single coordinate, the Hamiltonian Principle is the analytical
equivalent of the principle of the conservation of energy.

It is convenient to speak of the contribution [V Bj/c to the force
acting upon an element of charge as the "Motional Intensity, " so that
the total force Ji acting upon the unity charge is the sum of the electric
intensity E which would act upon the charge at rest, and the motional
intensity. Thus, using (5) we have:

IBU I
Ji = ————Grad. P + —[V Hj, (i i)c Bt C

where U and rP have the meanings defined in (6) and (7). In place of
U and P we may of course use the Lorentzian potentials if we choose.

It must be distinctly understood that there is no ambiguity of meaning
depending upon considerations as to whether the magnetic lines do or
do not move. H is the force which would be experienced by a 6xed
magnetic pole; V is the velocity of the charge upon which we desire the
force, and is measured relatively to the fixed observer. The z] which
occurs in the expression (7) for U refers, at each point of space, to the
velocity of the electricity at that point. Further, in evaluating U, P
and H, we must omit from our integrals the parts contributed by the
charge whose motion we desire to study.

MOTION OF MOLECULAR MAGNET OR AMPERIAN CURRENT WHIRL.

It is fairly obvious, and may be seen rigorously by a glance at (6),
(6) and (y), that the electric intensity at any point may be expressed
as a sum of contributions from each element of the space. It is therefore
of interest to begin by studying the effect of an infinitesimal circular
amperian whirl (taking place around an infinitesimal anchor ring for
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example), and then discuss the field which will arise by the superposition
of an infinite number of such whirls which together may be supposed to
make up a magnetized body. To 6x our ideas we shall suppose the
whirl to be one of negative electricity; and, in order to avoid as far as
the analysis will permit us, the complications arising from the portions
of the field due to mere electrostatic distributions of electricity, we shall

suppose that, on the top of our anchor-ring whirl, we superpose a uniform
distribution of positive electricity which does not participate in the rotary
motion of the whirl, but which is equal in total amount to the negative
charge in &he whirl.

The question which we wish to decide is whether, or under what condi-
tions, the electric field due to the motion of such a whirl, and which is
strictly given by (5) for example, may also be calculated, at any rate to
a, first approximation, from the moving magnetic line idea on the assump-
tion that the lines are rigidly attached to the frame of the whirl. If such
a method of calculation is possible then, by superposition of the effects,
we may apply the moving line method to the motion of a magnet in bulk.
In doing this, however, we must be careful to apply it to the motion of
the Beld of each amperian whirl separately, and this will mean that in

many cases, as for example in estimating the electric 6eld at a point on
the plane passing through the center of a rotating magnet and per-
pendicular to the axis of rotation, the lines contributed by the various
elements of the rotating magnet will be moving in all sorts of directions,
some indeed moving in diametrically opposite directions, for the portions
of the surface of the magnet at the two ends of a diameter move in oppo-
site directions. It is only in some such form as this that the "Moving
Line Theory" could ever hope to represent the true state of affairs.
Any other view would make the theory inconsistent with itself; for, if
it is to apply to the magnet in bulk, it must manifestly apply to the
constituent elements of which the magnet is composed.

As an introduction to our problem, we shall erst consider a case of a
whirl in uniform rectilinear motion.

Amperian Whirl in Uniform Rectilinear Motion Suppose .t—hat the
axis of the amperian whirl is inclined to the axis of x, and that the recti-
linear motion takes place parallel to the axis of x with velocity v. The
field E is given by (5), and it might be thought at first sight that we
should be justi6ed in neglecting the term Grad. P, involving the purely
electrostatic potential, on the ground that we superposed on our negative
whirl a positive distribution which, as regards electrostatic potential,
just cancelled the negative distribution when the whirl was without
rectilinear velocity. Such an assumption would be unjustified, however,
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for it would lead us among other things to the relation:

r BU„z
c 8t

so that, unless U„were zero, there would be a component of E in the
direction of motion, a conclusion which no one would be prepared to
admit, and which would violate the principle of relativity to an extent
measured by its whole value. For, the only reason that a moving
observer fails to realize that the field which he measures is changed by
the motion is that the term [V Hj/c in equation (ii) just cancels the
change in E produced by the motion of the system, and, the term

[V Hj/c has obviously no component parallel to the direction of motion.
That the vanishing of 8, does not depend upon the vanishing of U

may readily be seen by putting E, zero in (y), which then leaves us with
a perfectly definite and finite expression for U, .

In fact, if we are to have E, zero, as relativity considerations require,
we must admit the exI'stence of a value of P determined by:

or since

x BU, 8P
0

c BI, 8x

vBU,
c Bx Bx

The arbitrary function of y and s which arises on integration of this
equation must be zero as otherwise U, or P would be finite for infinite
values of x. Thus

or, remembering that 8, is zero, and using (7) we have:

where, in terms of measurements by a fixed observer, po is the density
of the positive electricity, p& the density of the negative distribution in
the moving system, and I„ the x component velocity of the negative
electricity.

If i represents the x component of the current density as measured

by a fixed observer, equation (i3) shows that the rectilinear velocity
has resulted in the creation of a resultant charge density given, at each
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point of the anchor-ring, by:
'VZ~

Ap = —.
Utilizing in (5) the value of f given by (i2), and remembering that
H = Curl U, we have:

BUy v BU, v BUy BU,
Bt c By c Bx By

BU. v BU, v BU, BU'l
Bt c Bs c Bx Bs

so that:

or, in vector notation,

E„=—H„
C

[v IIIB-
C

(i6)

Equation (i6) is obviously the expression of the "Moving Line Theory"
for the case of uniform rectilinear motion. In a sense, it is in more exact
accord with the "Moving Line Theory" than are the usual statements
of that theory; for, in (i6) H represents the true value of the magnetic
6eld as modified by the motion, and the result is true to any order of
magnitude. As will be seen, moreover, from the analysis, the result is
not limited to the particular amperian-whirl system which we have
chosen as the basis of our discussion, but is true for example where the
amperian whirls are replaced by electrons revolving about positive
centers. The amperian whirl is however, the easiest system in terms
of which to visualize the phenomena, and we shall continue to discuss
matters in terms of it.

As may be seen from (i4), f arises from a crowding together of the
negative electricity on the side of the whirl on which the x component
of the rotational velocity coincides with the rectilinear velocity of the
whirl, and a thinning out of the negative density on the other side. In
fact, the electrostatic potential corresponds, at large distances, to that
of an electric doublet. The rearrangement of the density of the negative
electricity is not cancelled by a similar rearrangement of the positive
because, as shown by (ig), this arrangement depends upon the velocity
relative to the moving center as well as upon the velocity of the moving
center itself.

A physical picture of the origin of f may readily be obtained. For
suppose that our elementary whirl was originally at rest, as a whole,
and without charge, and that it is now in rectilinear motion in a direction



perpendicular to the plane of the paper, with its axis parallel to the plane
of the paper, Fig. z. Remembering that the magnetic lines pass up-

wards, for example, as they thread through the whirl and downwards

as they return on the outside, everyone will admit that, at the surface
of the anchor ring there will appear an electric field which will be in

opposite directions at points A and 8 on the interior and exterior surface
of the anchor ring. This of course means that there is a resultant electric
flux from, and consequently a charge on, the part AB of the anchor ring.
It is easy to see from the directions of the magnetic and electric forces
that the sign of the charge at the place CD is opposite to that of the
charge at AB, so that these two places contribute to the formation of an
electric doublet, equilibrium being secured by the motional intensity.

It thus appears that, even in the case of a magnetic doublet which is

electrically neutral when at rest, the electric field resulting from the
motion of the doublet depends partly upon an electrostatic potential,
and is not determined entirely by the time rate of change of the vector
potential. Further, by superposition of the contributions from the
various elementary molecular magnets we shall find that this effect
persists in the case of the rotation of a magnet in bulk. It is true, as
we shall see later, that, in the case of a conducting magnet, the electro-
static potential causes a redistribution of the free electricity in the
magnet, of such a nature as to annul its effect. The secondary electro-
static potential arising in this way is, however, of an origin quite different
from that of the primary potential due to the electric doublets, as is
also the potential of the electrostatic distribution which results from the
motional intensity produced by the rotation of the conductor in its own

magnetic field.
In the case of a symmetrical rotating magnetized system, the vector-

potential is independent of the time; but, as we have seen above, this
is not a sufficient criterion for the prediction of absence of electric field
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as a result of rotation. It is in this respect that I find it necessary to
differ from the conclusions expressed by Professors Pegram and Barnett, '
and incidentally therefore from those which I myself had expressed at
an earlier date.

It may be remarked that the results which we have deduced as to the
creation of an electric doublet in an amperian whirl as a result of imparting
rectilinear motion to the whirl may be deduced by a direct application
of the transformations of the theory of relativity, as may also the
equivalence of the Lorentzian theory and the "Moving Line Theory"
for this case.

Thus, if p' is the density at a point in any system, as measured by a
6xed observer and the system be set in rectilinear motion with velocity v,
p' will be the density as measured by an observer participating in the
motion. But the density P as measured by a 6xed observer will now be
given by'.

vu.p'= pl z ——,* p
C

where u, is the x component velocity of an element of the charge as
measured by the fixed observer, and P is written for (t —v'/c') '".
If Po' and P&' refer respectively to the densities of positive and negative
electricity in our amperian whirl, for example, when w'ithout rectilinear
velocity, while po and P& refer to the corresponding quantities as measured

by a 6xed observer when the system has rectilinear velocity v, we have:

so that:

Po
Po

p
' Pi = P I —

& P»

vu~ v vs~

which is the same result as that obtained in (t4).
It must not be thought that we have proved, from the purely electro-

magnetic considerations contained in equations (5) to (7), that there is a
redistribution of density in our amperian whirl as a result of its rectilinear
motion. The theory of relativity is not deducible from electromagnetic
considerations alone. What has been shown is that, if the theory of
relativity is to hold, the density distribution must come about in the
manner we have stated. When, in deducing (t4), (t5), and (I6), we

assumed that E, was zero, we of course made an assumption which, for
this purpose, was the equivalent of the theory of relativity. If we do
not assume something such as the principle of relativity in addition to

' See note S of this paper.
2 See for example, O. W. Richardson's Electron Theory of Matter, p. 3o7.
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our electromagnetic scheme, we have no basis for forming a conclusion
as to what happens to our whirl as a result of rectilinear motion. If we

were to asszwse the negative and positive densities in our whirl to be
unaltered at each point, so that one offset the other, as regards electro-
static field, we should not arrive at the "Moving Line Result. " We
should, moreover, predict the very astonishing conclusion that rectilinear
motion results in the appearance of a component of E parallel to the line
of motion, a result quite inconsistent with the theory of relativity.

In addition to the result (i4), we may of course deduce also the results

(x5) by a direct application of the relativity transformations. For if
symbols with and without dashes correspond respectively to quantities
measured by a moving and by a fixed observer, the relativity trans-
formations are

E„' =P Ey —-H, E,' = p E, +-Hy
c )

The symbols with dashes correspond also to the quantities which would

have been measured by a fixed observer before the system was set into
rectilinear velocity. The transformation equations thus tell us that if
a system is devoid of electric fieM when without rectilinear motion, the
impartation of uniform rectilinear motion will result in the appearance
of an electric field given by:

E. = o,
V

Hzyc
E = —-H,z c gy

which are the same as equations (z5).
This method is, of course, more general than that adopted above,

and shows at once that the results are not limited to the particular case
of an amperian whirl. The purpose of this paper is, however, to dissect
out the physical processes at work in as clear a manner as is consistent
with a rigorous treatment; and, in this respect, the more laborious
development we have given may perhaps be more convincing than a
direct appeal to the relativity transformations.

hfoment of the E/ectric Doublet It has. been .—shown that the part of
the electric field of the moving amperian whirl determined by P is the
same as would be produced by an electric doublet. To the extent that
the magnetic field of the moving whirl is unaltered by the motion, i.e. ,

to a high approximation, the whirl is equivalent in its magnetic effect to
a magnetic doublet; and, it is of interest to determine the relation
between the moments 3SI and X of the magnetic and electric doublets
respectively.
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For the value of U due to a magnetic- doublet of moment M, and
directional cosines l, m, n, we have'

B I
U, = —M m ——n-

Bs By f
so that, from (z2), we have:

8 B B x v B v B——M . m ——n ——= ——M —+-M
c Bs By r c "Bs c 'By r'

which shows that P is the same as would result from an electric doublet
of moment given by:

—- M„,
C

Thus, employing vector notation, we may write, quite generally:

[o MJ
c

Rotation of AmericanWhi, rl about its own Axis.—Rotation of an

amperian whirl about its own axis of rotation can not give rise to any
electric field; for, such rotation is simply equivalent to adding (alge-
braically), equal velocities to the positive and negative electricity in the
whirl, so that the current density is unchanged. Neither on the basis of
physical intuition, nor on the more exact basis of equations (5) to (7),
should we be justified in expecting any electric field as a result of such a
phenomenon. For, unless rotation of the whirl gives rise to a change
in its constitution, such as to result in a finite value for P, the most that

(5) could predict is:
BU

It
c Bt

which shows that It is zero in the steady state. Change of constitution
of the whirl as a result of mere rotation, unlike that following from
rectilinear motion, is not called for by any known fundamental con-
siderations, and is, moreover, highly improbable from considerations
of symmetry.

The above arguments may be applied, even with greater ease, to the
case of the rotation of current-carrying solenoids, such as have occa-
sionally been used in experiments on unipolar induction. No electrical
effects are to be expected as a result of the rotation of such a solenoid
about its own axis.

' See, for example, J. H. Jeans' Electricity and Magnetism, p. 394.
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APPLICATION TO THE CASE OF SYMMETRICAL MAGNETIZED SYSTEMS

ROTATING ABOUT THE AXIS OF SYMMETRY.

We may look upon the field due to a piece of magnetized material
as made up of the fields of the innumerable magnetic doublets, or am-

perian whirls, of which it is composed. We may confine ourselves to
the case where the axes of the elementary whirls are parallel to the axis
of the rotating system as a whole (f.e. , to the axis of magnetization)
since effects due to the motions of the components of the whirls per-
pendicular to the axis of magnetization must necessarily cancel out,
since such components will be as often directed in one way as in the
opposite way. Any doubts as to the validity of this reasoning may be
removed by a subsequent reconsideration of the effects of these com-

ponents in terms of the ideas to be developed in the remainder of the

paper.
By way of introduction, let us first consider the case of a single amperian

whirl which revolves about some axis outside itself, but parallel to its
own axis. In the first place, the acceleration of the whirl as a whole

towards the center of its orbit may result in a change in its actual con-
stitution of a kind analogous to that which we have shown to result
from uniform rectilinear motion. For rotation, however, we have no

theory of relativity which will enable us to form a prediction for this
case. Indeed, it is unlikely that there could be any theory which would

predict the effects of rotation independently of the knowledge of the
atomic structure of the particular material concerned. To realize the
force of this contention, we have only to remember that a disc in uniform

rotation will, in general, alter its dimensions by centrifugal force to an
extent depending upon its elastic properties, i.e. , to an extent depending

upon the molecular and atomic structure of the particular substance we

happen to be dealing with; while, for uniform rectilinear motion, the
theory of relativity predicts a contraction which is the same for all

substances. If, however, we make the assumption that the distribution
of electricity density in the whirl is altered by the orbita/ motion only
to an extent determined by the linear velocity of the whirl we can pro-
ceed. Such an assumption would probably be readily accepted by most

people as very reasonable; we must remember, however, that it is

ultimately an assumption, and only to the extent that it is true will the
solution of our problem be possible in the form in which we shall attempt
it. It will appear later, however, that, as regards the external field due

to a symmetrical, rotating, conducting magnet, there is no ambiguity
arising from uncertainties as to the effect of rotation on the constitution
of the whirl.
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Even with the assumption cited above, the field of the whirl at any
point, at any instant, wi11 not in general be the same as that which would

be calculated on the assumption that the whirl had been moving for an
infinite time in a straight line with the constant velocity equal and
parallel to the velocity which it has in its orbit at the instant concerned.
Provided, however, that the velocity is not comparable with that of
light, the assumption that the field may be calculated from the pure
rectilinear v'elocity will be approximately justified. The assumption is,
in fact, analogous to the so-called Quasi-Stationary Principle so frequently
used in discussing the fields of moving electrons; and it involves correc-
tions of an order of magnitude smaller than those in which we are inter-
ested here. It merely neglects the radiation field which is sent out by
our amperian whirl as a result of the acceleration which it suRers in its
orbit. '

If then we make this justifiable assumption, the results of the last
section show that the electric field which the Maxwell-Lorentz theory
predicts as a result of the motion of the whirl is exactly the same as that
which we should calculate from the moving line theory provided that,
in applying that theory, we exclude the part of the motion of the lines
of force which would result from the rotation of the fra~e of the amperian

P P

Fig. 2.

whirl about its own axis, In fact, in calculating the motion of the lines

of force of our amperian whirl, with its axis parallel to the axis of rotation,
we must not imagine the lines as attached rigidly. to the frame of the
whirl but rather, let us say, to a plane which passes through the center,
of the whirl and partakes of its linear velocity. , but which remains parallel
to itself during the rotation. Referring to Fig. 2, for example, where the
axis of our whirl is perpendicular to the plane of the paper, where
represents the position of this axis, and 0 the axis of the ptanetcry orbit

' In any case, when we consider the superposition of effects due to all the whirls in a
symmetrical rotating body, it is easy to show that terms of this kind would balance out.
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of the whirl, we see that, if the "Moving Line Theory" is to agree with
the Maxwellian theory, then, on passing from the position N to the
position

¹
we must calculate the velocity of a line of force NP as though

it had assumed the orientation ¹Pin diagram 8, and not as though it
had assumed the orientation N&P in diagram C. A calculation on the
latter basis would correspond to assuming the magnetic lines to partake
of the rotational velocity of the frame of the whirl; and, it is in this
respect that the "Moving Line Theory" as it is usually applied to
rotational problems differs from the theory in the form in which it ought
to be applied.

Thus, let us consider the case of a symmetrical system rotating with
uniform angular velocity about its axis of magnetization; and, in order
to avoid complications which will be presently discussed and elucidated,
let us suppose that pur system is non-conducting, and of unit specific
inductive capacity. A convenient system to think of is two cylindrical
bar magnets with axes in line, with opposite poles facing each other, and
separated by a space. Since the effects of the individual amperian
whirls are additive, the field due to each may be calculated on the basis
of the Moving Line Theory" as properly applied, and the resultant
may then be obtained by summation. Ke cannot apply the "Moving
Line Theory" to the resultant magnetic field, however, as is usually
done when the line of force passing through the axis of rotation is supposed
to be stationary, and the other lines of force are supposed to revolve
around it with constant angular velocity. Such an application results
in just what we should obtain were we to suppose that, in the case of
each whirl, the particular line of force which happened to pass through
the axis of rotation of the system was pinned down at the axis. In
other words, the usual application of the theory corresponds to assuming

the lines of force of the amperian whirls to partake of the rotational

velocity of the frame of the whirl about its own axis, as well as of its
rectilinear velocity in its orbit; and, as we have seen, such an assumption
would be contrary to the Maxwell-Lorentzian requirements, and indeed

to physical intuition as well.

Referring to the two cylindrical magnets w'ith axes in line and poles

facing, as cited above, we see that the ordinary application of the
"Moving Line Theory" would result in predicting, for the space between
the poles, an electric field radial to the axis of rotation. The divergence
of this field would not be zero, and we shouM be driven to the impossible
conclusion that there was a creation of charge density in the space
between the magnets, a conclusion to which a proper application of the
theory could not possibly lead, since the proper theory makes Div. E
zero at all points except at the whirls themselves.
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In a symmetrical uniformly rotating system, the vector potential does
not change with the time, so the second member of the right-hand
side of (5) is the only term which contributes to Z. As we have
seen in the preceding section, the effect of this term is the same as
we should have if each amperian whirl were replaced by an electric
doublet whose axis was perpendicular to the direction of motion. In the
case under discussion, the axes of the doublets would be radial; and, if
the system is uniformly magnetized, the moments of the doublets will

be proportional to the distance from the axis of rotation.
By Poisson s mathematical theorem relating to distributions of doub-

lets; the effect of such an assemblage of doublets is equivalent to that
of a fictitious charge distributed throughout the volume of the magnets,
and an equal fictitious charge distributed over the surface, the density
of the fictitious volume charge being equal, at each point, to minus the
divergence of the polarization (moment per unit volume of the doublets)
and the density of the surface charge being equal, at each point, to the
normal component of the polarization at that point. The field as deter-
rnined by these fictitious charge distributions is thus the analytical
equivalent of the field which would be obtained by a proper application
of the "Moving Line Theory" to a symmetrical, insulating, and uni-
formly rotating magnet, of unit specific inductive capacity.

Suppose now we extend these ideas to the case of a conducting system.
If for the moment we ignore the last term in (t t), which corresponds to
the motional intensity brought into play on the electrons of the conduct-
ing magnet as a result of its motion in its own magnetic field, we are left
with the field due to the electric doublets referred to above, and it will
be necessary for a redistribution of electricity to take place in the con-
ducting magnet in such a way as to annul the field therein produced by
the electric doublets. At a point within the substance, the field due to a
distribution of electric doublets of this kind is composed of two parts.
We have a part E&, represented by the field which would be measured in
an infinitesimal cavity whose length is parallel to the polarization andi.

whose diameter is infinitesimal compared with its length. Then, we
have a part E2, which depends upon the local effect of the doublets in the
vicinity of the point concerned. The part E& is the part which would
be given by the fictitious charges: it is the part whose line integral
over a path comprising an inFinite number of molecules is equal, in the.
limit, to the actual difference in potential between the starting and ending
points, provided that neither of these points is chosen at a distance from
one of the individual doublets small compared with the average distance
between the doublets. The part E2 Huctuates in magnitude, and even
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in sign, from molecule to molecule. At any point, it is proportional to
the polarization (moment per unit volume), the factor of proportionality
being a function of the position of the point. Its average value along
any line long compared with molecular dimensions is, however, zero.
The field E& determined by the fictitious charges is consequently the only
part of the total field which is operative in causing finite movements of
the free electrons of the conducting material. In order to balance this
part, it is necessary for a real separation of electricity to take place in
the material in such a way that the real volume and surface densities
just annul the fictitious volume and surface densities at each point of the
material. Such a redistribution of electricity will, however, result in

complete cancellation of the external field due to the fictitious charges,
so that, as a result of these influences, there will be no field at any point.
This idea may readily be extended to the field due to any type of re-
arrangement of electricity in the amperian whirl; so that, any uncertainty
as to the influence of orbital rotation in altering the constitution of the
whirl is without effect on the ultimate conclusion as to the absence of
any external field resulting from the combined actions of these circum-

,stances.
If we now introduce the last term of (II), representing the motional

intensity, it will result in an additional distribution of electricity, such

as to just cancel its effect within the material. At a point within the
material where the actual magnetic field is H, the motional intensity
is given by [s H]/c. Now the actual value of II in the material varies

rapidly in direction and magnitude in the vicinities of the amperian

whirls. Nevertheless, the true H, unlike the ordinarily defined H as
measured in a filamental cavity, is a solenoidal vector; and, since 8, the
induction, is a solenoidal vector which is equal to H outside the material,

its average value normal to any element of surface of dimensions large

compared with the dimensions of the amperian whirls, is the same as

the average value of the normal component of the true H taken over that
element of surface. Moreover, this is true in whatever way the element

of surface may be made to bend about between the amperian whirls.

The eRective value of the motional intensity is thus [v B]/c; and, the

electrostatic distribution which results will consequently be of a nature

such as to produce an electric intensity —[v 8]/c
It is of interest to inquire the extent to which the above considerations

must be modified in case the rotating material has specific inductive

capacity greater than unity. At first sight we might argue that the
state we have predicted above is one which results in there being no

force on an qlement of electricity moving with the material and that, in
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consequence, there will be no additional polarization of the material as a
result of its specific inductive capacity. Such an argument would not
be justifiable, however; for, while the effect of the field B~ representing
the local effect of the electric doublets averages out when integrated
over a random path in the material, it does not necessarily average out
when applied at an electron in the atom itself; for, there is a definite
relationship in position between the electrons of the atoms and the electric
doublets which figure in the determination of E2 ~ Additional polariza-
tion of the medium might therefore result, even though the average

field over any. finite region of the material were zero. 9/hen everything
is taken into account, however, the net result of all these considerations is

this: Electric doublets of the type we have discussed are created by the
motions of the amperian whirls, and motional intensity is produced as a
result of the motion of the material in the magnetic field. Redistribution
of charge and possibly additional polarization will take place. The
result of the charge distribution, and of the two possible types of polariza-
tion (electric doublet separation) must be such as to produce within the
material a resultant field equal and opposite to the motional intensity
[v 8]//c. The electric intensity within the material is thus determined

partly by a real charge distribution, and partly by fictitious charge
distribution; but, as regards the calculation of the fields at points out-
side the material, it matters not whether the charges are real, fictitious,
or both. The net effect of all considerations is that the external electric
field is determined by that system of volume and surface charge distribu-
tions which would give, within the material, a field —[v 8]/c at each point.

So far we.have supposed that the rotating system is insulated, although
the substance of which it is composed may be a conductor. In the case
where the rotating system is not only conducting but is also kept at zero
potential along its axis, a further consideration becomes involved. For
the motional intensity results in an electrostatic distribution which does
not of itself result in the axis of rotation being at zero potential. If the
axis is to be kept at zero potential, it will be necessary for an additional
charge to come to the rotating system. This additional charge mill

distribute itself in the same manner as it would distribute itself on a
non-magnetic system of the same shape, and in a manner sensibly the
same as on a similar system devoid of rotation. If we earth some point
of the system other than the axis of rotation, the charge which will come
to the system on this account will be such as to alter the potential of the
whole system by an amount necessary to bring the point which we have
earthed to zero potential.

It is important to observe that, in line with the above developments,



such electric fields as are produced in the vicinity of rotating magnetic
systems result entirely from electrostatic distributions, so that there

would be no electric field in any sPace from which the magnetic system was

shielded by an earthed conducting shield which did not ParticiPate in the

rotation. In experiments on this subject, it has been customary to
employ shields on the general principle of shielding off extraneous
electrostatic effects, so that, quite apart from all other considerations,
one reason for the absence of any measured effects is obvious.

As ordinarily applied, the "Moving Line Theory" predicts a field

due to the motion of the magnetic lines inside and outside the magnetized

body, and the nature of this application is such as make the field inside
the substance just equal in amount and opposite in sign to the motional
intensity so that, in this form, the theory predicts no tendency for the
formation of an electrostatic distribution of any kind within the magnetic
system. Outside the magnetic substance the theory, as ordinarily
applied, predicts an electric field of the form —[o H]/c, where H is the
resultant magnetic intensity at the point, and v the velocity which
the point would have if rigidly attached to the rotating system. More-
over, this electric field is supposed to be of such an origin that it would

not be affected by the presence of electrostatic screens.
Summary of Conclusions It w.—ill thus be seen that the complete

story of the possible origins of electric fields in systems such as we have
discussed is one involving a number of considerations; and, it may be
well to review these considerations as follows:

(A) The field at a point external to the rotating system is given by
(5); and, in the case of a symmetrical system rotating with uniform

angular velocity, U is independent of the time, so that Grad. P represents
the only contribution to the electric field E in this case.

(8) There is, of course, no electric field as a result of uniform rotation
about the magnetic axis, of a current-carrying solenoid which contains
no magnetizable material participating in the rotation.

(C) It has been shown that an amperian current whirl will experience
a rearrangement of its charge density when set into rectilinear motion,
even thought, when at rest, the positive and negative charge densities
compensate in such a way as to result in no electrostatic potential function
for the whirl. The rearrangement of charge density as a result of the
rectilinear motion is of such a kind as to give rise to an electrostatic
potential which is equivalent to that of an electric doublet with its axis
perpendicular to the magnetic axis of the whirl.

(D) In the case of an insulating, uniformly rotating system of unit
specific inductive capacity, magnetized parallel to the axis of rotation,
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the whole electric fields at points external to the magnetized system is
that due to the electric doublets referred to under (C). It is equivalent
to the field which would be produced by a distribution of electricity of
one sign throughout the volume, and an equal distribution of electricity
of opposite sign over the surface of the magnetized material.

Moreover, in the case of a rotating magnetic system, the contribution
of these electric doublets to the field is the true representative of the
"Moving Line Theory" when that theory is properly applied to the
space outside the magnetized material.

(E) The "Moving Line Theory" as usually applied to the space
outside the magnetized material differs from the form in which it ought
to be applied to be consistent with the equations of Maxwell and Lorentz.
In the theory as properly applied, after resolving each amperian whirl

to an axis parallel to the axis of rotation, the motions of the magnetic
lines of the individual whirls must be treated separately; and, in cal-
culating the motion, the magnetic lines must be pictured as partaking
of only the rectilinear velocity of the whirl in its orbit, and not of the
rotationa/ velocity of the frame of the whirl about its own axis. The
usual application of the theory attempts to deal with the velocity of the
resultant magnetic field at a point; and, in so doing, it does the equivalent
of supposing the magnetic lines from the individual whirls to be pinned
down at the places where they pass through the axis of rotation of the
system. In other words, the motions of the magnetic lines become
calculated as though they partook of the rotational velocities of the
frames of the whirls about their own axes, as well as of the rectilinear
velocities of the whirls in their orbits.

(F) If the rotating system referred to in (D) is conducting instead of
insulating; and, if, for the moment, we ignore the motional intensity
represented by the last term of (rr), it follows that the material will

experience a charge distribution of such a nature as to completely annul,
at all externa1 points, the fields of the doublets referred to under (C),
so that there will be no external field. If now we introduce the motional
intensity, it will produce, in the conducting system, an additional dis-
tribution of electricity whose field inside the material just balances the
motional intensity as represented by [v 8]/c.

The field due to the charge distribution brought about by the motional
intensity is the sole contribution to the electric field at external points.
It further turns out that the magnitude of the external electric field is

unaltered by the existence of a specific inductive capacity greater than
unity in the material.
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(G) The system referred to under (F) though conducting is neverthe-

less supposed to be insulated. The electrostatic distribution resulting
from the notional intensity will be such as to cause a variation of electro-
static potential throughout the rotating body; and, the potential of the
axis of rotation will not be zero. If this axis is subsequently earthed, an
additional charge will come to the system. This charge will be dis-

tributed in the same way as it would be distributed on a non-magnetic

body of the same size and shape; and, indeed, to a high order of approxi-
mation, its distribution will be the same as on the conductor at rest. Its
total amount will be equal to minus the product of the capacity of the
body and the potential of the axis before it was earthed. If some point
other than the axis of rotation is earthed, the charge which comes to the
body will be that necessary to bring this point to zero potential ~

The case of practical importance is, of course, that in which some
point of the system (usually the axis of rotation) is earthed; and, we

thus see that, in this case, the external field is entirely determined by the
electrostatic distributions resulting from (a) the direct action of the
motional intensity as calculated from the induction as ordinarily defined

for a point within the material, and (b), the charge which comes to the
system as the result of a point. on it being earthed.

(H) It is to be observed that the distribution resulting from (n) under

(G) is of a type comprising a volume distribution and an equal surface
distribution. These two distributions do not, in general, cancel each
other's effects as regards the field at an external point. As regards
alteration of polentMl of any fixed conductor which completely surrounds
the rotating body, these two charges, owing to their equality, do cancel
each other's inHuence, however; for the potential produced on a closed
conductor by a point charge within it is independent of the location of
the point charge. The charge resulting from (b) under (G) is thus the

only agency active in causing alteration of potential of such an inclosing
conductor.

(I) It is to be observed that all contributions to the field in the case
of a symmetrical rotating system are of an electrostatic nature; and,
there will consequently be no electric field in any space from which the
magnetic system is completely shielded by an earthed conducting shield

not participating in the rotation.

DISCUSSION OF EXPERIMENTAL RESULTS HERETOFORE OBTAINED.

In line with what has been written above, we should expect that, in

the case of a rotating magnetized system, there would be an external
electric field of the type described in sections (F) and (G) of the summary
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given above, and having its detailed origin in the considerations sum-
marized in (A. ) to (G).

One of the first of the modern experiments on this matter was made

by E. H. Kennard. ' The essentials of this experiment are as follows:
A steel bar 8, Fig. g, was surrounded by a current-carrying solenoid S,

in such a way that the bar could be rotated at high speed. The solenoid
was fixed; it was surrounded by an earthed metal sheath K, and con-

l
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centric with this was an outer cylinder C. The cylinders E and C formed
the two plates of a condenser, and were connected to the quadrants of
an electrometer. No effect was obtained as a result of the rotation of the
magnetic system.

It will be observed that the magnetic system was surrounded by a
stationary earthed conductor, so that, in accordance with (I) in the
summary above, no external electrical field could possibly arise since
all possible electrical fields are of a type derivable from an electrostatic
potential. Indeed, the earthed solenoid itself would have been sufficient
to provide a shield even if the inner cylinder had been absent.

Apart from these considerations, however, even if the solenoid had
rotated with the bar, and the shield K had been absent, there would

have been no effect provided that the bar was insulated; for, the sole
origin of a field in such a case would have to be sought in the surface
and volume distributions of charge referred to under (F) above, and
these, being equal and uniformly distributed as regards the cylindrical
magnet, would practically cancel each other's effects at all points out-
side. The cancellation would be complete for an infinitely long bar.
Even if the rotating body had not been in the form of a cylinder, how-

ever, there would have been no alteration in the potential of the outer
member of the condenser, even though the earthed shields had been
absent, provided that the rotating body itself was insulated. For, the
total volume and surface charges being equal, there would, in accordance

' "Unipolar Induction, " Phil. Mag. , S. 6, 23, 937, I9I2,
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with (H) above, be no alteration of potential of any cylinder such as C,
completely surrounding the rotating body.

If, however, the solenoid rotated with the bar, K were eliminated
and the axis of the rotating system were earthed, there would exist the
field discussed under (G), and produced by the charge which comes to
the system to maintain the potential of the axis zero.

In a later experiment by S. J. Barnett, ' the two armatures of the
condenser were surrounded by a coaxial solenoid which could be rotated
about its axis. The outer cylinder was earthed, and the inner cylinder
could be insulated or connected to the outer cylinder at will. It was
found that rotation of the solenoid produced no effect. This is what
we should expect in accordance with (8) and the arguments in the earlier
portion of this paper, upon which this conclusion is based.

Harnett performed another experiment in which the magnetic field

was produced by two electromagnets which were arranged so that they
could be rotated about their axes of magnetization, which were in line.
The condenser system was placed between the two electromagnets so
that its axis was also the axis of the magnets. The ends of the outer
cylinder were closed with brass caps so that the outer cylinder and
these brass caps formed a complete shield around the inner cylinder,
which could be insulated or earthed. In accordance therefore with (I),
and quite apart from all other considerations, we should expect no
alteration of potential of the inner cylinder as a result of the rotation of
the magnets; and, no alteration of potential was obtained. In the
absence of the brass caps, small effects should, theoretically, be obtained
in accordance with the principles summarized under (F) and (G); but,
they would have no simple relation to the effects as calculated by the
ordinary application of the "Moving Line Theory. "

It is perhaps worth while to emphasize the fact that we are not denying
the possibility of an effect on the general grounds of supposing that a
closed earthed shield will always prevent external actions from creating
a field within. Such a conclusion would not be justified. The essentials
of the argument are contained in the fact that such fields as are to be
expected in experiments of this kind are fields determined by electro„
static potentials, in accordance with the views summarized in sections
(A) to (I) above.

Barnett's experiment with a rotating solenoid, and without iron, was
repeated by Kennard with a modification which permitted of the rota-
tion of the condenser system with the solenoid. A similar experiment

i PHYS. REV. , 35, 323, I9I2.
Phil. Mag y 337 I79y I9I7.
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has also been performed by G. B.Pegram. ' %hen the condenser system
was stationary, no effect was of course observed. %'hen the solenoid
and condenser were rotated together, the potential difference set up
between the condenser armatures, when connected together, was simply
that calculated from the motional intensity produced in the connecting
wire, as a result of its motion in the magnetic 6eld. This potential
difference was of course measured by an electrometer, the armatures
being separated after the rotation was started, and the system being
allowed to come to rest before readings were taken. Concerning this
part of the effect there is presumably no divergence of opinion. It may
be of interest to observe, however, that it would be obtained even though
the wire connecting the armatures were outside the held. For, imagine
the most general case as depicted in Fig. 4, where the connecting wire is

I»»»+ +»&+&+siiss rstsrtstrttizssssssszssszi

Fig. 4.

partly within the solenoid and partly outside. If II„ is the component
of the 6eld measured in the direction of the outwardly drawn normal to
the surface (say the surface S) traced out by the wire ADBB, r the
distance of an element of the wire from the axis of rotation, and cv the
angular velocity, we have, for the potential difference between A and 8
as measured along this wire,

I
V = — ((or)Il„ds,

C

ds being an element of the path ADZB, and the integral being taken
along the whole path. Now, J'2~rH„ds is simply the total Aux of
magnetic force through the surface S, and is the same, therefore, as the
magnetic Aux through the annulus between A and B. Hence, if a and b

are the radii of the two armatures, and II the magnetic 6eM, which is
uniform in the solenoid although it is not uniform all over the wire
ADZB, we have:

c Q 2C

which is the same as the value which would have been obtained if the
connecting wire had gone straight from A to 8. Uniformity of the field

PHYs. REv. , I0, 59K, l9I7.
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over the path is not necessary; the only essential is that if there is any
part of the wire which does not revolve, it shall be situated in a place
where the magnetic field is negligibly small. We see that, even in the
limiting case, where the wires pass out of the solenoid parallel to the
axis, and are connected together at some remote point outside, .the
full value of V may be expected.

An experiment seeking to detect a field of electromagnetic induction
due to the uniform rectzli~zear motion of a magnet has been recently
performed by Barnett. '

It is obvious that, since the electric field of a simple amperian whirl

moving with uniform rectilinear velocity obeys the "Moving Line Law, "
the resultant electric field of any magnet whose parts all move with the
same uniform rectilinear velocity wi11 be that calculated from the "Moving
Line Law" as applied to the resultunt magnetic field. The problem is
thus much simpler than that of rotation. Moreover, it involves no
extra field resulting from electrostatic distributions brought about in the
magnet by the motional intensity; for, in the magnet itself, the forces
on an element of charge, as a result of the moving line field, is just
cancelled by the motional intensity, so that there is no electrostatic
distribution due to this cause. If there are any fixed magnets in the
system, they of course contribute nothing to the effect.

In Barnett's experiment, the attempt is made to charge a condenser

by causing an electromagnet to swing past it, the electromagnet con-
stituting the bob of a large pendulum. A fixed magnet also figured
in the experiment for a reason which we need not enter into here; for,
on the views expounded above, it produces no electrical effect whatever.
No charging effect was found in the experiment.

The condenser and insulated system were shielded by an earthed case,
to protect them from electrostatic effects. We shall show that the
charge distribution set up in the case by the field of the moving lines

produces, at all points within the case, a field just equal and opposite
to the field which the moving lines produce there. No further comment
is there necessary to show that no charging effect is to be expected in an
experiment of this kind.

We cannot immediately import the ideas we have invoked in the case
of uniform rotation to explain a shielding effect of the type referred to,
because the vector potential is not independent of the time in the case
of rectilinear motion; so that, it is not immediately obvious that the
whole of the field Z as given by (5) is derivable from an electrostatic
potential.

~ PHYS. REV., I2, gs, X9I8.



Vol.. XV.
No. 5. UNIPOLAR INDUCTIO¹ 39I

In the direction parallel to the line of motion, the poles in Barnett's
experiment were 33 cms. long. The corresponding dimension of the
shielding case was 2i cms. ; so that, since the field was sought at the
instant during the swing of the magnet when the middle of the poles
passed the condenser, and presumably therefore, when the 2I cms. of
the case fell well within the poles, the problem may be treated as a two-
dimensional one in the ys plane perpendicular to the line of motion of
the magnet.

The "Moving Line Theory" gives, for the components E„and E,
of the electric field, in terms of the components H„and H, of the
magnetic field:

Ey = -H„
C

VE, = —-H„.
C

Now the magnetic field H is derivable from a potential Q; and, as Q

is a solution of LaPlace's equation outside the magnet, we know, from
the theory of functions of a complex variable, that it is always possible
to find a potential 4; itself a solution of LaPlace's equation in the region
where Q is a solution, and such that:

BC v BQ

C BS

84 v BQ

Bs c 8y

C is, in fact, s/c times the function conjugate to Q. Thus, we have:

v84
CBy

'
v BC

c Bs

showing that Z is derivable from a potential, the apparent charges
which give rise to it being situated outside the region in which Q satisfies
LaPlace's equation, and hence outside the shield, in the present instance.
This is all we need in order to say that, under the inBuence of the potential
vC/c, the case will acquire a charge distribution such as to just annul the
field which sC/c itself gives at all points within the case. '

An exactly analogous argument would show that, if the magnet were at
rest, and the remainder of the apparatus were in uniform rectilinear
motion, there would be complete shielding as regards the effect of the
motional intensity on a charge which was within the shield, and moved
in company with it.

A simpler, but interesting example of this type of action is afforded

by the case of the motion of a closed conductor in a uniform magnetic
field. The motional intensity acting on a charge within the conductor
and moving with it would be uniform. In order to balance the effect

~ This demonstration was presented by the writer at the meeting of the American Physical
Society at St. Louis, December, rgz9.
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of this motional intensity on the surface, the conductor would experience
a charge distribution; and, we know that the charge distribution which

will produce, over the surface of the conductor, equilibrium under the
action of the uniform field of force, will also produce complete cancellation
of that field inside the conductor.

SOLUTION FOR A TYPICAL CASE OF UNIFORAI ROTATION.

The rotation of a fpermanentty and uniformty magnetised conducting

sphere, whose axis of rotation is earthed, and whose direction of rotation is
clockwise' as viewed by an observer looking in the direction of the magne

tinction.
The field will be represented entirely by the fields of the electrostatic

distributions referred to under (F) and {G) in the summary given earlier
in the paper. Let us first consider the results which would be obtained
if the axis of rotation were insulated.

If r and 0 are the polar coordinates of a point in the sphere, 8 the
magnetic induction at a point inside the sphere, and co the angular
velocity, then, on account of the motional intensity, a unit of charge
moving with the sphere will experience a force perpendicular to the
axis of rotation; and, as shown in the earlier part of this paper, the
magnitude of this force when measured outwardly from the axis of
rotation is Bco r Sin 0/c. Consequently, this represents the field which

must be balanced by the electrostatic distribution. The electrostatic
distribution is of the same type as that necessary to balance the effect
of centrifugal force on the free electrons of a rotating sphere, since the
magnitude of this force would be, for an electron of mass m, mr~' Sin 0.
In a former paper, ' I have given the solution of the latter problem;
and, in order to adapt it to the present case, it is only necessary to replace
mio'/e by B~/c, and then change the sign, since, in the paper referred to,
the effect of centrifugal force on a negative electron was under considera-
tion. Making this change, we find from equation (z4.) of the paper
referred to, that the potential U is, for points outside the sphere,

Buo,
V = — —, I —— S1n'- 8

3c'F 2

At the surface of the sphere and on the equator, the electric field is

' And hence clockwise as viewed in the direction of the induction.
~ Terr. Mag. , 22, I62, I9I j. The solution given in this paper is carried out in electro-

magnetic units; but, it is true as it stands when the quantities are in Heavisidean units.
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If I is the intensity of magnetization, the demagnetizing field IIj
within the sphere is I/3, and the induction is I —H„ f, e ,.2.Hi. Hence,
since the tangential fields just inside and just outside of the surface are
equal, the result given by (r9) is the same as would be given by the
ordinary application of the "Moving Line Theory. " The forms of
variation of the field over the surface of the sphere are quite different
for the erroneous and correct method of calculation, however; and, at
places where Sin' 8 is less than 2/3, even the signs are opposed. Equation
(t8) shows that the points on the sphere corresponding to the axis of
rotation will have potential —B&ua'/3c. If the axis of rotation is now

earthed, it will be necessary for the sphere to take a uniformly dis-

tributed charge q given by:

g~g 3c

This will result in a contribution Bcoa'/3cr to the potential at external

points, so that the complete expression for V is now".

Bceuf

CP 3 . 'l 6
V = ——— i —— Sin'8

~

——
3c f 2 r

At a point on the surface of the sphere, the component of the field in the
direction of the outwardly drawn normal is:

gin2 0

On the equator this is 5Ba&a/6c, and is just 5/3 times the field which we

should have calculated from the "Moving Line Theory" as ordinarily ap-
plied, if we had ignored every effect other than the field due to the so-called
motion of the lines of force. The ordinary application of the theory
would not lead to the same type of distribution of field over the sphere
as that given by (22).

In the case where the sphere is insulated, the total volume and surface
distributions of charge are equal; so that, if we were to surround the
sphere with a fixed insulating conducting sphere of radius b, there would

be no change of potential of the outer sphere as a result of rotation of
the inner sphere; although there would, of course, be rearrangement of
charge over its surface. When the axis of rotation is earthed, however,
the excess charge g, given by (2o), which comes to the inner sphere,
will produce a potential

8toeS" = ——
3cA

in the outer sphere, since the potential of the latter is independent of
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the distribution of charge within it. If S' and 8 are in ordinary electro-
static and electromagnetic units respectively, the equation will remain

unchanged. If the outer sphere were connected to an electrometer,
we should have to replace b by the capacity of the whole insulated system,
including the electrometer.

We have seen that the induction within a uniformly magnetized sphere
is 2H1, where H1 is the demagnetizing field within the sphere. It is, of
course, impossible to magnetize a piece of steel to such an extent that
the accompanying demagnetizing field which it produces within itself
is greater than, or even as great as a fixed limit known as the "Coercivity"
of the substance. Even for tungsten steel, the coercivity is only 52 6;
so that zo5 certainly represents a value of 8 greater than that actually
attainable. If the inner sphere had a radius of 5 cms. , and were rotated
at a speed of Too revolutions per second; and, if the outer sphere were
connected to an electrometer such that the total capacity was 5o cms. ,

we find by using (23), that the alteration of potential of the electrometer
would certainly be less than I8 X to ' E.S.U. , i.e. , 5 4, X xo ' volt.

The calculation for the case of an iron sphere inductively magnetized

by an external magnetic field is the same as that for the permanently .

magnetized sphere cited above. 8 represents the resultant induction
within the sphere, and is related to the external field H by the expres-
.S1on:

3p8 = — H++2
so that if p is of the order 2ooo C.G.S. unit, as in the case of soft iron,
8 is practically three times the external field. For a case where H is

2,ooo C.G.S. units, the alteration in potential of the insulated sphere
system cited in connection with the permanently magnetized sphere will

be 3 && xo ' volt. If the sphere were of non-magnetic material, such as
copper, the alteration in potential would be one third of this amount.
The influence of permeability would, of course, be greater in the case of
elongated bodies such as ellipsoids.

No special interest would attach to measurements made upon a copper
sphere, for, presumably, nobody would doubt that, under the influence

of the motional intensity, a copper sphere would experience the sort of
charge distribution, etc. , we have discussed. Perhaps a greater interest
lies in the value for the iron sphere rotating in an external- magnetic
field; for we may here look upon the effect as composed ef two parts,
the part corresponding to the rotation in the external field, which part
is the same as for a copper sphere, and the part due to the rotation in the

' See for example J. J. Thomson's Elements of Electricity and Magnetism, p. 26o.
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field of induction resulting from the magnetization of the sphere itself.
The existence of the latter part as would be shown by the increase of the
effect on subsituting an iron sphere for a copper sphere, is perhaps of
some interest, as it arises from the magnetic induction of a rotating body;
and, to one who thinks in terms of moving magnetic fields, there, might
be some doubts concerning it, although, from the standpoint of the
development given in this paper, the . reality of its existence seems

perfectly clear.

THE ROTATION OF A MAGNETIC- DOUBLET ABOUT AN AXIS PASSING
THROUGH ITS CENTER AND PERPENDICULAR TO ITS OWN AXIS.i

While this problem is not primarily involved in the discussion of the
usual experiments on electromagnetic induction and relative motion,
it is of considerable interest. With the doublet considered as the repre-
sentative of an amperian whirl, the true solution for the field is, of course,
that corresponding to equation (g).

Without some theory for rotation, analogous to the theory of rela-

tivity for rectilinear motion, we are unable to say what would happen
to the constitution of the amperian' whirl as a result of the rotation;
we are unable to predict what P would be. If, however, we assume that
the constitution of the whirl is not altered by the rotation, the field will

be given by the first term of the right-hand side of (5).
The vector potential of a magnetic doublet of moment p„with its

axis parallel to the axis of x is given by 2

U, =o, Uy ——p, ——, U, = —@,—
with corresponding expressions for the doublets parallel to the other axes.

Without sacrifice of generality, we may take the y axis as the axis of
rotation, and the s axis as the axis of the doublet at some particular
instant. If we assume that the magnetic field of the doublet is, at each
instant, the same as if the doublet were at rest, we shall merely neglect
effects'of a, small order of magnitude; and, in this case, the change of
moment per second corresponds to the creation of moment along the x
axis at the rate rizok~, that is p~ units per second, h being the length of
the doublet, nso its magnetic pole strength, and p, its magnetic moment.
Hence, since the components of the electric field are equai to minus ?/c
times the rates of increase of the corresponding components of the
vector potential, we have for the field components:

Mp, i9 I ~ Mp 8—o g — —.—— —
~

g, = —~ —. — (24)c Bs ry
' ' c 8y r

' A paper on this section was presented by the writer at'a meeting of the American Physical
Society at Chicago, November ag, xgtg.

See, for example, J. H. Jeans's Electricity and Magnetism, page 394.
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Now suppose we calculate the electric field which would be given by the
application of the "Moving Line Theory" to the problem on the under-

standing that the magnetic lines from each pole are to be treated sepa-
rately, and are to partake of the rectilinear velocity of the pole in its
orbit, but not of any rotary motion. At the instant when the axis of the
doublet is parallel to the s axis, the "Moving Line Theory" as applied
to one of the poles gives o, ~hII, /2c, —~hH„/zc for the components of
the electric 6eld, &ok/z being the velocity of the pole, and II„a dnII,
being the y and s magnetic field components at the point at which the
electric field is sought, in so far as they are determined by the single pole
under consideration. Treating the effects of the two poles as additive
as regards the electric fields, putting l, m, n for the directional cosines of
the radius vector, and observing that, for a single pole,

moÃ

r

we have, from the "Moving Line Theory" in this form:

E~ =0, Mk mpm

which agree with the results obtained in (zg) from the Lorentzian theory.
Although we have utilized the idea of a pole-distance in the above calcu-
lation, the results naturally do not involve this pole-distance explicitly,
but depend only upon the moment of the doublet.

We thus see that the ideas controlling the application of the "Moving
Line Theory" to this case are an extension of, and bear a close analogy
to those applying to the case where the doublet revolves about some

center outside itself. If, for the moment, we utilize Fig. 2 for a purpose
different from that for which it functioned before, and suppose N to
represent on'e of the magnetic poles of the doublet, and 0 the center of
the doublet, we see that, on applying the "Moving Line Theory" to this

case, on passing from the position N to the position N~, we must calculate
the velocity of a magnetic line NP as though it had assumed the orienta-
tion N~P in diagram 8, and not as though it had assumed the orientation¹Pin diagram C. In fact, while we must imagine the magnetic lines

to be rigidly attached to the pole, we must suppose that the latter does
not rotate about an axis within itself as it revolves about the center of
the doublet. Any calculation founded upon the idea of the resultant
lines of force of the doublet turning with the doublet as though rigidly
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attached to it would be the equivalent of supposing the lines due to the
individual poles to partake of the rotary motion referred to above, as
well as of the rectilinear motion. Such a view would lead to absurdities
from the outset; for, it would obviously predict infinite velocities for the
lines at infinite distances from the doublet. It would be analogous to
what we should be driven to if, in the case of an electron revolving in an
orbit, we were to assume the tubes of electric force to be rigidly attached
to the electron, while the latter partook of the kind of motion it would

experience if stuck on to a spoke emanating from the center of the orbit.
In this case, even the importation of the ideas of finite rate of propaga-
tion of effects couM do no better than leave us with the picture of the
tubes of force winding themselves up into spirals as the electron continued
to describe its orbit over and over again. A proper calculation of the
eHects due to a revolving electron simply represents the tubes as moving
backwards and forwards as the electron passes from one extremity of a
diameter to the other; and, it is never necessary to suppose the tubes
to have a velocity greater than that of the electron itself. A similar
remark applies in the case of the rotating magnetic doublet.

It may be of interest to remark that, if we calculate the electric 6eid
due to a rotating doublet, at a point on a prolongation of its axis, the
erroneous method of calculation, which treats the resultant magnetic
lines as moving rigidly with the doublet, gives just twice the value result-
ing from the correct method of calculation.

In conclusion it may be observed that, to the extent that the magnetic
field of a moving amperian whirl may be considered as equivalent to
that of a magnetic doublet, the electrical field resulting from the most
general type of motion of the whirl, and hence of a non-conducting
magnet (of unit specific inductive capacity) in bulk, may be calculated
from the "Moving Line Theory" as applied individually to the magnetic
lines from the separate representative magnetic poles, provided that the
velocities of the lines are calculated from the rectilinear velocities of the
poles, and not in a manner such as to make them partake of any rotary
velocity of the poles about their own centers. In the case of a conducting
magnet, the portion of the above field derivable from a potential wi11

become cancelled by the distribution of charge which it sets up in the
magnet itself, as stated under (F) of the summary given earlier in the

BU
paper. %'e shall be left with the part —— - —;and, superposed uponc Bt

this, we shall have the fields of the electrostatic distributions produced
by this part, and by the motional intensity resulting from the motion
of the magnet in its own magnetic field, and discussed under (F), (G)
and (H) of the summary above referred to.
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The ideas developed in this paper arose during the process of writing

up an account of some experimental work which will be published later,
and for which funds were provided by the executive committee of the
graduate school of the University of Minnesota. The writer desires to
take this opportunity of expressing his thanks to the committee.
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