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On the Vibrations of a Spherical Shell. By HORACE LAMB, M.A.

[Read Dec. 14th, 1882.]

1. The methods employed in a former communication, "On the Vibra-
tions of an Elastic Sphere,"* can of conrse be readily adapted to the
case of a shell bounded by two concentric spherical surfaces; the chief
modification necessary being that we must now associate with every
term of our formulae involving a solid harmonic of degree n, a pre-
cisely similar term in which n is replaced by — n—1. The most in-
teresting case is when the thickness of the shell is infinitely small
compared with the radius. The results of the investigation then
assume a very simple form, and may be stated as follows:—

The fundamental modes of vibration fall as before into two classes.
. In the modes of the First Class, the motion at every point of the
shell is wholly tangential. In the wtt species of this class, the lines of
motion are the contour lines of a surface harmonic Sm and the ampli-
tude of the vibration at any point is proportional to the value of
dSn/de, where de is the angle subtended at the centre by a linear
element drawn on the surface of the shell at right angles to the con-
tour line passing through that point. The frequency (p/2w) is de*.
termined by the equation

&V = (w-1) (n f 2) (1),

where a is the radius of the shell, and &* = yV/n» if p denote the
density, and n the rigidity, of the substance.

In the vibrations of the Second Clems, the motion is partly radial,
and partly tangential. In the n* species of this class the amplitude
of the radial component is proportional to 8,,, a surface harmonic of
order n. The tangential component is everywhere at right angles to
the contour lines of the harmonic Sn on the surface of the shell, and
its amplitude is proportional to AdS,,/de, where A is a certain con-
stant, and de has the same meaning as before. It will appear further

on (53) that A —S&fc " ••"• • (2>>

where & retains its former meaning, and y = (l + »)/(l—<r), <r de-
noting, as before, Poisson's ratio. Corresponding to each value of n
there are two values of k3a*, given by the equation

-2) y ss

• Proceeding; Vol. wi'., pp, 189—212.
t The c?oe n»0 is exceptional. The vibrations are then purely radial* and.the

frequency i» determined by WaP — iy.
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Of the two roots of this equation, one is < and the other >4y. I t
. appears, then, from (2) that the corresponding fundamental modes are
of quit© diffei'ent characters. The mode corresponding to the lower
root is always the more important.

When n = 1. the values of tfa? are 0 and 6y. The zero root corres*
ponds to a motion of translation of the shell as a whole parallel to the
axis of the harmonic 8V In the other mode the radial motion is pro*
portional to cos 0, where d is the colatitude measured from the pole of
St; the tangential motion is along the meridian, and its amplitude
(estimated in the direction of 0 increasing) is proportional to | sin 6.

When n = 2, the values of ka corresponding to various values of <t
.are given by the following table :—

<r=0

1120
3-570

1176
4-391

» = TV

1185
4-601

1190
4752

1-215
5-703

The most interesting variety is that of the zonal harmonic. Making
»9j = (3008*0—1)/2, we see that the polar diameter of the shell
alternately elongates and contracts, whilst the equator simultaneously
contracts and expands respectively. In the mode corresponding to
the lower root, the tangential motion is towards the poles when the
polar diameter is lengthening, and vice versa. The reverse is the case
in the other mode. We can hence understand the great difference
in frequency.

2. To explain the manner in which the foregoing results were ob»
tained, it may be sufficient to take the vibrations of the First Class.
Omitting the time factor, the component displacements parallel to a
Bystem of rectangular axes having the centre of the shell as origin are
given by the formulae

where \n, X-n-i a r e solid harmonics of the algebraical degrees indi*
«ated by the suffixes, and ify (kr) is defined by [3].* The surface
conditions [18] become

dr
Ac.,

><whence

* The square brackets are used to distinguish references to the former paper*
E 2
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where
The equation (5) is to hold for r — a and for r = &, where a and b
respectively denote the inner and outer radii of the shell, which is not
yet assumed to be infinitely thin. Eliminating the surface harmonics
involved in the two equations of the form (5), we are led to the
following equation to determine k:—

Pna\ F.^a-"-1 = 0 (6).
&c. Ac.

The second row is to be obtained from the first by writing b for a
throughout. Passing now to the case of an infinitely thin shell, we
write, in the second row, b = a+dat subtract the first row, and divide
out by da.

But, from [4] and [5], we have, identically,

(ha) + (2n+2) kafo (ha) 4- k'a'h (lea) = 0.

Hence a j - (Ptta
n) = a" {2ka+'n (Jfca) + (A;V-n . » - l ) ^n (ha),

(6) becomes, after obvious reductions,

a), &c. = 0 (7),
fctt), &C.

where the second column is to be obtained from the first by changing
n into — n— 1. Since this change leaves the product (n — l ) (n+2)
.unaltered, the left-hand side of (7) contains &V—(»— l)(n+2) as a
iaotor. I t will be shown immediately that

+ (2n +1) tyn(ha) \l>.n.\(ka) = 2n+ l (8),

so that the other factor is 2 n + l . Hence

The relation (8) follows from Helmholtz's theorem,* that if u, vhe
any two functions satisfying the equation (Vl-f-fc*)^ = O> where

', then

dvf dv at*\ , « _ rt

^ dn dnl

•wliere the integration extends dver the boundary of any region not

• See Rayleigh's Sound, t. 2, {$ 294, 327.
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containing singular points of « or v, and dn denotes an element pf th«|
inwardly directed normal to dS. Making .

•where Tn is a surface harmonic of order n, and taking as the region in
question the space included between two spheres described about the
origin as centre, we readily find that the value of the left-hand side
of (8) is independent of a. Making a infinitesimal, we see that this
value is 2ri+l.

The frequencies of the various vibrations of the Second Class> for a-
shell whose inner and outer radii are a and 6, are determined by the

equation . . An, Cn, j&_n.ls 2?_»_i = 0 ......*.,.....(9)$
&c, Ac, &c, &o.
Bn1 Da, A.n.u O.n.
&c, &c, &c, &c.

where AM Bm 0n, Dn are defined by £52], [53], [55], [56]. . The second,
and fourth rows of the determinant are to be obtained from the first
and third,respectively by the substitution of b for a. The reduction
of the determinant when 6 =z'a+da is much facilitated by the use of
(8), and of the similar relation in which h* is written for k, but the
details of the work would occupy too much space to be reproduced
here.

3. By way of verification, I have worked out the results of § 1 by a
different method, confining myself, however, for simplicit/, to the
cases where the vibration is symmetrical about a diameter. Taking
this diameter as axis of reference, let the equilibrium position of a
point of the shell be defined in the usual way by the polar coordinates
§, <f>; and let us suppose that in consequence of the displacement these
become 0 + 9, $ + <D, whilst the radius vector becomes a+B. If <i«,
dat respectively denote the lengths of a linear element lying in the
surface of the shell before and after the displacement, we find, since
6, *, B are by hypothesis independent of <f>,

I 72 dew H(b
ds\ = da*+ 2 [ — + ^) a'd0'+2 sin 6 ~ .add. a sin Od<p1 x a dd I do

+ 2 (2L + e cot e\ a8 sin2 0 d<f>\

Hence, if e, f denote the elongations along the meridian and the
parallel of latitude, respectively, and c the shear parallel to the tan-

[21].



54 Prof. Horace Lamb ort [Dec. 14,

gent plane, we have
_. B_,dO

6 a dd

f —
a

.(10).

If gr denote the elongation in the direction of the thickness, the con*
dition that there is no stress perpendicular to the surface gives

= 0

Substitttting the value of g, hence obtained, in the general expressionf
for the potential energy (to) per unit volume, we obtain

br, writing y for (3m—n)/(m+n),

] (12).
To obtain the vibrations of the First Class, we put B = 0 and (in

consequence of the restriction as to symmetry) 6 = 0. Hence e = 0,

/ = 0 and w =

The variational equation of motion, then, is

pr I asin0$. a si
Jo

where p is the density, r the thickness of the shell, and F is the
potential energy of the deformation, viz.,

F = 2n"tiV I w sin Odd.,, (1^)*
Jo

The usual method then leads to the equation

pasine* = n^(sin0^
ad \ da

Hence, if * a ain pt, we have, writing p*p/n = A?, co»0 = /*,

• m is a constant such that m—|n is the resilience of volume.
t Thomson and Tait, Natural Philosophy, § 695.
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or df* dp

But the well-known equation satisfied by the zonal harmonio Q»
yields on differentiation

^ ^ ^ = O (15).

Hence (14) is satisfied by

* = ̂ = (16).
dfi

provided fc9as = (w-1) (n+2) „ ...(1).
I t may be shown that (16) and (1) together constitute the only solu-
.tion of (14) which is finite all over the shell.

In the symmetrical vibrations of the Second Glass, we have * = 0,
0 = 0 . Hence the variational equation of motion is

pr f" (BSB+a'eae) 2iraJ sin &d9+27raV [' Sw sin 0 dd = 0 ...(17),
Jo Jo

where hw = n [{(y+1) e+(y-l)/} 5e+{(y-l) e+(y+l)/} if].

Assuming that B and 6 both a sin pt, introducing the values of e and
/from (10), and writing as beforejfp/n = A;9, we find,by equating to
zero the coefficient of SB in (17),

A?a» —sin0 = 2yf2 —Bin0 + ecose+sine^f\ (18).
a \ a dd I

Again, equating (after a partial integration) the coefficient of £9 to zero,

^+(y+l)^+(y-l)9cote|
o> do )

cos0+(yl)^cos0+(y+l)9^f.
a do sin a

This reduces to

Equations (18) and (19) may be written

(&V-4y) ^sin0 = 2y|-(sin0.9) (20),
a do

2 3- i f sin0 ss - (ftW+2) sin 0. 9
a do
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..Now the zonal harmonic Q, satisfies the equation ,

Hence (20) and (21) are satisfied by

provided Wa*-4>y = - 2y .n (n+1) A .....(22),
and 2 y = { ( y + l)n(n+l)-(fcV+2)}A (23).

Eliminating A,, we find
(n9+»-2)( = 4»

which agrees with (3). When the valnes of Jca have been found, the
'corresponding values of A are given by (22).

4. I t is hardly necessary to point out that the vibrations of a com,'
tflete spherical shell are in no way analogous to the flexural vibrations
of an open shell or bowl, which have been discussed by Lord Rayleigh
(Proceedings, Vol. xiii., p. 4). By a theorem due to Jellett, any deforma-
tion of a closed convex surface involves extension or contraction in some
part of it. Hence, in our problem, that part of the potential energy
which is due to the flexure may. if the shell be sufficiently thin, be
neglected in comparison with that due to the extensions and con-
tractions.

I find that a tbin glass globe 20 centimetres in diameter should, in
its gravest mode, make about 5350 vibrations per second.*

On Polygons circumscribed about a Tricuspidal Quartic.
BY R. A. ROBERTS, M.A.

[Head Dee. Uth, 1882.]

1. In a recent number of the Proceedings, I arrived at some results
concerning polygons circumscribed about a cuspidal cubic and in-
scribed in another curve. I propose, in this paper, to treat the tri-
cuspidal. quartic in a similar manner. As a tricuspidal quartic is the
reciprocal of a nodal cubic, the problem is the same as to inscribe
polygons in a nodal cubic; but I find it more convenient to consider
the tricuspidal quartic.

• The data emplos'cd in the calculation are taken from Everett's Units and
Phyiieal Conttants, { 01 ; viz., n = 2. 40 x 10", p = 2 . 942, o- = -258.


