# On the Tibrations of a Spherical Shell. By Horace Lamb, M.A. 

[Read Dec. 14th, 1882.]

1. The methodsemployed in a former communication, "On the Vibrations of an Elastic Sphere," ${ }^{*}$ can of course be readily adapted to the case of a shell bounded by two concentric spherical surfaces; the chief modification necessary being that we must now associate with every term of our formulm involving a solid harmonic of degree $n$, a precisely similar term in which $n$ is replaced by $-n-1$. The most interesting case is when the thickness of the shell is infinitely small compared with the radius. The results of the investigation then assume a very simple form, and may be stated as follows:-

The fundamental modes of vibration fall as before into two classes.
In the modes of the First Class, the motion at every point of the shell is wholly tangential. In the $n^{\text {th }}$ species of this class, the lines of motion are the contoar lines of a surface harmonic $S_{n}$, and the amplitude of the vibration at any point is proportional to the value of $d S_{n} / d e$, where $d e$ is the angle subtended at the centre by a linear element drawn on the surface of the shell at right angles to the contour line passing through that point. The frequency $(p / 2 \pi)$ is de. termined by the equation

$$
\begin{equation*}
k^{2} a^{2}=(n-1)(n+2) \tag{1}
\end{equation*}
$$

where $a$ is the radins of the shell, and $k^{2}=p^{2} \rho / n$, if $\rho$ denote the density, and $\mathfrak{n}$ the rigidity, of the substance.

In the vibrations of the Second Class, the motion is partly radial, and partly tangential. In the $n^{\text {th }}$ species of this class the amplitude of the radial component is proportional to $S_{" \prime}$, a surface harmonic of order $n$. The tangential component is everywhere at right angles to the contour lines of the harmonic $S_{n}$ on the surface of the shell, and its amplitude is proportional to $\Lambda d S_{n} / d \epsilon_{\text {, where }} \Lambda$ is a certain constant, and de has the same meaning as before. It will appear further
on (§3) that $\quad \Lambda=-\frac{h^{3} n^{3}-4 \gamma}{2 n(n+1) \gamma}$
where $k$ retains its former meaning, and $\gamma=(1+\sigma) /(1-\sigma), \sigma$ denoting, as before, Poisson's ratio. Corresponding to each value of $n$ there are two values of $h^{3} a^{2}$, given by the equation

$$
k^{4} u^{4}-k^{2} u^{2}\left\{\left(n^{2}+n+4\right) \gamma+n^{2}+n-2\right\}+4\left(n^{2}+n-2\right) \gamma=0 \ldots \text { (3) } \dagger
$$

[^0]Of the two roots of this equation, one is $<$ and the other $>4 \gamma$. It appears, then, from (2) that the corresponding fundamental modes aro of quite different characters. The mode corresponding to the lower root is always the more important.

When $n=1$. the values of $k^{2} a^{2}$ are 0 and $6 y$. The zero root corres* ponds to a motion of translation of the shell as a whole parallel to the axis of the harmonic $S_{1}$. In the other mode the radial motion is proportional to $\cos \theta$, where $\theta$ is the colatitude measured from the pole of $S_{1}$; the tangential motion is along the meridian, and its amplitude (estimated in the direction of $\theta$ increasing) is proportional to $\frac{1}{2} \sin \theta$.
When $n=2$, the values of $k a$ corresponding to varions values of $\sigma$ are given by the following table:-

| $\sigma=0$ | $\sigma=\frac{1}{4}$ | $\sigma=\frac{3}{1} \sigma$ | $\sigma=\frac{1}{3}$ | $\sigma=\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| 1.120 | 1.176 | 1.185 | 1.190 <br> 3.570 | 1.215 <br> 491 |

The most interesting variety is that of the zonal harmonic. Making $S_{2}=\left(3 \cos ^{2} \theta-1\right) / 2$, we see that the polar diameter of the shell alternately elongates and contracts, whilst the equator simultaneously contracts and expands respectively. In the mode corresponding to the lower root, the tangential motion is towards the poles when the polar diameter is lengthening, and vice versâ. The reverse is the case in the other mode. We can hence understand the great difference in frequency.
2. To explain the manner in which the foregoing resalts were obtained, it may be sufficient to take the vibrations of the First Class. Omitting the time factor, the component displacements parallel to a system of rectangular axes having the centre of the shell as origin are given by the formulm

$$
\begin{equation*}
\alpha=\psi_{n}(k r)\left(y \frac{d}{d z}-z \frac{d}{d y}\right) \chi_{n}+\psi_{-n-1}(k r)\left(y \frac{d}{d z}-z \frac{d}{d y}\right) \chi_{-n-1}, \& c ., \text { \&c. } \tag{4}
\end{equation*}
$$

where $X_{n}, X_{-n-1}$ are solid harmonics of the algebraical degrees indicated by the suffixes, and $\psi_{k}(k r)$ is defined by [3].* The surface conditions [18] become
whence

$$
\left(r \frac{d}{d r}-1\right) a=0, d c ., d e
$$

- The square brackets are used to distinguish referencen to the former paper.
where

$$
P_{n}=k r \psi_{n}^{\prime}(k r)+(n-1) \psi_{n}(k r) .
$$

'The equation (5) is to hold for $r=a$ and for $r=b$, where $a$ and $b$ respectively denote the inner and oater radii of the shell, which is not yet assumed to be infinitely thin. Eliminating the sarface harmonics involved in the two equations of the form (5), we are led to the following equation to determine $k$ :-

$$
\left|\begin{array}{cc}
P_{n} a^{n}, & P_{-n-1} a^{-n-1} \\
\& c . & \& c .
\end{array}\right|=0
$$

The second row is to be obtained from the first by writing $b$ for $a$ thronghoat. Passing now to the case of an infinitely thin shell, we write, in the second row, $b=a+d a$, subtract the first row, and divide out by da. Now

$$
a \frac{d}{d a}\left(P_{n} a^{n}\right)=a^{n}\left\{h^{3} a^{2} \psi_{n}^{\prime \prime}(k a)+2 n k a \psi_{n}^{\prime}(k a)+n(n-1) \psi_{n}(k a)\right\} .
$$

But, from [4] and [5], we have, identically,

$$
\dot{k}^{\prime} a^{3} \psi_{n}^{\prime \prime}(k a)+(2 n+2) k a \psi_{n}^{\prime}(k a)+k^{3} a^{3} \psi_{n}(k a)=0 .
$$

Hence $a \frac{d}{d a}\left(P_{n} a^{n}\right)=a^{n}\left\{2 k a \psi_{n}^{\prime}(k a)+\left(k^{3} a^{3}-n . n-1\right) \psi_{n}(k a)\right.$,
and (6) becomes, after obvions reductions,

$$
\left|\begin{array}{c}
k a \psi_{n}^{\prime}(k a)+(n-1) \psi_{n}(k a), \& c .  \tag{7}\\
\left(k^{2} a^{2}-. n-1 . n+2\right) \psi_{n}(k a), \& c .
\end{array}\right|=0
$$

where the second column is to be obtained from the first by changing $n$ into $-n-1$. Since this change leaves the product $(n-1)(n+2)$ analtered, the left-hand side of (7) contains $k^{3} a^{\prime}-(n-1)(n+2)$ as a factor. It will be shown immediately that

$$
\begin{align*}
k a \psi_{n}^{\prime}(k a) \psi_{-n-1}(k a) & -k a \psi_{-n-1}^{\prime}(k a) \psi_{n}(k a) \\
& +(2 n+1) \psi_{n}(k a) \psi_{-n-1}(k a)=2 n+1 . \tag{8}
\end{align*}
$$

so that the other factor is $2 n+1$. Hence

$$
k^{3} a^{3}=(n-1)(n+2)
$$

The relation (8) follows from Helmholtz's theorem,* that if $u, v$ be any two functions satisfying the equation $\left(\nabla^{3}+k^{2}\right) \phi=0$, where $\nabla^{3}=d^{2} / d x^{2}+d^{2} / d y^{2}+d^{2} / d z^{2}$, then

$$
\iint\left(u \frac{d v}{d u}-v \frac{d u}{d u}\right) d S=0,
$$

.where the integration extends over the boandary of any region not

[^1]containing singular points of $u$ or $v$, and $d n$ denotes an element of the inwardly directed normal to $d S$. Making
$$
u=\psi_{n}(k r) \cdot r^{n} T_{n}, \quad v=\psi_{-n-1}(k r) \cdot r^{-n-1} T_{n}
$$

Where $T_{n}$ is a surface harmonic of order $n$, and taking as the region in question the space included between two spheres described about the origin as centre, we readily find that the value of the left-hand side of (8) is independent of $a$. Making $a$ infinitesimal, we see that this value is $2 n+1$.

The frequencies of the various vibrations of the Second Class; for a shell whose inner and outer radii are $a$ and $b$, are determined by the equation $\cdot\left|\begin{array}{cccc}A_{n}, & C_{n}, & B_{-n-1}, & D_{-n-1} \\ \& c ., & \& c ., & \& c ., & \& c . \\ B_{n}, & D_{n}, & A_{-n-1}, & C_{-n-1} \\ \& c ., & \& c ., & \& c ., & \& c .\end{array}\right|=0$ $\qquad$
where $A_{n}, B_{n}, C_{n}, D_{n}$ are defined by [52], [53], [55], [56]... The second and fourth rows of the determinant are to be obtained from the first and third respectively by the substitution of $b$ for $a$. The reduction of the determinant when $b=\dot{a}+d a$ is much facilitated by the use of (8), and of the similar relation in which $h^{*}$ is written for $k$, bat the details of the work would occupy too mach space to be reproduced here.
3. By way of verification, I have worked out the results of $\S 1$ by a different method, confining myself, however, for simplicit;, to the cases where the vibration is symmetrical about a diameter. Taking this diameter as axis of reference; let the equilibrium position of a point of the shell be defined in the nsual way by the polar coordinates $\theta, \phi$; and let us suppose that in consequence of the displacement these become $\theta+\theta, \phi+\Phi$, whilst the radias vector becomes $a+R$. If $d s$, $d s_{1}$ respectively denote the lengths of a linear element lying in the surface of the shell before and after the displacement, we find, since $\theta, \Phi, R$ are by hypothesis independent of $\varphi$,

$$
\begin{aligned}
d s_{1}^{2}=d s^{3}+2 & \left(\frac{R}{a}+\frac{d \theta}{d \theta}\right) a^{3} d \theta^{2}+2 \sin \theta \cdot \frac{d \Phi}{d \theta} \cdot a d \theta \cdot a \sin \theta d \phi \\
& +2\left(\frac{R}{a}+\theta \cot \theta\right) a^{4} \sin ^{2} \theta d \phi^{9} .
\end{aligned}
$$

Hence, if $e, f$ denote the elongations along the meridian and the parallel of latitude, respectively, and $c$ the shear parallel to the tan-

[^2]gent plane, we have
\[

\left.$$
\begin{array}{l}
e=\frac{R}{a}+\frac{d \theta}{d \theta}  \tag{10}\\
f=\frac{R}{a}+\theta \cot \theta \\
c=\sin \theta \frac{d \Phi}{d \theta}
\end{array}
$$\right\}
\]

If $g$ denote the elongation in the direction of the thickness, the condition that there is no stress perpendicular to the surface gives

$$
\begin{equation*}
(m+n) g+(m-n)\left(e^{\prime}+f\right)=0 \tag{11}
\end{equation*}
$$

Substituting the value of $g$, hence obtained, in the general expression $\dagger$ for the potential energy ( $w$ ) per unit volume, we obtain

$$
w=\frac{2 \mathfrak{n}}{\mathfrak{m}+\mathfrak{n}}\left\{\mathfrak{m} e^{9}+\mathfrak{m} f^{2}+(\mathfrak{m}-\mathfrak{n}) e f\right\}+\frac{1}{2} n c^{2},
$$

or, writing $\gamma$ for $(3 \mathfrak{m}-\mathfrak{n}) /(\mathfrak{n t}+\mathfrak{n})$,

$$
\begin{equation*}
w=\mathfrak{n}\left\{\frac{\gamma+1}{2}\left(e^{2}+f^{4}\right)+(\gamma-1) e f+\frac{1}{2} c^{2}\right\} \tag{12}
\end{equation*}
$$

To obtain the vibrations of the First Class, we pat $R=0$ and (in consequence of the restriction as to symmetry) $\theta=0$. Hence $e=0_{2}$

$$
f=0 \text { and } \quad w=\frac{1}{8} n \sin ^{2} \theta\left(\frac{d \Phi}{d \bar{Q}}\right)^{2} .
$$

The variational equation of motion, then, is

$$
\operatorname{\rho r} \int_{0}^{\infty} a \sin \theta \ddot{\Phi} \cdot a \sin \theta \delta \Phi .2 \pi a^{2} \sin \theta d \theta+\delta V=0
$$

where $\rho$ is the density, $r$ the thickness of the shell, and $\nabla$ is the potential energy of the deformation, viz.,

$$
\begin{equation*}
\nabla=2 \pi a^{2} r \int_{0}^{\pi} w \sin \theta d \theta . \tag{13}
\end{equation*}
$$

The usual method then leads to the equation

$$
\dot{\rho} a^{9} \sin ^{8} \theta \ddot{\Phi}=\mathfrak{n} \frac{d}{d \theta}\left(\sin ^{8} \theta \frac{d \Phi}{d \theta}\right)
$$

Hence, if $\Phi \propto \sin p t$, we have, writing $p^{2} \rho / \mathfrak{n}=k^{2}, \cos \theta=\mu$,

$$
\frac{d}{d \mu}\left\{\left(1-\mu^{2}\right)^{4} \frac{d \Phi}{d \mu}\right\}+k^{2} a^{2}\left(1-\mu^{2}\right) \Phi=0
$$

[^3]or
\[

$$
\begin{equation*}
\left(1-\mu^{\imath}\right) \frac{d^{\imath} \Phi}{d \mu^{2}}-4 \mu \frac{d \Phi}{d \mu}+k^{3} a^{3} \Phi=0 \tag{14}
\end{equation*}
$$

\]

$\qquad$
But the well-known equation satisfied by the zonal harmonio $Q_{n}$ yields on differentiation

$$
\left(1-\mu^{3}\right) \frac{d^{3} Q_{n}}{d u^{3}}-4 \mu \frac{d^{3} Q_{n}}{d \mu^{3}}+(n-1)(n+2) \frac{d Q_{n}}{d \mu}=0 .
$$

Hence (14) is satisfied by

$$
\begin{equation*}
\Phi=\frac{d Q_{n}}{d \mu} \tag{16}
\end{equation*}
$$

provided

$$
h^{3} a^{4}=(n-1)(n+2)
$$

It may be shown that (16) and (1) together constitute the only solution of (14) which is finite all over the shell.
In the symmetrical vibrations of the Second Class, we have $\Phi=0$, $v=0$. Hence the variatioual equation of motion is

$$
\begin{equation*}
\rho \tau \int_{0}^{*}\left(\ddot{R} \delta R+a^{2} \ddot{\theta} \delta \theta\right) 2 \pi a^{2} \sin \theta d \theta+2 \pi a^{9} \tau \int_{0}^{*} \delta w \sin \theta d \theta=0 . \tag{17}
\end{equation*}
$$

where $\delta w=\mathfrak{n}[\{(\gamma+1) e+(\gamma-1) f\} \delta e+\{(\gamma-1) e+(\gamma+1) f\} \delta f]$.
Assuming that $R$ and $\theta$ both $\propto$ sin $p t$, introducing the values of $e$ and $f$ from (10), and writing as before $p^{2} \rho / n=k^{3}$, we find, by equating to zero the coefficient of $\delta R$ in (17),

$$
\begin{equation*}
h^{3} a^{2} \frac{R}{a} \sin \theta=2 \gamma\left(2 \frac{R}{a} \sin \theta+\theta \cos \theta+\sin \theta \frac{d \theta}{d \theta}\right) \tag{18}
\end{equation*}
$$

Again, equating (after a partial integration) the coefficient of $\delta \theta$ to zero,

$$
\begin{gathered}
k^{2} a^{2} \theta \sin \theta=-\frac{d}{d \theta}\left[\left\{2 \gamma \frac{R}{a}+(\gamma+1) \frac{d \theta}{d \theta}+(\gamma-1) \theta \cot \theta\right\} \sin \theta\right] \\
+2 \gamma \frac{R}{a} \cos \theta+(\gamma-1) \frac{d \theta}{d \theta} \cos \theta+(\gamma+1) \theta \frac{\cos ^{2} \theta}{\sin \theta} .
\end{gathered}
$$

This reduces to

$$
\begin{align*}
k^{3} a^{2} \theta \sin \theta= & -\frac{2 \gamma}{a} \frac{d R}{d \theta} \sin \theta-(\gamma+1) \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right) \\
& -2 \theta \sin \theta+(\gamma+1) \frac{\theta}{\sin \theta} \ldots \ldots \ldots \ldots . . . . . . . .
\end{align*}
$$

Equations (18) and (19) may be written

$$
\left(l^{2} a^{2}-4 \gamma\right) \frac{R}{a} \sin \theta=2 \gamma \frac{d}{d \theta}(\sin \theta \cdot \theta)
$$

$$
\begin{align*}
2 \frac{\gamma}{a} \frac{d R}{d \theta} \sin \theta & =-\left(k^{2} a^{2}+2\right) \sin \theta \cdot \theta \\
& -(\gamma+1) \sin \theta \frac{d}{d \theta}\left\{\frac{1}{\sin \theta} \frac{d}{d \theta}(\sin \theta \cdot \theta)\right\} \tag{21}
\end{align*}
$$

Now the zonal harmonic $Q_{n}$ satisfies the equation

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d Q_{n}}{d \theta}\right)+n(n+1) Q_{n}=0 .
$$

Hence (20) and (21) are satisfied by

$$
\frac{R}{a}=Q_{n}, \quad \theta=\Lambda \frac{d Q_{n}}{d \theta}
$$

provided

$$
\begin{equation*}
k^{2} a^{2}-4 \gamma=-2 \gamma \cdot n(n+1) \Lambda \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \gamma \doteq\left\{(\ddot{\gamma}+1) n(n+1)-\left(k^{2} a^{2}+2\right)\right\} \Lambda \tag{23}
\end{equation*}
$$

.Eliminating $\Lambda$, we find

$$
\left(k^{2} a^{2}-4 \gamma\right)\left\{k^{3} a^{2}-n(n+1) \gamma-\left(n^{2}+n-2\right)\right\}=4 n(n+1) \gamma^{2},
$$

which agrees with (3). When the values of $k a$ have been found, the 'corresponding values of $\Lambda$ are given by (22).
4. It is hardly necessary to point out that the vibrations of a complete spherical shell are in no way analogons to the fexural vibrations of an open shell or bowl, which have been discussed by Lord Rayleigh (Proceedings, Vol. xiii., p. 4). By a theorem due to Jellett, any deformation of a closed convex surface involves extension or contraction in some part of it. Hence, in our problem, that part of the potential energy which is due to the flexare may, if the shell be sufficiently thin, be neglected in comparison with that due to the extensions and contractions.

I find that a thin glass globe 20 centimètres in diameter should, in its gravest mode, make about 5350 vibratious per second.*

On Polygons circumscribed nbout a Tricuspidal Quartic.
By R. A. Roberts, M.A.
[Read Dec. 14th, 1882.]

1. In a recent number of the Proceedings, I arrived at some results concerning polygons circumscribed aboat a cuspidal cabic and inscribed in another carve. I propose, in this paper, to treat the tricuspidal quartic in a similar manner. As a tricuspidal quartic is the reciprocal of a nodal cabic, the problem is the same as to inscribe polygons in a nodal cubic; but I find it more convenient to consider the tricuspidal quartic.
[^4]
[^0]:    - Proceedings, Vol. xiii., pp, 189-212.
    + The case $n=0$ is exceptional. The vibrations are than purely radial, apd the frequency is determined by $k^{2} a^{2}=4 \gamma$.

[^1]:    - See Rayleigh's Sound, t. 2, \$\$294, 327.

[^2]:    - 4 is detined by [21].

[^3]:    - $m$ is a constant such that $m-f n$ is the resilience of volume.

    4 Thomson and Tait, Natural Philosophy, $\$ 695$.

[^4]:    - The data employed in the calculation are taken from Everett's Units and Physical Constants, $\mathrm{J} G 1$; viz., $\mathfrak{n}=2.40 \times 10^{11}, \rho=2.942, \sigma=258$.

