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focus lenses, especially if the polish is impaired, the central 
spot may be somewhat distorted~ but its centre can be found 
pretty accurately by taking the semi-diameter of the outer 
rings. The angle between the planes may conveniently be 
fixed so that chord 0----0"1 or thereabouts. This will serve for 
the majority of lenses, but the apparatus is so simple that 
several gauges of different angles may be kept ready. 

I have not found any inconvenience from the use of marine 
glue to fasten the plates together, any variation of the angle 
that may result from changes of temperature being too small 
to affect the result appreciably. 

21, Norham Road, Oxford, 
January 1897. 

XXXVII .  On the Passage of Waves through Apertures in Plane 
Screens, and Allied Problems. By  Lord RAYLEIGFr, F.R.S. ~ 

T t~E waves contemplated may he either aerial waves of 
condensation and rarefaction~ or electrical waves propa- 

gated in a dielectric. :Plane waves of simple type impinge 
upon a parallel screen. The screen is supposed to be infi- 
nitely thin, and to be perforated by some kind of aperture. 
Ultimately one or both dimensions of the aperture will he 
regarded as infinitely small in comparison with t~he wave- 
length (~); and the method of investigation consists in 
adapting to the present purpose known solutions regarding 
the flow of incompressible fluid. 

If  ~b be a velocity-potential satisfying 

d2dp/dt~=V~v~dp, . . . . .  (1) 
where 

v ~ = d ' /d .v  ~ + d~/d,j ~ + d ' / d~  ~, 

the condition at the boundary may be (i.) that d~/dn=O, or 
(it.) that ~b=0. The first applies directly to aerial vibrations 
impinging upon a fixed wall~ and in this connexion has 
alread 3,~ been considered t .  

.If we assume that the vibration is everywhere proportional 
to e ~'~, (1) becomes 

( v ~ + k ~ ) ¢ = 0 ,  . . . . . .  (~) 
where 

k = . I V  = 2 ~ l X  . . . . . . .  (3 )  

It  will conduce to brevity if we suppress the factor e ~ .  
* Communicated by the Author. 

t ' Theory of Sound,' § 292. 
X 2  
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On this understanding the equation of waves travelling 
parallel to x in the positive direction, and accordingly incident 
upon the negative side of a screen situated at x = 0 ,  is 

. . . . . . . .  ( 4 )  

When the solution is complete, the factor e ~'t is to be restored, 
and the imaginary part of the soIution is to be rejected. The 
realized expression for the incident waves will therefore be 

. . . . . . .  ( 5 )  

Perforated Screen.--Boundary Condition ddd/dn = O. 
I f  the screen be complete, the reflected waves under the 

above condition have the expression qb = e i~x. 
Let us divide the actual solution into two paris X and ~-, 

the first the solution which would obtain were the screen 
complete, the second the alteration required to take account 
of the aperture; and let us distinguish by the suffixes m 
and p the values applicable upon the negative (minus)and 
upon the positive side of the screen. In the present case we 
] ] a v e  

X,_ ~-~kx + ei~x Xp= 0. (6) 

This X-solution makes dx,~/dn=O, dxp/dn=O over the 
whole plane x = 0 ,  and over the same plane Xm=2, Xp=0.  

For the supplementary solution, distinguished in like 
manner upon the two sides~ we have 

~lrm_~. f ;xIjt e--skr ;;~t t e-ikr 
. ,  dS, %= -vdS, (?) 

1, P • 

where r denotes the distance of the point at which ~ is to be 
estimated fi'om the element dS of the aperture, and the inte- 
gration is extended over the whole of the area of aperture. 
Whatever functions of position ~ r ,  ~p may be, these values 
on the two sides satisfy (2), and (as is evident from symmetry) 
they make dqF,,/dn , d~p/dn vanish over the wall, viz. the 
unperforated part of the screen ; so that the required con- 
dition over the wall for the complete solution (X-t-~) is 
already satisfied. I t  remains to consider the further con- 
ditions that ¢ and ddp/dx shall be continuous across the 
aperture. 

These conditions require that on the aperture 

2 + qF~ = qfp, d¢~ /dx  = d~?/dx . .  (8) * 

• The use of dx implies that the variation is in a fixed direction, while 
dn may be supposed to be drawn outwards from the screen in both 
cases. 
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The second is satisfied if • ----- - - ~  ; so that 

/y" e-fb, __(Y" e-~kr --JJ~,,o - - 7  dS, #'~ =.)J ~ " - - V  dS, % =  (9) 

making the values of 4F~ and ~p equal and opposite at all 
corresponding points, viz. points which are images of one 
another in the plane x=O.  In order further to satisfy the 
first condition it suffices that over the area of aperture 

~m = -- 1, ~p = 1, . . . .  (10) 

and the remainder of the problem consists in so determining 
• ,~ that this shall be the case. 

In this part of the problem we limit ourselves to the sup- 
position that all the dimensions of the aperture are small in 
comparison with ~.. For points at a distance from the aper- 
ture e-~k"/r may then be removed from under the sign of 
integration, so that (9) becomes 

e-~" ~'[* ~ e-~kr ~ ' F m d S .  (11) ,k = ds, % -  

The significance of ~ ~mdS is readily understood from an 
electrical interpretation. For in its application to a point, 
itself situated upon the area of aperture, e -~kr in (9) may be 
identified with unity, so that ~ , ,  is the potential of a distri- 
bution of density W m on S. But by (10) this potential mus~ 
have the constant value --1 ; so that - - S ~ d S ,  or ~XFpdS, 
represents the electrical capacity of a conducting disk having 
the size and shape of the aperture, and situated at a distance 
fl'om all other electrified bodies, i f  we denote this by M, 
the solution applicable to points at a distance from the aper- 
ture may be written 

e--ikr e -  ikr 
, % = M  . 

To these are to be added the values of X in (6). The realized 
solutions are accordingly 

(b~=2 cos nt cos kx--M cos (nt-- lcr) ,  (13) 

(~p=Mcos (n t - -kr) .  . . . . . . . (14) 
,p 

The value of ~I may be expressed * for an ellipse of semi- 

* ' Theory of Sound,' §§ 292, 306, where is given s discussion of the 
effect of ellipticity when area is given. 
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major axis a and eccentricity e. We have 

M =  a (15) 

F being the symbol of the complete elliptic function of the 
first kind. When e=0,  F(e)=~Tr;  so that for a circle 
M=2abr .  

It should be remarked that • in (9) is closely connected 
with the normal velocity at dS. In general, 

d 2 =  s . . . . .  
dx dd ax \ 9" / 

At a point (x) infinitely close to the surface, the neigh- 
bouring elements only contribute to the integral, and the 
factor e -~k~ may be omitted. Thus 

o r  

~F---- 1 d ~  . . . . .  (17) 
2 ~  dn  ' 

d~/dn being the normal velocity at the point of the surface 
in question. 

Boundary Condition ¢ = 0 .  
We will now suppose that the condition to be satisfied on 

the walls is ~b=0, although this case has no simple applica- 
tion to aerial vibrations. Using a similar notation to that 
previously employed, we have as the expression for the 
pHncipal solution 

Xm ----- e - ~ - -  e~k~, Xp --0, (i8) 

giving over the whole plane '(x=O), xm=O, xv=O, 
- -  2ik, dxdd =O. 

The supplementary solutions now take the form 
('(" d / e  -ikrx t'*'d / e  -ikrx 

These give on the walls ~,,----~v=O, and so do not disturb the 
condition of evanescence already satisfied by X" It remains 
to satisfy over the aperture 

,all.,.-- ~p, -- 2ik + d~,,/dx = d~p/dx. (20) 

The first of these is satisfied if g tm=--~p,  so that ~ .  and 
5by are equal at any pair of corresponding points upon the 
two sides. The values of d$,~/dx, d ~ / d x  are then opposit% 
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and the remaining condition is also satisfied if" 

dqym/dx =. ik, d~2,/ax-= --  ik. (21) 

Thus ~,~ is to be such as to make dqy, . /dx=ik  ; and, asin the 
proof of (17), it is easy to show that in (19) 

where ~,~, ~p are the (equal) surface-values at dS. 
When all the dimensions of S are small in comparison with 

the wave-length, (19) in its application to points at a sui~cient 
distance from S assumes the fbrm 

ikx  e -i~" (Y' .~ 

and it only remains to find what is the value of j ' j '~pdS 
which corresponds to d ~ p / d x = - - i k .  

Now this correspondence is ultimately the same as if we 
were dealing with an absolutely incompressible fluid. I f  we 
imagine a rigid and infinitely thin plate (having the form of 
the aperture) to move normally through unlimited fluid with 
velocity u, the condition is satisfied that over the remainder 
of the plane the velocity-potential ~. vanishes. In this case 
the values of 5k at corresponding points upon the two sides 
are opposite ; but if we limit our attention to the positive 
side, the conditions are the same as in the present problem. 
The kinetic energy of the motion is proportional to u ~, and 
we will suppose that twice the energy upon one side is hu ~. 
By Green's theorem this is equal to - - ~ .  d ~ / d n ,  dS,  or 
- u S S  qtdS ; so that ~y ~ d S = - - h u .  In the present appli- 
cation u =  -- ik ,  so that the corresponding value of' ~j'~pdS is 
ihk. Thus (23) becomes 

% = - -  2~.  ~ . . . . . .  (25) 

The same algebraic expression gives ~,~,.if the minus sign be 
omitted; for as x itself changes sign m passing from one 
side to the other, the values of ~ and ~p at corresponding 
points are then equal. 

The value of h can be determined in certain cases. For  a 
circle ~ of radius c 

4c a 
1,= y ;  . . . . . . .  (26) 

* Lamb's ' Hydrodynamics,' § 105. 
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so that for a circular aperture the realized solution is 

87rc ~ x 
 °os ( n t - k r ) ,  . . . .  (27) 

¢m=2 sin nt sin kx  
87J'C 3 X 

+ cos (,t-kr). (28) 

It will be remarked that while in the first problem the 
wave (~) divergent from the aperture is proportional to the 
first power of the linear dimension~ in the present case the 
amplitude is very much less: being proportional to the cube 
of that quantity. 

The solution for an elliptic aperture is deducible from the 
general theory of the motion of an ellipsoid (a, b, c) through 
incompressible fluid ¢, by supposing a=0 ,  while b and c re- 
main finite and unequal; but the general expression does 
net appear to have been worked out. When the eccentricity 
of the residual ellipse is small, I find that 

h = ~ ( b c ) i ( 1 - ~ # ) ,  . . . . .  (29) 

showing that the effect of moderate ellipticity is very small 
when the area is given. 

From the solutions already obtained it is possible to derive 
others by differentiation. If, for example, we take the value 
of ~) in the first problem and differentiate it with respect to 
x, we obtain a fimetion which satisfies (2), which includes 
plane waves and their reflexion on the negative side, and 
which satisfies over the wall the condition of evanescence. 
It  would seem at first sight as if this could be no other than 
the solution of the second problem, but the manner in which 
the linear dimension of ~he aperture enters suffices to show 
that it is not so. The fact is that although the proposed 
function vanishes over the plane part of the wall~ it becomes 
infinite at the edge, and *has includes the action of sources 
there distributed. A similar remark applies to the solutions 
that might be obtained by differentiation of the second solu- 
tion with respect to y or z, the coordinates measured parallel 
to the plane of the screen. 

Reflecting P late.--ddp / dn = O. 

We now pass to the consideration of allied problems in 
which the transparent and opaque parts of the screen are 
interchanged, Under the above-written boundary condition 

* Lamb's ~ I-Iydrodynamies,' §l lL 
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t;he case is that of piano aerial waves incident upon a parallel 
infinitely thin plato, whoso dimensions are ultimately supposed 
to be small in comparison with k. The analytical process of 
solution may be illustrated by the following argument. 
Suppose a motion communicated to the plate identical with 
that which the air at that place would execute were the plato 
absent. It is evident that the propagation of the primary 
wave wilI then be undisturbed. The supplementary solution, 
representing the disturbance duo to the plate, must then 
correspond to the reduction of the plate to rest, that is to a 
motion of the plate equal and opposite to that just imagined. 
The supplementary solution is accordingly analogous to that 
which occurs in the second of the problems already treated. 

Using a similar notation, we have for the principal solution 
upon the two sides 

Xm = Xp = e-~kx, . . . . .  (30) 
giving when x = 0 

X,~ = Xp = 1, dx,./dx = dxp/dx = -- ik. 

The supplementary solution is of the form (19), and gives 
upon the aperture, viz. the part of the plane x =  0 unoccupied 
by the plate, ~ m = ~ p = 0 ,  and so does not disturb the con- 
tinuity of ~b. But in order that the continuity of ddp/dx may 
be maintained it is necessary that ~ p = ~ , ,  ; and then the 
values of ~ ,  and ~p are opposite at any pair of corresponding 
points upon the two sides. 

It remains to satisfy the necessary conditions at the plate 
itself. These are 

d X., d~m d~p d~x r 
dx +-~-x  ----0~ d--x -I- _.__ = 0  ; 

or, since dq/',Jdx, dq/'p/dx are equal~ 

d ~ , . / d x = d ~ p / d x = i k  . . . . . .  (31) 

It  follows that ~p has the opposite value to that expressed in 
(25) ; and the realized solution for a circular plate of radius 
c becomes 

8 "/'/'~ ~ ~ 
~bp=cos (n t - -kx )  + ~ ~cos (nt - -kr) ,  . . . .  (32) 

(~,,= cos (nt--kx)  + ~81re3 ~cosX (nt--kr) ,  . . . .  (33) 

the analytical form being the same in the two cases. 
It  is important to notice that the reflexion from the plate 

is utterly different from the transmission by a corresponding 
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aperture in an opaque screen~ as given in (14), the former 
varying as the cube of the linear dimension, and the latter 
as the first power simply. 

Reflecting Plate . - -~  = O. 
For the sake of completeness it may be well to indicate 

the solution of a fourth problem defined by the above heading. 
This has an affinity with the first problem, analogous to that 
of the third with the second. The form of X is the same as 
in (30), and those for qt,,, ~p the same as in (7). These 
make d~, , /dx ,  dsVp/'dx vanish on the aperture, and so do not 
disturb the continuity of d$/dx. But in order that the con- 
tinuity of q~ may also be maintained, we must have xF,~=Wp, 
and not as in (9 )W~-- - - -Pp .  On the plate itself we musk 
have 

-1 .  

Accordingly ~ is the same as in (12), while ~p in (12) 
must have its sign reversed. The realized solution is 

~p----~,~= cos (nt--kx)  - -M c°s (nt--kr)  (34) 
r 

Two-dimensional Vibrations. 
In the class of problems before us the velocity-potential of 

a point-source, viz. e-~'/r~ is replaced by that of a linear 
source ; and this in general is much more complicated. I f  
we denote it by D(kr)~ the expressions are* 

( ~r ~i _ ,~ , f  1 ~ 12 .3  ~ "~ 
D(kr) - - \ ~ ]  e i 1  1 .8~=kr+ l .2 . (~ ik r )  "~ " " " 

/ i k r ~ f ,  k~r ~ k4r ~ l log ÷ : 

k2r~ k~r4 S k°r° 
+ - ~ - S ~ - - 2 ~  2+ 2~.42.6uSa - • • • , (35) 

where ~/is Euler 's constant ('5772 . . .), and 
S ~ = 1 + ½ + ½ +  . . .  + l / m .  

Of these the first is "semiconvergent," and is applicable 
when kr is Iarge ; the second is fully convergent and gives 
the form of the function when kr is small. 

Since the complete analytical theory is rather complicated, 
it may be convenient to give a comparatively simple deriva- 

See for example ' Theory of Sound~' § 341. 
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tion of the extreme forms, which includes all that is required 
for our present purpose, starting from the conception of a 
linear source as composed of distributed point-sources. I f  p 
be the distance of any element dx of the linear source fi'om 
O, the point at which the potential is to be estimated, and r 
be the smallest value of p, so that p~=r ~" +x  ~, we may take as 
the potential, constant factors being omitted, 

j i °  e - ~  dx - - f ;  e-'kC dp (36) 
qt = -- P - = ~ (p~_ r~ ) . 

We have now to trace the form of (36) when kr is very 
great, and also when kr is very small. For the former ease 
we replace p by r + y ,  thus obtaining 

--  I [  e -~k~ e - ~  dy " ,k= ~ . , / ~ ) .  . .  (37) 
L /  U 

When kr is very great, the approximate value of the integral 
in (37) may be obtained by neglecting the variation of 
~/(2r+y)~ since on account of the rapid fluctuation of sign 

caused by ~he factor e- i~ we need attend only to small values 
ofy .  ~ow, as is known, 

foO O    _fo ~/x ~/x = ~ , 
so that in the limit 

+=--(1--i)'~J(-2~krje-'l<~'=--'~,/{~'~-~\2ikr]e , (38) 

in agreement with (35). 
We have next to deduce the limiting form of (36) when 

kr is very small. For  this purpose we may write it in the 
form 

~= ~ - P _  <-,~i - ~ ,  de. (39) p .~ ,. ,_ J (p~- r~) 
The first integral in (39) is well known. We have 

ff~ e -ik~ d p  . I 
- / - =ui(kr)  - q ~ , r +  Si(kr)} 

J ,  p 
~C2r~ ~41..4 

= ~ +  logk r - -  ~i-  + 2 . ~ - 4 ~  . . . 

k3___~ rs _ 
.. } 

In the second integral of (39) the function to be integrated 
vanishes when p is great compared to r, and when p is not 
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great in comparison with r, kp is small and e-~k¢ may be 
identified with unity. Thus in the limit 

¢o 

e_~ ¢ ~ 1 P , ,  = log 2 ; 

and (39) becomes 

,~=~/+log k r+  ~i~r--log 2 =  7 + log (½ikr), (40) 
in agreement with (35). 

When kr is extremely small (40) may be considered for 
some purposes to reduce to log kr ; but the term ~i~r is re- 
quired in order to represent the equality of work done in the 
neighbourhood of the linear source and at a great distance 
from it. 

We may now proceed to solve four problems relative to 
narrow" slits 'and reiteeting blades analogous to the four 
already considered in which the aperture or the reflecting 
plate was small in both its dimensions in comparison with the 
wave-length. 

Narrow Slit .--Boundary Condition d¢/dn = O. 
As in the former problem the principal solution is 

X --~-~*=_t.~k- Xp=0, (41) m - ~  t ~  , * • • • 

making dx,,/dn , dxr/dn vanish over the whole plane x = 0  
and over the same plane X,,=2, Xp=0. The supplementary 
solution, which represents the effect of the slit, may be 
written 

#~,----~mD(kr)dy, ~ p = ~ p D ( k r ) d y ,  (42) 

~,,, xFr being certain functions of y to be determined, and 
the integration extending over the width of the slit from 
y = - - b  t o y =  +b. 

These additions do not disturb the condition to be satisfied 
over the wail. On the aperture continuity requires~ as in 
(8), that 

"2 =¢ , ,  
The second of these is satisfied by taking W~=--W~, so that 
at all corresponding pairs of points ~ = - - @ p .  It  remains 
to determine ~,~ so that on the aperture ~,,,--- --1 ; and then 
by what has been said ~p=  + 1. 

At a sufficient distance from the slit, supposed to be very 
narrow, D(kr) may be removed from under the integral sign 
and also be replaced by its limiting form given in (35). Thus 

f *  

/,r.@ (43) \ 2ikr ] .J " " 
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The condition by which W.~ is determined is that for all 
points upon the aperture 

j +b*. ,D(kr)dg=--l ,  . . . .  (44) 
--b 

where, since kr is small throughout, the second limiting form 
given in (35) may be introduced. 

From the known solution for the flow of!neompressible fluid 
through a slit in an infinite plane we ma 3 infer that ~F,~ ~ ill 
be of the form A(b2--g ~)-½, where A is some constant. Thus 
(44) becomes 

A[(7+log½ik)~r+ f + b l ° g !  ~')d~'] - ,j~b~ ~ l j =  L (45) 

In this equation the first integral is obviously independent of 
the position of the point chosen, and if the form of ~,,, has 
been rightly taken the second integral must also be independent 
of it. I f  its coordinate be ~, lying between +_b, 

f_ '~ log rd.,z f ,  !og(v--U) @_1_ f~log/y--~)d~ 
b V(b~--y")--J-b ~/(b'Z--ff 2) ~ 3 ,  ",/(b*--Y ~) ' 

and must be independent of ~/. This can be verified without 
much difficulty by assuming ~ = b sin a, y = b sin 0; but merely 
to determine A in (45) it suffices to consider the particular 
case of */= 0. Here 

+b logrdy - - 2  

= ~ log (b sin O) dO = ~" log (½b). 

~wA ; 

Thus 
A (7 + log ykb) w = -- 1, 

and 

d-b .¢ (b~--y ~) 
so that (43) becomes 

9,.  = ,~ + log (¼1kb) \ 2 i k , . I  " 
• (46) 

From this ~p is derived by simply prefixing a negative sign. 
The realized solution is obtained from (46) by omitting the 

imaginary part after introduction of the suppressed factor 
e i't. I f  the imaginary part of log (¼ikb) be neglected, the 
result is 

( ,~ ,~ cos (nt-kr-k~) (47) 
~ " =  \'------~r) 7 + log (¼kb) ' 
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corresponding to 
X~=2 cos nt cos kx . . . . . .  (48) 

The solution (47) applies directly to aerial vibrations in- 
cident upon a perforated wall~ and to an electrical problem 
which will be specified later. Perhaps the most remarkable 
feature of it is the very limited dependence of the transmitted 
vibration on the width (2b) of the aperture. 

_h~rrow Sllt.--Boundary Condition q~=0. 
The principal solution is the same as in (18); and the con- 

ditions for the supplementary solution, to be satisfied over 
the aperture, are those expressed in (21). In place of (19) 

, . ~ = _ ~ _ ~ x . v d y  ' . ( ' d D .  d ,  v" (49) 
* ]  

the values of ~, ,  and Wp being opposite, and those of qd,, and 
~p equal at corresponding points. At a distance we have 

dO ~-  b~cly, . . . . .  (50) 
%=Td  b 

in which 
dD " ( y ~kx ~" ~ ., 
-dx --~ T ~ e-~" . . . .  (51) 

There is a simple relation between the value of ~p at any 
point of the aperture and that of ~p at the same point. For 
in the application of (49) to any point of the narrow aperture, 
dD/dx=x/r ~, showing that only those elements of the integral 
are sensible which lie infinitely near the point where qdp is to 
be estimated. The evaluation is effected by considering in the 
first instance a point for which x is finite, and afterwards 
passing to the limit. Thus 

so that (50) becomes 
,p~_ l dD ~ +b 

. . . . .  ( 5 2 )  

I t  remains only to express the connexion between S~pd,/ 
and the constant value of d~p/dx on the area of the aperture ; 
and this is effected by the known solution for an incompressible 
fluid moving under similar conditions. The argument is the 
same as in the corresponding problem where the perforation 
is circular. In the motion (u) of a lamina of width (2/,) 
through infinite fluid, the whole kinetic energy per unit of 
length may be denoted by hu "2, and it appears from Green's 
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theorem that SqFedy----i/&. The value of h + is ½~rb~; so that 
k%~x[ 7r "~+ _~  

% = - - ~ : = , .  ~,'2~,.} ~ . . . . .  (53) 

The same algebraic expression gives 4F,,, if the minus sign be 
omitted. 

The realized solution from (53) is 

k%~x{ 7r \½ 
% =  2 - ; - t , ~ )  cos (nt--k,'--¼~), . (54) 

corresponding to 
X,~= 2 sin nt sin kx . . . . . .  (55) 

Reflecting Blade.--.Boundary Condition d~/dn=O. 
We have now to consider two problems which differ from 

the last in that the opaque and transparent parts of the screen 
are interchanged. As in the case of the circular aperture, we 
shall find that the correspondence lies between the reflecting 
blade under the condition d¢/dn=O and the transmitting 
aperture under the condition ~b=0, and reciprocally. 

The principal solution remains as in (30). The supple- 
mentary solution must satisfy (31)~ where 

4,, ( ' d D ~  d ' (*dD~F d . v.=j  . (56) 

since W,~ and ~Fv must be equal in order that the continuity 
of ddp/dx over the aperture may be maintained. Thus ~,~ 
and ~p have opposite values at any pair of corresponding 
points. 

If  we compare these conditions with those by which (53) 
was determined, we see that ~m has the same value as in that 
cas% but tha~ the sign of ~p~must be reversed. Thus in the 
present problem 

~ = = % =  ~ (,2k~) ~os (nt-k,,-~), (57) 

corresponding to 
:~,,~ = X~ = cos ( a t -  } x )  . . . . .  (SS) 

Reflecting .Blade.--.Boundary Condition ¢ = 0 .  
In this case ~ still remains as in (30). The general forms 

for ~, , ,  ~v are as in (42), which secure that d~,~/dx, d~p/dx 
shall vanish on the aperture (i. e. the part of the plane x = 0  
unoccupied by the blade). But in order that the continuity 
of ~) may also be maintained over that area we must have 
• ,~=~p. Thus ~,,, ~p have equal values at corresponding 
points. On the blade itself ~m=~p-=- - l .  

• Lamb's ' Hydrodynamics,' § 71. 
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A comparison of these conditions with those by which (46) 
was determined shows that in the present case 

e -ikr [ ~ T r  g,.=%= (59) 
+ ( ikb) • • • 

When ]ogl in the denominator of (59) may be omitted, the 
realized form is that expressed by (47), and this corresponds 
to 

X,,=X~-- cos (nt--kx) . . . . .  (60) 

Various Applications. 
Of the eight problems, whose solutions have now been 

given, four have an immediate application to aerial vibratfons, 
viz. those in which the condition on the walls is ddp/dn----O. 
The symbol (~ then denotes the velocity-potential, and the 
condition expresses simply that the fluid does not penetrate 
the boundary. The four problems relating to two dimensions 
have also a direct application to electrical vibrations, if we 
suppose that the thin material constituting the screen (or the 
blade) is a perfect conductor. For  if R denote the electro- 
motive intensity parallel to z, the condition at the face of the 
conductor is R = 0  ; so tha t i f  R be written for ~ in (53), (59), 
we have the solutions for a narrow aperture in an infinite 
screen, and for a narrow reflecting blade respectively, cor- 
responding to the incident wave R = e  -~¢. A narrow aper- 
tm'e parallel to the electric vibrations transmits very much 
less than is reflected by a conductor elongaled in the same 
direction. 

The two other solutions relative to two dimensions find 
electrical application if we identit[y ~ with c, the component 
of magnetic intensity parallel to z. For when the other com- 
ponents a and b are zero, the condition to be satisfied at the 
face of a conductor is dc/dn=O. Thus (46), (57) apply to 
incident vibrations represented by c=e - ~ .  In this case the 
slit transmits much more than the blade reflects. 

It may be remarked that in general problems of electrict~l 
vibration in two dimensions have simple acoustical analogues*. 
_As an example we may refer to the reflexion of plane electric 
waves incident perpendicularly upon a corrugated surfac% the 
acoustical mmlogue of which is treated in ' Theory of Sound,' 
2nd ed. § 272 a, and to the reflexion of electric waves from a 
conducting cylinder (§ 343). 

• The comparison is not limited to. the case of perfect conductors,. . but 
applies also when the obstacles, being non-conductors, differ from the 
surrounding medium in specific inductive capacity, or in maonctic 
permeability, or in both properties. " 


