280 Prof. Mathews on the Arithmetical Theory of  [May 8,

Thus, let u, v denote two quadrics, and S any quartic surface passing
through 15 fixed points on the curve of intersection of » and v; wo
have to prove that any other quartic surface which passes through
these 15 points must pass through the remaining point of intersection
of S with « and v.

Now, through any 8 arbitrary points on the curve of intersection of
wand S, and through an arbitrary point P on S, we can draw a quadric,
v’ say ; also, through 8 arbitrary points on the curve of intersection of
S and v, we can draw a quadric, 4’ say, also passing through P (P
being supposed not to lie on either u or v) ; then we have three quartic
surfaces, S, ut/, vv/, each passing through 15+8+8+1 = 32 fixed
points, and every guartic which passes through these points must be
of the form S+Auw'+pve, and therefore must pass through the
remaining 32 points in which 8, uu’, and vv” intersect.

Hence every quartic surface which passes through 15 of the points

of intersection of S, #, v must pass through the remaining point of
intersection.

15. We have at once the theorem, that if three planes 4, B, 0 be
drawn catting a twisted quartic in the points ,, ay, ay, a; b, by, by, by;
€1 €y Cyy €,y Tespectively ; the planes a,b,¢), a;b;¢5, aybycy, a,byc, will cut
the quartic in four coplanar points d,, d;, dy, d,.

Consequently, all the theorems stated previously may be at once
translated so as to apply to twisted quartics.

On the Avithmetical Theory of the Form z*+ ny®+ n'2’ —8nazyz.
By Professor MarHEWS, M.A.

[Read May 8th, 1890.)

In the last four papers contained in Vol. 1. of Dirichlet’s collected
works will be found some remarkable propositions relating to certain
arithmetical forms of higher degrees.*

* Dirichlet’s Werke, 1., pp. 619, 625, 633, 639. The titles of the papers aro—
“‘Bur la Théorie des Nombres "’ (Comptes Rendus, 1840, p. 285, or Liouville, 8ér. 1.,
$. v.,, p. 72) ; ** Einige Resultate von Untersuchungen iiber eine Olasse homogener
Functionen des dritten und der hiheren Grade* (Berichte tiber dis Verhandlungen d.
Kinigl, Prewss, Akad. d. Wissensch., 1841, p. 280); * Verallgemeinerung eines
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In the following note I propose to illustrate Dirichlet’s method by
applying it to a special case, which is otherwise of interest in con-
nexion with an algorithm of Jacobi’s (Crelle, Vol. LxIX., p. 29).

The form to be considered is
F (2, y, 2) = 2'+ny® +n's*— Bnayz,
and it will be shown—

(i.) that if an integer m can be represented by the form F (z,y, 2)
at all, it can be so represented in an infinite number of ways ;

(ii.) that the Diophantine equation F (z,y, z) = 1 can always be
satisfied by integral values of z, y, 2 ;

(iii.) that all the integral solutions of F' (=, y, z) = 1 can be derived
from & single fundamental solution in a manner analogous to that
in which the solutions of the Pellian equation are obtained.

1. Let n be a positive integer, ¢ the real cube root of n, 6 a complex
cube root of unity ; then
F (2, 9, 2) = (z+yt+a8*) (2 +y0t +26') (2 +y6% + 26"
= (z+yt+2t°) § (x’—ﬁyz) + (n2 ~zy) t+ (4 —z2) £}
= o’ + ny* + 1% — Bnayz.
Dirichlet has shown (Werke 1., p. 635) that we can choose, in an
infinite number of ways, a set of integers =, 'y, 2, so that
| 2+yt+28* | < 1/pd,
where p is the greater of the quantities |y], |z|. (Here, as in what

follows, | z| denotes the absolute value or modulus of z.)

His proof is as follows :—Choose for y, 2 all pairs of values, the same
or different, which can be obtained from

-p —(p—1), .. -1,0,1, ... (p—-1),»
where p is any positive integer. Having chosen any pair, let = be
determined so that z+yt+2¢* may be less than 1, and not negative;

Batzes aus der Lehre von den Kettenbriichen ... (ibid., 1842, p. 93) ; and *‘ Zur
Theorie der Complexen Einheiten'’ (ibid., 1846, p. 103).

Bee also Eisenstein’s memoir on cubic forms (Crells, t. xxvir., p. 289, and
XXIX., p. 19); Sylvester, ¢ On the General Solution in certain cases of tho Equation
2+ 40+ A = Mzyz,” &c., Phil. Mag., xxx1. (1847), pp. 461-7, and *‘ On certain
’l.[‘;;n;t;z Cubic Form Equations,’” Amer. Math. Jour., t. u1. (1880), pp. 68-88 and

For the last two refercnces I am indebted to Professor Cayley.
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we thus obtain for the expression one value zéro, and (2p+1)'—1
other values which are all positive proper fractions. Now consider
the series of terms

these divide the interval 0 ... 1 into 4p* equal parts ; and, since
| (2p+1)'~1> 45",

it follows that, of the proper fractions previously obtained, it will
always be possible to find two which are in the same one of the 4p'
intervals. Let

Tty i+ and 2+y,t+z,t
be two such fractions. They are not equal, for this would imply

L= N=Yy H =255

hence their difference is less than 1/4p' and not zero; further, the
differences (y,—y,), (2,—2,;) are both numerically not greater than
2p; hence, if we put

T=2 =%y Y=Y"Yy Z2=2,2%
| z2+yt+2¢* | < 1/4p",

and therefore a fortiori <1/u® if p is the greater of the quantities
yils |2} :

Since p was chosen at pleasure, it follows that an infinite number
of integers z, y, z can be chosen in the manner stated.

If (z, y, z) be any such set,
| z4+ybt+20° | = | e +yt +2t'+ (0—1) yt+ (6 —1) ot
<|z4yt+z8'|+|(0-1)yt| + | (6'-1) 28]
<la+yt+at'| + {|yt] + |o'|} 3
(since |6—1|=|6'—1| =v/3),

and a fortiors <Fl;+(t'+t)p«/3.

Similarly, | z+y0%+68 | < ;17 +(E+)puv3;
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-and therefore | F (z,y,2)| < % {(&+¢) p/841/u}t

< 8(8+1)'+2/8 (P +6)/u*+1/p"
Since p is not less than 1, it follows a fortiori that
| F(z,y,2)] < {V/3(#+)+1}"
If, then, M is the integer next greater than
{v8(#+)+1}
there are an infinite number of sets of integers 2, y, 2 such that
| F (2, ¥, 5)|< M,
But F(z,y, z) is always an integer when @, y, z are integral;
therefore at least.one value of F must correspond to an infinite num-
ber of sets (z, y, z): that is, there must be at least one integer m such

that the Diophantine equation F (3, y, z) = m admits of an infinity
of integral solutions.

2. Let (z, y, 2), (%, ¥, #) be any two sets such. that
F@,y,8)=F(2,9,2) =m.
The expression ‘
CHYtEdt _ () (2 +y0t + 208 (x4 y6% + 208Y)
ztyttat® F(z,y,2)

_ X+ YVt+2¢
m ’

where X, Y, Z are integers, the reduction in the numerator being
made by help of # = u.

Now we 'may suppose (), y', #’) congruous (mod. m) to (2, Y, 8)i
that is to say,
=z, ¥y =y =2 (mod. m);
for not more than m? sets can be incongrnoﬁs, and there are o sets.
This being so, we have-
(X—m)+ Yt+ 28 = {(a'—=)+(y'—y) t+ (7 —2) £}
(z+y0t +26't*) (x + y0't + 208*)
= m (a+ Pt +y8) (2 +y0t + 268*) (z + y0' +268)
= m (A+ Bt+0t)
where 4, B, O are integers.
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Hence X=Y=2=0 (mod m),
t #+yt+28 = 3
8o tha otyttef E it

where £, 7, { are integers ; and therefore

F g = &L 2,

that is, (¢, #, {) is an integral solution of
F(zy2)=1

3. It is clear that, if (¢, 9, {) is any solution, and we put
Grnt+i) =L+t + 48

where % is any integer, then (&, n, {,) will a,l'ao be a solution. . It will
now be proved that overy integral solution can be derived in this way
from a certain fundamental solution.

Write u = z+yt+at
v = z+ybt+20°,
w= z+yb6%+208,

so that, if @, y, z are taken to be ordinary rectangular coordinates,
=0 represents a real plane, and v=0, w=0 two conjugate
imaginary planes intersecting in a real line. The surface

F(a,y,:)-1=0

has a real asymptotic plane v = 0 and a real asymptotic line (v =0,
w=0).

It may be conceived to be generated by the intersection of the plane
u=c
with the elliptic cylinder vw = -‘-1:-,
-¢ being & variable parameter.

For real points on the surface vw, and therefore ¢, is essentially
positive, so that the real part of the surface consists of a single sheet
on one side of x =0 with a funnel-shaped depression extending to
infinity in the direction of the line (v =0, w =0).
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If @, y, 2 are whole numbers, let (2, 9, z) be called an integral point ;
and if, moreover,

F(zy2=1,
let it be called a radical point.
The plane u—1=0

goes through the radical point (1, 0, 0), and cuts the surface in an
ellipse. Let the plane be moved parallel to itself until it first passes
through another radical point (&, n,, {,)- This point is not infinitely .
near (1, 0, 0), and (on account of the shape of the surface) it is not
at an infinite distance from the origin. Hence the plane will have:
moved through a finite distance; .e.,

L... G+t +4,t%)

will be a finite interval, and there will be no radical point (&, %, {)
for which

1< &+nt+ {8 < H+nt+{ 8
(where the signs of inequality must be reversed if &,+nyt+{,8* < 1).

Now, let (=, y,2) be any other radical point; then,if % is any
integer, and we put

__(z'+yt+zt’)__ _ s
Gt natt Gty — TR,

then (a, 3, y) is also a radical point.
Denoting by log (z+yt+2t*) the real logarithm of z+4yt+ 26, we
have : ‘
log (a+pt+vyt*) = log (x+yt +28') —hlog (&+net+4,8).

If log (z-+yt+2t') is not a multiple of log (& +n,t+¢,8), it will be
possible to determine % so that the expression on the right-hand

is intermediate between O and-log ({,+n ¢+ {,*), and therefore
a+pBt+ 7yt intermediate between 1 and & +y,t+{,t*: but this has
been shown to be impossible ; therefore

z+yt+28 = (§+nt+{,85)*

where % is some positive or negative integer.

1 ’y o
If = et {5t
Eo‘l"'lot‘l":ot L+nt+{;

then (&, no, &) has just the same right as (§, n, {,) to be called a
fundamental solution; in the geometrical theory we see, correspond-
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ingly, that the plane w—1 = 0 may be moved in either direction in
order to come to a fundamental point.

4. Various consequences of the preceding theory are immediately
evident. Thus all numbers representable by F are cubic residues of
n; the product of any number of such integers is representable by F';
and if F(#, y, z) be any representation of m, then all the representa-
tions are found from '

¥yttt = (z+yt+zt’) Gyt t+ 4t~

Moreover, this relation between (2,4, 2') and (z,y, 2) gives an infinity
of linear transformations of the form F into itself, the coefficients being
integral, and their determinant equal to 1.

The direction cosines of the asymptotic line of the surface
Fz,y,2) =m
are given by Arpiv=1=8:1:1;
from which it may be inferred that, among the solutions of
F(2,y,2) =m,
there are an infinite number for which 2, y, z are all positive.
If we take a solution (¢, 5, {) of
F(zy2)=1,
for which E4nt+{f > 1,
and .put, as before, (§+nt+{8)* =E+mit+Gt?,

k being a positive integer, then, as % increases indefinitely, we have

at last
Len:L=8:t:1,

that is, EfG, /s

are approximations, more and more accurate as k increases, to ¢* and ¢
respectively, By successive squaring, the approximation may be
made with considerable rapidity.

For example, if » = 5, we may put
t=41, =24 (=14,
and hence £, =05041, n,=2048, ¢ = 1724,
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and so0 on ; where, in general,
& = L4104,
e = 584+ 2,
ue = 420k,
It will be found that  n,/¢, = 1709976 ...,
the true value of 3/5 being 1:7099759 ... .

For some of the simplest values of #, I have calculated the follow-
ing solutions by Jacobi’s method; I believe they are fundasmental,
but this remains to be proved.
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On the Genesis of Binodal Quartic Curves from Conics.
By Hexry M. Jerrery, F.R.S.

{Read May 8¢k, 1890.]

1. In this memoir I propose to generalise Laguerre’s method of
generating bicircular quartics for two distinct families of binodal
quartics—(1) those which pass through two assigned points, (2) those
which touch o given conic in four assigned points. The processes
used in (1) and (2) are adapted from those employed for plane
bicircular quartics and spherical sphero-quadrics respectively.

In a sccond memoir I hope to explain the classification of binodal
quartics.



