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On a Congruence Theorem velating to an Batensive Class of
Coeficients. By J. W. L., Graisger, Communicated June
8th, 1899. Received August 380th, 1899,

1. It is & known theorem enunciated without proof by,Sylvestel','
_in 1861, and proved by Stern,t in 1874, that, if E, be the »'™ Eulerian
number and if p be any uneven prime, then

(—1)*E, = (—1)"E,, mod p,

if n—=" is o multiple of p_;_} This singular theorem expla,ins‘w"h_y

.the Eulerian numbers end in 1 and 5 alternately, and gives rise to
many other properties of the numbers.

T'he theorem.may be expressed in the form
B,=(-1YE, ; modp,

where j = § (p—1) and ¢ is any integer such that n—i¢j is positive ;
- go that, to mod p, any Eulerian number is congruent to one of
the first § (p—1) Bulerian nambers, B, B, ..., E,, .

1 have obtained a comparatively simple proof of this theorem by a
method which is applicable to expansions of a very general character,
and which shows that the property in question is not pecpliar to the
Eulerian numnbers, but is shared by an extensive class of other
number or cocflicients.

Ag very little simplification is produced by considering the special
case of the lulerian numbers, 1 proceed at once to prove the general
theorems. . :

* ¢ Sur une propriété des nombres premiers qui se rattache au théoréme de
Fermat,” Comptes Rendus, Vol Lir., p. 212. .

t ¢ Zur Theorio der Eulerschen Zahlen,” Crelle’s Journal, Vol. Lxxix., p. 67.
It should be mentioned that Sylvester und Stern give also more general theorems
in which the modulus is " and 2. In the present paper the modulus is always
por?2, :
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2. Let X, X;, X;, ... be any quantities connected by the recurring
relation ‘

() A+1)a"X,+(n), a"'bX, .+ (n)g a"*b°X,, 4 ...
v+ (1) ab" ' X 4 (0), 0 X, = o,

where A is any constant, a and b any integers, and ¢, is any quantity
depending upon #n, and such that

¢ = Co_ygprpy Mmod p,

p being any given uneven prime and ¢ any integer. Thus, for
example, o, might be Aa", if p is not a divisor of 4 or a, or
Aa"+ BB+ 0y +..., if p is not a divisor of any of the quantities
4,4q,B,8,0,v, .... The notation (1), is used to express the number
of combinations of # things taken # together, 7.e., (n), is the coefficient
of a' in the expansion of (14z)". The suffix of ¢ is always supposed
to be positive.

It will now be assumed that the congruence
X,. = X,_‘(,,.l), mod »

p being any uneven prime, and ¢ being any positive integer, holds
good for the values p, p+1, ..., n—1 of r, and by means of the above
recurring relation it will be shown that, this being so, it holds good
also for » = n.

Let n = kp+gq, where k and g are any positive integers and g<p. ,
Then

co—(At+1l)a"X,
=b"Xo+ (1), ad" ' X, + (n), 0" * X, +... + (#),.1 0" 'bX, .,
= "X+ (1), ab" ' X+ (5), 0" * X 4 ... 4+ (0) 107 0P X

+ (1), 06" P X, + (1), 1@ B P X, A () @B X,

-1 - (k- - Sk-1Mp-
+(")0_“palk )p pn-¢ UpX(k-l)p"'"(t-l)p;l a(l. N+l pn (k-11p lx(hm"l
) ) ) +.-.+('n«)‘~p_| a.p-lbn-kp’lxlp-l
+ (1), a"b"'bxxp'i'(“)hpna”” b -ke- Xipeat ..

2 (h),,,"-,u"”“"bX.,,"_l.
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‘Now it is known* that, if p is prime.a.nd g and s are less than p, then
(kp+ )44 = 0, mod p, if >4,
and = (k),x (9),, mod p, if s : q.
Reducing the coefficients by this rule, and reducmg also the X's by
the congruence X, =X...p.y, modp,
and the powers of a and b by the congruences
a' = at"Y), mod 1;,

b == bt mod p,
we find that

e—(A+1)a X,

= 1M 9X,+ (g), ab* 7 X, o+ (9)g %1 Xyt ..+ (g), 0K,
+(k), { ab** 1 X, +(9), @0 Xyt (g), @ B XK}
+(k) {a’b‘" “X,+(q) a’b‘”"Xa+ +(q) at bt X .,}

+(k),‘ 1 a""b“"X,‘ 1+(‘1)| *b"X;+ +(‘I)q at*” 'kaw |}
+ (k) {a'b" X+ (), 0 Xy 4. +(9)g-10" 7 Xy}, mod p.

‘Collecting the coefficients of X, X;, X,, ..., the right-hand side of
this congruence becomes

B e X, +abtt et {(k) 4 (g} X+t 177 {(R)s+ (g (R)+(q)s} X,
L @ () (g) (R (9 (B + ()] Xat
a7 { (1) + (@ (Bpcr - +(@)F} Xa+ ..
cor @b {(g)g1 ()t (2)g (R} Xevgons
which = 0*** X+ (k+q), ab** 7' X, + (k+ ), a®0**** X, 4 ...

..+(k+q)g¢q_1@k+q'lbxk~q-l
= 61,g— (A+1) a*** X,,,, by (1).

* Quarterly Journal, Vol, xxx., p. 152.

+ This term is not reached unless % < 7; but we may regard all the coefficients
as of the form
' (k)m + (q); U‘)m- 1+...+ (q)... 1 (L 1+ (q)m = (L + @)y
if we suppose that in general (r), denotes zero when s > ».

' o2
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Thus, = A+ "X, = Croq— (A+1) @**1X,,,, mod p.
Now, : Chprg = Clagy Gapeg = @9, mod p,
80 that, if a is not divisible by p, this congruence gives
Xo= Xu.kip-1py modp;
and therefore the congruence
X, =X, /.y, modp,
holds good also when » = n.

It remains to show that this congruence holds good for r=p.
Putting # = p in the original recurring equation (i.), we have
¢,—(A+1) a’X,

=0 Xo+ (p),ab" ' Xy + (p); 0" X+ ... +(P),- a”"bX‘,,,,

All the coeflicients on :thc right-hand side, except the first, are
divisible by p; and therefore

) ep—(A+1) a’X, = b’X,, mod p,
e, e—(A+1)aX, =X, modp.
Also, putting 2 =1 in (i),

a—M+1)aX, = bX,,

whbnce, since ¢, =¢, modp,
we have X,=X,, mod p;

8o that f;]}c'001|gl-11e11ce holds good for » = p.

3. The preceding investigation fails if ais divisible by p; so that
the prime divisors of @ must be excluded from the ndmissible values
of p. Also, no divisor of a denominator of any of the X’s can be an
admissible value of p. If the denominator of X be m, and if the
quantitics ¢, have in their denominators only powers of certhin
numbers a, 8, v, ..., then the denominator of X, can only contain m
and powers of ¢, A+1, and «, 3, v, .... All prime numbers therefore
which are not divisors of a, A+ 1, m, a, /3, y, ... ave admissible values
of p.

It will be noticed that in the recurring relation (i.) we may replace
the powers of @ and b, o and V', by «, and b,, where a, and b, are any
quantities which satisfy the same congruence as c,, 7.¢, 5o that

a = a,_¢potyy by = by, Mod p.
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4. In preclsely the same manner, we may show that, if Xo, Xy X, ..
are quantities connected by the recurring relation

(i) (A1) a™ X, + (2n)y 2 0* X, 0+ ..
vt (20) 354 a’b""”X,+ (20),, b"’"X& = c,,
where &, a. b é,re as Before,' and
Can == Bautpet) ,mOd.}.” ‘
then Xow = Xou_1(p-1y, mod p.

1t is convenient to introduce the quantities X, X, X;, ..., all of
which are supposed to be zero; in the case of these quantities there-
fore the congruence

X, = X,..p-1, mod p,
holds good. o
Thus we may write (ii.),
cn—(A+1) a Xy,
= b X+ (2n), ab™ ' X, + (2n)g 'V 2 X+ ... 4+ (@n) ™ @™ DXL,
Supposing, now, that the congruence
X, = X,.t(p-1, mod p,
holds good for » = p+1, p+2, ..., 2n—1, we find, by putting
‘ 2n = kp+q

and reducing as before the exponents and suffixes, that the nght-‘

hand side
= 6,y—(A+1) &*7X,,,, - mod p.

Therefore Xow = Xirpy . .mod p,
and the congruence holds good also for » = 2n.
Putting 2n = p+1 in (ii.), we have
G— (A1) 1 X, = B X, + (p+1), b X, + (p+1), a®b" X, + ...
et (p+1), @ 0K, 4+ (p+1),0b X,
= I‘"“X +ab’ X, +a’bX,, mod p,
= b’ Xo, mod s
since X, and X, are zero; and, by putting n = 1 in (ii.),
a—(A+1) X, =X,
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Thus con—(A+1) ' X,,, = ¢,—(A+1) a’X,, mod p,
and therefore X=X, modp;
so that the congruence X, =X, -1 mod p,

holds good for r = p+1, and therefore for all higher values of r.

5. The same reasoning is applicable to the recurring relation

(iii.) (A1) ™' X, 00+ (204 1)ga™ 0 X, 5+

et (2041 )an-30°" 2 Xy + (204 1), @b X, = capayy.
where Coue1 = Gust-tp-ny Mod p.
For, introducing the zero quantities 4\_’0, X, X,, ..., we have
tma—@A+1)a™' X,

=" X, +(2n+1),ad" X, +... + (2n+1),, a™bX,,,
and, if we assume, as before, that the congruence

X, =X, ;.1 mod p,

holds good for all values of 7 from p to 2n inclusive, we find, as
before, by putting 2n+1 = kp+q, that the right-hand side -

= ¢ g—(A+1) **2 X, mod p.

Thus » Xy = Xipy mod p,
and the congruence holds good also for » = 2n+1.

Putting # = p in (iii.), we have |

o—(A+1)a’ X, = (p)ob* X, + (p)i b’ Xy + oo + (P)p-10”7 10X,y

=0, mod p,
since X, = 0; and, putting 2u+1 =1 in (iii.),
ag—(A+1)eX, =0

Tllérefore X, =X, modp,
and the congruence X, =X, p.1 modp,
holds good for » = p, and therefore for all higher values of ».

The remarks in §3 apply also to the recurring formule (ii.)
and (iii.).
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~ 6. It has thus been shown that, if the. X’s are defined by any one
of the recurring relations

@) (A+1) a"X,.+(n).a“ X, +...+ (n)p1ab" 1 X + (n), 0" Xy = ¢,
(i) A+1) e X+ (2n)y a0 K,y + ...
v 4 (2 gy @D X (20)0 B X, =

(i) A+1) a1 X, 4 (2n+1), a0 X, + ...
+ (2n+ l)!u-i aSbﬂn-QX._*_ (2"’+ l)gn ab!uxl = cﬁll#h

where, in (i.), € = Cuotgp-yy mpd Py .
in (ii.), €y = Cpyop(p-1y Mod p,
in (iii.), Cn 1 = Cansr-t(p-1, Mod p,
then X. = X,,_, p-1 mod p.

No number which is a divisor of the denominator of any X is an
admissible value of p, and there are also the other restrictions
mentioned in § 3.

In the recurring formule (i. ), (ii.), (iii.), the powers of a and b,
viz,, a" and b, may be replaced by a, and b,, where «, and b, satisfy
congiuences similar to that satisfied by ¢, in the same rqlation.

7. The recurring relation connecting the Eulerian numbers, viz.,

By = (20); Byrot (@) By e+ (= 1) (20)1os By
+(=1D.(2n)0 B, = 0,
is & fxm-ticular case of (ii.), corresponding to
A=0, a=1, b=1, ¢=1, ¢,¢cH ... =0
X;n=(—1)"E,.

Tn this case, putting j = 5 (p—1) as before, the general congruence
theorem becomes

(-D)"E, = (—-1)"YE,.4, modp,
which is the Sylvester-Stern relation (§1). The Euleriun numbers

are integers, and therefore all uneven primes are admissible values
of p.
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8. The recumng equations (i.), (il.), (m) arise respectively '‘from
the expansions

i) 2
o6 = + -2 + Z +&e. .
@ a 2 a,b 3! s ...X+X,:v+Y|’w +4\’3w +ée,
Aen” 2! 3!
¢ @, ¢
L Gtgy oty T X, .
(ii.) ' __X+7)—'—a:+4‘a;+&c.,
A+cosh —=
c,-“i+§*;£;+—f“,-'—"’;+&c. ¥
(ii.) s 9 a b’ g _xrc+‘8 S+ + 5Pt
A4cosh — 2 ’
a

or, putting ax for z, from the expansions

Cot @+ 2 at+ 2 aP 4 G,
@i.) - 2)\'+e°’ 3! =X, +X, az+ Y- (L’L’+§a a,’wa+&c
Gs 24
(ii.) b g o gt de = X,+ “2 o't + X4 gt + &,
)\+cosh b 4! "
r,w-l- c, 4+ c" s 2’ + & X, X
(iii.) = X,az+ =3d 'v“+ a®* 4+ &e.

}\ + cosh bm 3!

9. If weput A=0, a=1, and replace b” by b,, these. expansions
become

» 0y n
20 = X
n. —_ Em
b - %
2@ B oot

On'

: Xl n
(l') _, T

' qu \2n

| — ©
——— — *
» Do u ° (2n)!

2: c'znol__ an+l X
(271+1)' — M+l M4l
(iii.) —_—_—,. b T =3 (2n+1)'1' .

° @m)!
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The. sole condition in (1) is that b, and ¢, should satisfy the com-

gruence ,
Uy = Wyog(poyyy  Mod p.

If this condition is fulfilled, X, also satisfies the same congruence.
Similarly, in (ii.), if b,, and c,, satisfy the congruence

Up = Ugu-e(p-1), Mmod p,
then X, satisfies the same congruence. In (iii.), if
c.'ul+l = Cinel-t(p-1 Illl’)d P .
and by = bau-t(p-yy, Mmod p,
then Xowe1 = Zousr-tp-1yy mod p.
The expansion (i.) shows that, if we have two series of the form

© M)
35 - s
n.

in which the coeflicient a, satisfies the congrnence

‘lL,. = un-t()v-l)a mOd 177

. . . . .
then .Y,, the coefficient of —in their quotient, satisfies the sameo
n.
congruence. :

10. The formulwe (i.); (ii.), (iii.) of §9 include some very general
expansions. Thus (i.) includes the expansion of any quantity of
the form ST

CAet - Bef 4+ Ce t L
A" F et 4+ (et

where a, 3, v, ..., a, 8,7, ... are integers; (ii.) includes the ex-
pansion of any quantity of the form

3.4 cosh oz

S A’ cosh o'z’

. © 34 sinh ax

and (iii.) of the foom $4 oosh aa’
If in (ii.) and (iii.) we replace the hyperbolic by circular functions,
which merely requires the substitution of a7 for # on the right-hand
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side, we obtain the expansions

oy 2dcoser _ o Y, ey
(i) S osam = @i

(iii.) SAsinaz - '2: Yq,,,! wg,.,]

SA’cosa’z ° (2n+1)!
where, in (ii.), Y, =(-1)"X,,
and in (iii.),’ Yo = (—1)" X

The Y-coefficients therefore satisfy the respective congruences
Y-ﬂn = (_l)l.l(p-l) Yz'u!(p-])b mOd ?7
Yzm = (—1)"”"-“ Yﬂnu-t{p-l)’ mod P

11. These expansions include, besides the Eulerian numbers,
several similer sets of coefficients which have been considered in
some recent papers in the Quarterly Journal of Mathematics® and
Messenger of Mathematics.}

The Eulerian numbers may be regarded as defined by the expansion
1 E

@) =1+ ' '+ —-':c + .'z:°+&c
cos
and the other coefficients I, H,, J,, ... as defined by
. . S L 2y Iy 2+ o4 & }
(@ii.) 2coea:+l—"{j°+2'm+ !x+&c. )
1 _,_{ H, +, Hy }
(i) a1 =¥ +zv gy,

(iv.) _‘chgi"_=_§{']o Jl :+Jg 4+J, °+&c}

2cos 2z +1
cosa _ P, g Py o
(v.) - P, +2' a:’+ ! +6! =+ &c.,
(vi) - cs'é:—;é = Qx+ ?" m’+ 4, a?+&c.,

* ¢ On the Bernoullian Function,”” Vol. xx1x., pp. 1-168.

t “On the Definite Integrals conmected with the Bernoullian Function,”’
Vol. xxv1., pp. 161-182, and Vol. xxvir., pp. 20-98. -
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L
i) 22 p B B By,

(viii.) ”_“% = Ta+ ?'fz'f Zgau&c.'
All these coefficients therefore satisfy a congruence of exactly the
same form; ez. gr., taking I,, we have

(-D"L, = (—-l)”'“I -y mod p,
that is, IL=(-DY1_., modp
The coefficients are all integers, except the I's and J's, and the I's
and J's contain only powers of 3 in the denominator (see the next
paper). Thus, except in the case of the I's and J's, p may be any

uneven prime, and for the I's and J's the value p =3 is alone ex-
cluded.

12, The X-coefficients in the expansions of §§ 8 and 9 include the
Bernoullian functions B, (z) and A, (2),t which therefore, in general,

¢ The coefficients S, defined by the equation
0827 _ 80+ §ix9+-1z‘+s' 28+ &o.
< co8 3% 2!
were considered in Messenger, Vol. xxvim,, p. 49. The quantities R, and § _are
conneoted by the relation 2R, + Eu = 38..

Both R, and S, can be expressed in terms of E,, the formula being
: n
-Rn = “‘—4 s Em su = 3 +l Eu

The quantities H, and J, may be expressed in terms of I,, by the formulee
H, = 2"+ 1)H,, J,=202"+1)1,
(seo § 24 of the next paper).
+ The functions B, (x) and A,'. (x) may be defined as follows : —

Bu@) = { o= s (Bt ) Bt 4 ]

the series being continued up to the term involving z or 23, so that the last term is
(=1} V(a1 Bynoyyz or (=1 (-2 Byu-g 2%,
acoording as i is uneven or even ;
4, (z) -'-}; {—'21 2%~ 1m(n)g (23~ 1) By2*~3 + (n), (24—1) Byzn=—.., },

the series being continued up to the term involving z or 2%, so that the last term is
(=1 V()1 (2" ' =1) Byw-nz or (—1)"(2"—1) B,

acoording as. s is uneven or even. (Quarterly Journal, Vol. xx1x., pp. 7, 94). In
these formule B, denotes the 1¢t Bernoullian number.
These definitions have been given at full length, as there are several slightly
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satisfy the congruence
Uy = Wyoi(p-1) mod P )

It will be shown that the only inadmissible values of p are the
divisors of the denominator of z. The modulus p, as in-the preceding
sections, is restricted to uneven primes.

Taking first the function A, (z), we have
LA b 3 8 Ea »
Fri= A ( ) +adi (5)=+as (% ) gy Hodi ( ) 57+
which is included in formula (i.) of § 8.

It follows therefore that, if o and b be any positive integers, which
we may take to be prime to one another, then

n- ’ b — ne . b
@i, (—a) = a1V AL (a,)» mod p.

Since a" = """, mod p,
we find therefore that, if p is not & divisor of a, then
e , b
Au (';') = Au-l(p-l) (7)) mOd b

It may be remarked that, if « and U are integers, the quantity

/
a4, (%) is necessarily an integer, except for a denominator con-
taining powers of 2; for, putting
(b
Q. = a"v—]Au (;’: )')

the expansion is

ehz
11 ao+ala:+ “ x + s x‘+&c,

1

. T T 0 RO

differing forms of the Bernoulliun function, each of which is epecially adapted to
some of its applications. Thus for very many purposes it is convenient to use a
function 4, (z) in place of B, (z) as just defined, where .. () is the snmo ns
By, +1 (z)! but B
A2 (Z) = Dy, (-") + (" l)" -1 "I";‘-

It is also frequently convenient to meke a further modification, and use the
functions ¥, (z) and U, (z), where
‘ Va(@) s ndy(z) and U, (2) = nd, (z)
(Quarterly Journal, loc. cit., p, 115).
* Thiaformula may be derived from p. 94 of Vol. xx1x, of the Quartsrly Journal.
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which gives the recurring relation

2(1,; + (")l a;;,._. + (n), ll’(t”_g +...+ (n)" d"ao . bu,

where a;= §. Thus a, must be of the form _integer

power of 2

This recurrfng relation shows also that, if a be prime to b, the
numerator of a, caunot be divisible by a.

Since the congruence
"= 4 b — ,. ’ b
a4, ( ;) =a"'4,, (—~ ), mod?,
where n—m =t (p-—1),

holds good for all (uneven) values of p, and since a4, —ii) contuins

only.a power ,,(:,5 2 in -the denominator, and cannot contain.a.as a
factor in the numerator, we see that nothing exceptional occurs when
p is a divisor of q, for in this case the congruence does.not in genelul
reduce to 0 = 0, mod p.

As an example, take the formula
32 A‘Zuvl ('8') - ( 1)“ " ‘

where H, is the same as in the second expansion in"§' 11

It follows therefore that I;’! is an integer, except for powers of 2 in

the denominator (which, as a fact, do mot occur), and that the

Ig" (thn.t is I;r" 1tSelf) is not divisible ‘by 3, and we

have, taking p = 3,

numerator of

H!‘ = (= ‘&:‘
3 - ( 1) 3 [} mod 3.

13. The proof just given of the congruence

a*'A, (%) =a""'4,, (—2—), mod p,

* Quarterly Journal, Vol. XXIX., p. 107, or Messenger, Vol. xxvr., p. 178.
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applies to all values of the suffix n, even or uneven; it is, however,
interesting to give the expansion formulse in which the suffixes are
all uneven or all even, and from which the congruence-theorem may-
be derived separately for uneven und for even suffixes. These expan-
sion formule are

%&ogh(2b—a)z=A((z)+ ’Aa( )(Zx)’ ‘A;(%) (2:1:) (22| g,

cosh az
18inh (2b—a)a _ (b sqr (b (22)°
27 cosh az —aA,(a)%-l-a,A.(a) 3!

+aiai (L) 2oy o
a
which are included respectively in (ii.) and (iii.) of §8.
14. Passing now to the function B, (z), we have

eu—l —12-+aB ( )a‘+a’B,( )2' +a'B, ( )f":-}-&c.,f

e“—1

and, by dividing both numerator and denominator by e*—1, the
left-hand side becomes

LRt Ll U Y |

P e
This form is included in (i.) of §9, being a special case of the first
form noticed in § 10 ; so that

a"-'B, (%) =a“'B, (%), mod p,

if n—m=t(p—1);

and therefore, @ and & being prime to each other, and p not being

a divisor of a,
b

b
Bu (';;') = Bu-t{y—l) (';)’ mOd P-
1t is easy to see that B, ( 7’;) can contain only powers of a in the
denominator, for, putting
pr=142%... + (a-1),
v, =142+ ...+ (b-1),

® Quarterly Journal, Vol. xx1x., p. 107,
t+ 1b., Vol. xx1x., p. 7.
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and By =ua"'B, ( b ),
aQ
the expansion formula gives

b+v,z+ "a:+ a:+&c
2! ;+B,+B‘w+§;w+&c,

a+pe+ g? 2’4 g"’ )+ &e.

which leads to the recurring relation
b
a’ﬁn + (n)l I‘)/;u-l + (n)zl“gﬁu«z +...+ ('ﬂ)ni‘u ; =V,

Since the u's and »’s are necessarily integers, this rvelation shows that
/3. can contain only powers of ¢ in the denominator.

15. The expansion formule in which the suffixes of the B's are all
uneven or all even are

18inh @b—a)z _ Zb—a 2y (b @w)" ¢ (22)*
sinh az. 2a +aB“(a) 21 B{'(u) 4! +é&e,

|0081LLb —a) z—cosh az aB,(—l-);) 2.u+a”1},(a)(2'f) o

sinh ax

Ilf »is a positive integer, sinhrx contains sinha as . factor, the
other factor being

142 cosh 22 + 2 cosh 4w+ ... +2 cosh (#+—1) @, if + is uneven,
and  2cosha+2 cosh 3z+ ... +2cosh (r—1)x, if riseven.
"Thus the left-hand side of the first equation is of the form

34 cosh ws

SA cosh a’z’
and, since cosh (2b—a)z—cosh ww = 2 sinh ba sinh (b—a) ,
the left-hand side of the second equation is of the form

34 siph ar

A sinh o

The two expansion formulic are therefore included respectively in
)

(ii.) and (iii.) of § 9.

* Quarterly Journal, Vol. xx1x., pp. 5 and 6, or p. 119.
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16. In connexion with' these formule it may be remarked that
the expansion

sinhez e Xy 8
sinh ba ~ X°+ o1 *® + 6! o'’ + &e.

gives rise to the recurring relation
(2n4+1) a™b X3, + (20 + 1)y a™'b* Xy a4 .o + (20 4 1),,,0"" ' X,
+ (2’ﬂ+ 1)21_;01 blb“lxo = g™,

This relation is of the same kind as (i.), (i), (iii.) of § 6, and it is
eisy to see that the reasoning employed in §§ 2 and 4 holds goud -also
in the case of this formula, and shows that X, satisfies the con-

Jruaence. .
!b Xm— -t (p=1)r .modp.

1t would seem, however, that this result could not be of any practical
value, since X, a8 calculated from the.above recurring relation,
might contain in the denominator uny uneven numbers up to 2n+1,
80 that there might be no admissible value of p; but this is not the
case, for the loft-hand side, on dividing both numerator and de-
nominator by sinh @, becomes the quotient of expansions which ave
of the forms 23 cosh (2r+1)z or 1423 cosh 2z; and therefore the
expansion is included in (ii.) of §9. We see, too, by forming the
recurring equation corresponding to, this form of the left-hand side,
that «™ X,, can contain only powers of b in the denominator. Thys
the only values of p to be excluded are those which are divisors of
a and ).

1f we put a = 1, so that

ginh ez __ 4 X, Xg 0
sinhb:t:.-'l 2'm+ 6'z+&c,
then X = XZ»-i(y-l)a mod p,

for all uneven values of p that-are not.divisors of b.

17./ We may obtain this result also in another manmer; for, from
the first formula in § 15, we have

ysimhor _ o pp de) (B0)! o (bt (20)°
% ginh bz +bB'( ) a1 bB°(2b) 4! + &o.
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Jomparing this expansion with that just written, we have
s - b+c)
— )10 3, ~T>).
XKoo= 200 By (2E)
and therefore, by § 14, if p iy not a divisor of b,

X’lu = X2u-l (p=1)s mod p.

18. In the preceding sections p has always been supposed to be an
uneven prime, and it now remains to consider the case of p = 2.
The residues of the X-cocfficients with respect to modulus 2 may be
easily determined, in the case of any of the expansions, by means of
the recurrving formulwe.

Consider first the recurring formula (i.) of § 6, in which, writing
X for A+1, and putting n =1, 2, 3, ..., we have

NaX, +bX, = ¢,
Nt X, + 2,ab X, + ¥ X, = c,,
Nt X+ 3, b X+ 3,ab’ X, + 88X, = ¢,

Suppose A’=1, mod 2, and let a and b be uneven integers. The
assumption A= 1, mod 2, excludes the case of A" having 2 as a
divisor in the denominator. It is supposed that ¢, c,, ¢y ... ave all
= 0or all = 1, mod 2; so that none of them can have 2 as a divisor
in the denominator. The quantity X, (which is the value of the
function expanded, when @ is put = 0) is also supposed not to have
a denominator divisible by 2.* '

1t will now be showu that X, X, X, ... are all =0, mod 2, if X,
€13 € Gy -ov e all = 1, or ull = 0, mod 2; but that X, X,, Xj, ... we
all=1,mod 2, if X;=1 and ¢, ¢, ¢, .. are all = 0, mod 2, orif
X, = 0and ¢, ¢, ¢, ... wre ull = 1, mod 2.

[. Let X,=1, and ¢, ¢; ¢ ... = 1, mod 2.

The recurring formullﬁ give
NeX, =1-1=0, mod 2, sothat X, =0, mod 2;
Na'X,=1-1—0=0, mod 2, so that X, =0, mod 2;
Ne*X;=1-1-0-0=0, mod 2, go that X; =0, mod 2;

and so ou.

* Since ¢y = A’X, =i Xy, mod 2, we may use ¢; in place of X, throughout.
VOL. XXXI.—N0, 692, [
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IL Let X, =1, and ¢, ¢;, ¢, ... =0, mod 2.
In this case
ANeX, =0-1=1,mod 2; so.that X, =1, mod 2,
NatX, = 0— (b +2,ab) = aim (a+b)! = 1, mod 2;
so that X; = 1, mod 2,
N* X, = a®~(a+b)*=1, mod 2; sothat X;=1, mod 2,
and so on; since, ¢ and b being uneven, «"—(a-+b)" is necessarily
uneven.
III. Let X, =0, and ¢, ¢, ¢y, ... =1, mod 2.
In this case |
‘aX, =1-0=1, mod 2; so that X, =1, mod 2,
Ne'X; =1-0-2,ab = 1+’ +b*—~(a+b)* =1, mod 2;
' so that X; =1, mod 2,
Na®X, = 1-{-a‘+b’-—(a.~+-b)s =1, mod 2; so that X; =1, mod 2,
and so on. o :
IV. Let X, =0 and ¢, ¢, ¢ ... =0, mod 2.
In this case
NaX, =0-0=0, mod 2; sothat X, =0, mod 2,
Na'X, =0, mod 2; so that X, =0, mod 2,

and 8o on.
If b is even, the general recurring formula (i.) shows that

X, =c, wmod?2;
so that, whether the residue of X, be 1 or0, mod 2, the X's = the
¢'s, mod 2. We may always regard « as uneven, and, in fact, there
is no loss of generality in the expansion-formula (§ 8) by putting
w=1.

19. Exactly the same reasoning holds good with respect to the
recurring formula (ii.) of § 6, viz., we have
Na* X+ X, = ¢,
Na'X, + 4,0 X, + X, = ¢,
Na® X+ 6,a'b° X+ 6, b Xy + VX, = ¢,
e

and, under the same conditions as those expressed at the beginning
of the preceding section, viz, A’'= 1, mod 2, ¢« and b uneven, and
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Cgy Cpy Cgy .. A1l =1 or all = 0, mod 2, we find that X,, X,, X, are all
= 0, mod 2, if X, ¢, ¢, ¢5 are all =1, or all =0, mod 2, but that
X; Xy Xy oo areall =1, mod 2, if X, =1, and ¢, ¢, ¢ ... areall
=0, mod 2, or if X, =0, and ¢, ¢,, ¢, ... are all =1, mod 2.

In proving these results we have, in Case II,

2 2n
A’(LQ"XQ,, = '2u+ bﬁn_ ((1,+ b)___"‘;' ((l—b) Y mod 2’

the right-hand side of which is necessarily even.
If b is even, we have evidently
Xy = €y mod 2.
20. In the case of the recurring formula (iii.) of § 6, we have
Nt X+ 3,00 X, = c,, ‘
NP X+ 5,a°b' X, + 5,ab°X, = ¢, _
Xu,’X,-’r 7,00 X+ 7,00 Xy + 7,00 X, = c,,

and supposing X’= 1, mod 2, a and b being uneven integers, and
Cgs Cgy Cpy ... A1 = 1 or =0, mod 2, and separating the four cases

I *X,=1, and ¢ ¢ ¢ -oo 8ll =1, mod 2;

I1. Xl = and ¢, G Gy ... all =0, mod 2;
111, = and ¢, ¢ € ... all =1, mod 2;
IV. = and ¢, ¢, €y ... all =0, mod 2;

we find that ,\',, Xn, X,, ... are all =0, mod 2, if X,, ¢, ¢, ¢, ...
all = 1, or all = 0, mod 2, but that X, X, X,, ... ave all =1, mod 2
if X;=1 and ¢;, ¢, 6, ... are all =0, mod 2, or if X, --0 and
Cgy Cgy Cpy ... are all = 1, mod 2.

In proving these resnlts, we have, in Case II.,

A’(L"’"”XQ,, = (a+b)2,“l+(ﬂ b)2uﬂ a';,,,l, mod 2,
the right-hand side of which is necessarily even; in Case III. the
extra term 1 occurs, but the term in X, which = 1, mod 2, is omitted,
8o that in this case also

Xma =1, mod 2.

If b is even, we have Xowsy = ¢™*, mod 2.

* Since «c = N’X,, we have ¢, = X,, mod 2, and wo may thercfore use ¢, in
place of X, thronghout.
P2



212  Dr. J. W. L. Glaisher on a Congruence Theorem [June 8,

:21..In the eight expansions of § 11, we have respectively..
(1) X' =1l,a=1;h=1;cpcy...=0; X;=1[X,,=(=1)"1,).
(i) M=2;a=1; b=1; ¢ cp . = 0; Xo=3 [X=(=1)"L.].
iy N=3;a=1;b=1; ¢¢,..=0; X,=% [X,,,:(‘—l)" 1.].
(v)N=3%a=1;h=2; 65¢,...=1; X;=2[Xu=(-1)"7.].
WI)N=1l3a=1; b=2; ¢y 06, ... =1; Xy=1[X,u=(-1)"P,].
(viyN=1l;a=1; b=2; t¢, ... =1; X;=1"
[Xouey = (=1)"" ).
i XN=1;e=1;b=3;¢,¢,.. =0, mod 2; X,=1
(Xo =(=1)"R,]
(i) ’=1l;a=1; b=3; ¢y ... =0, mod 2; X, =1
[Xow = (=1 7).
These expansions are included in (i) of § 8, except the sixth and
eighth, which belong to (iii.) of § 8.
The theorems of the three preceding sections are npplicable to the
first, and to the last four, of these expansions, and show that in these
cases the cocflicients - 1, mod 2. Since these coeflicients are all

integers, we thus see that ¥, P, Q. R, 7T, are all nneven
numbers. .

22. When X and X, contain powers of £ in the denominator, as in
(ii.), (iii.), (iv.), it is easy to determine in cach case the residues of
the X's with respeet to modnlns 2 by means of the reenrring velation.
Iror example, in (ii.), where N = 2, X, =1, and ¢, ¢, ... = 0, we sce
at once, from the recurring relation, that

3N.,+1 20, mod 8, sothat X,, =1, mod 2;

and similarly, in (iil.),
X5 +3=0, mod 2, so that X,, =1, mod 2;
in (iv.), 3X,, =0, mod 2, so that X,, =0, mod 2.

23. The fuct that in each of the expansions the coeflicients when
integral (such as the Ji's, the I”s, &c.) end in one or other of two
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digits, or all end in the same digit,* is explained by thé considera-
tion of their residues with respect to the modulns 2 and the
moduolus 5; for, if all the coeflicients have the same residue to
nmodulus 2, and if all the alternate coeflicients have the same residue
to modulus 5, it is evident that all the alternate coeflicients must have
the same residue to modulus 10; so that the difference between any

coeflicient and the coefficient next but one to it must, if integral, be

a multiple of 10.
Putting p = 5 in the general congrnence formule of § 6, we have,

when X, is defined by (i) of §8, X, =X,.,, mod 5,
7] X"u i) I (ll.) %) ‘\’211 = X'In--lh "
L1 -inn 13 1 (iii') ” . ;Ymnxz -X'.':a+l—4h ' 1

Therefore, putting X,, = (=1)* 7, in (ii.), so that the expansion is

¢ Cy
C— L at+ -t at—de.

y TR A A
(ii.) XToonbm = Z,+ ;z—;:v + 4!3a:‘+ &e.,
we have Z,7 Z,.n, modb;

and, putting Xy, = (=1)""'Z, in (iii.), so that the expansion is

c c
cx—-2 ot Bal— e

3! H! Z Z,
(iii.) = Zo4 Dot + Tt ke,
) A+ cos bz . 3! H!
we have Jiw = Aoy, mod 5.

Thus, in both (ii.) and (iii.), the difference between two alternate
Z's =0, mod 5, and when the Z’s are all congruent to one another,
maod 2, this difference must be = 0, mod 10. :

Lt will be noticed that, by putting p =3, we sce that the sum of
any two consccutive Z's, both in (ii.) and (iii.), = 0, mod 3, except,

of course, when 3 occurs as a factor in the denominator of any .of -

the Z’s.

* The Eulerian numbers end in 1 and 5 alternately, the IH’s all end in 3, the
I"s ond in 8 and 7 ulternately, the @Q's all end in 1, the X’s ¢nd in 7 and 5
alternately, and the 7”s in 1 und 3 alternately (Quarterly Journal, Vol. xxix.,

pp- 63, 66, 71, 76 ; or Messenger, Vol. xxvur., p. 51). The endings of tho I's and -

J's uro considered in the next paper (§§ 17, 18, and 30). A tablo of all the co-

efficicnts np to »# =5 was given in the Messenger, Vol. xxvin., p. 81, More -

extensivo tables of I, If,, Ju (up to # = 13) are contained in the next paper
(§§ 14, 25). . ‘
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24. In Vol. xxvu, pp. 75, 76, of the Messenger, it was shown by .
means of recurring formula that, if 22 —1 is prime, '

I’l'u = ’\),u = -,I'u = (_l)u-l

}, mod 2n—1,
1, = l)u = ('_l)"-l 3

with similar congruences relating to other coeflicients, and it was
stated that these results might be extended to the modulus 2n—3, if
prime, to the modulus 2r—0, if prime, &c., and indeed to any prime
modulus. 1t is this extension which has formed the subject of the
present paper.

25. 1t may be remarked that, by putting » = p—1, where p is any
uncven prime, in the recurring equation (i.) of § 6, we ohtain a con-
gruence connecting X, X, X, ..., X,,.,, mod p, viz., we have
A+ ' X, 4+ (p=1), " b X, s+ (p—1)0" VX, 2+ ...

et (=1, 0" Xy =05y
giving

A+ "X, —a" 20N, PO, y— L T N = e, mod p.
Similarly, by puiting 2n = p—1 in the relation (ii.) of § 6, we find

A+ @V, + @ BN, a0 X, .. BT S e, mod p.

In the case of the Kulerian nnmbers this congruence gives, since
B, = I,

By~ By 0+ Byypogy—... + (=1)}""E, =0, mod p;
for the I-numbers, since I,—I,=1%,
it gives
o= Tlip-at Lipy—.. + (=10 L = (=)0, mod p,

and 8o on.

26. In the formula (iii.) of § 6 we cannot put 2n+1 = p~1, but, .
by putting 2n+1 = p—2, we find
A+ a X, o+ 3¢ VY, + 5000, o+ ...
vo+ (p—2) ab?3 X, = ¢,_», mod p.
By putting » =p—2 in (i), we obtain a formula of the same
character connecting X, X}, Xy, ..., X, viz,
A+1) @ X, =202 0N, o+ 30 02X, —...
v —(p=1D) 0" 2, = ¢,y mod p.
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Dther relations may be derived from the recurring formulw in the
kame manner by putting = or 2n = p—2, &c., but the numerical
toeflicients ave less simple.

27. Since this paper was communicated to the Society, my atten-
tion has been called to a paper by Lucas in Vol. vi.* of the Bulletin de la
Société Mathématique de France, in which the use of a recurring series
to prove the congrnence property of the Kulerian numbers is indicated.
Denoting the +*" Lulerian number by (—1)"H,, Lucas shows, by
putting 2n =p—1 in the recurring velation connecting the first
»n Julerian numbers, that

E, \+E, s+, s+ . . +E+E,=0, modp,

which is the formula ebtained in § 25, and, by putting 2z =p+1, p+3,
p+5, ..., he shows that 17,,,= K, I, ,=F, BE,,=E; ..., mod p,
whence it is inferred that generally K, = Ypsrip-1py mod p.  The ex-
tension, however, to the general theorem seems to me to require a
definite investigation of the same kind as that given in §§2-4 of the
present paper. Lucas points out that a similar congruence property
would also hold good with respect to the coeflicients in the expansion of

(~ f ) , and, with restrictions, to any function of ¢". These forms
"

are included in the general expressions of § 10.

I may mention that, since writing this paper, I have proved by
nieans of the theorem in §5 that, I3, denoting the ' Bernonllian
number,

"‘( 1)" B,. ",, mod p,

where, as in §1, j = 3 (p—1), and p is any uneven prime, such that
2 =118 not a divisor of 2n.  This theorem and its consequences have
been considered in two papers in the Messengert and one in the
Quarterly Jowrnal.y In this last paper the theorem in §5 is proved
separately in detail.] S -

Sur les congruences des nombres culériens et des cocﬂmcnts différenticls des
fonctions tngonomLtnqucﬂ suivant un module premier,’ pp. 49-54. -
t ¢ Fundamental Theorems relating to the Bernoullian Numbers,” Vol. xx1x.,
p- 49 and p. 128.
*2 5“ A Cungruence Theorem relating to the Bernoullian Numbers,”” Vol. xxxr.,
p. 263.
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