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On the Instability of Jets. By LORD EAYIIEIGH, F.R.S.

[Read November Uth, 1878.] •

Many, it may even be said, most of the still unexplained phenomena
of Acoustics are connected with the instability of jets of fluid. For this
instability there are two causes; the. first is operative in the case of jets
of heavy liquids, e.g., water, projected into air (whose relative density
is negligible), and has been investigated by Plateau in his admirable
researches on the figures of a liquid mass, withdrawn from the action
of gravity. It consists in the operation of the capillary force, whose
effect is to render the infinite cylinder an unstable form of equilibrium,
and to favour its disintegration into detached masses whose aggregate
surface is less than that of the cylinder. The other cause of instability,
which is operative even when the jet and its environment are of the same
material, is of a more dynamical character.

With respect to instability due to capillary force, the principal
problem is the determination, as far as possible, of the mode of disinte-
gration of an infinite cylinder, and in particular of the number of masses
into which a given length of cylinder may be expected to distribute
itself. It must, however, be observed that this problem is not so
definite as Plateau seems to think it; the mode of falling away from
nnstable equilibrium necessarily depends upon the peculiarities of the
small displacements to which a system is subjected, and without which
the position of equilibrium, however unstable, could not be departed
from. Nevertheless, in practice, the latitude is not very great, because
some kinds of disturbance produce their effect much more rapidly than
others. In fact, if the various disturbances be represented initially by
au aa» a8, ..., and after a time t by axe

qx\ aae
?»*, «8e

9i<,..., the (positive)
quantities qv qit qs, &c, being in descending order of magnitude, it is
easy to see that, when au a2, ... are small enough, the first kind
necessarily acquires the preponderance. For example, at time t the

ratio of the second kind to the first is _?e~(?l~Ja)', which, independently

of the value of a2: au can be made as small as we please by taking t
great enough. But, in order to allow the application of the analytical
expressions for so extended a time, it is generally necessary to suppose
the whole amount of disturbance to be originally extremely small.f

* Additions mado since tho reading of the paper are enclosed in square brackets.
April, 1879.

f Somo of tho theorems given in tho Proceedings for June 1873 (Theory of Sound,
§§ 88, 89), for tho periods of vibrations about a configuration of stable equilibrium, are
applicable, mutatis mutandis, to the times of falling away from unstable equilibrium
when various types of displacement are considered. For example, tho application of
a constraint could never diminish tho shortest time previously possible.
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Let us, then, taking the axis of z along the axis of the cylinder,
suppose that at time t the surface of the cylinder is of the form i

r = a+aoosicz (1)',

where o is a small quantity variable with the time, and K = 27r\~l,
\ being the wave-length of the original disturbance. The information
that we require will be readily obtained by Lagrange's method, when
we have calculated expressions for the potential and kinetic energies
of the motion represented by (1).

The potential energy due to the capillaiy forces is a question merely
of the surface of the liquid. If we denote the surface corresponding
(on the average) to the unit length along the axis by <r, we readily find

a = 2ira-H7raieaa8 (2).

In this, however, we have to substitute for a (which is not strictly
constant) its value obtained from, the condition that 8, the volume
endowed per unit of length, is given. We have

fif = 7raa + i7ra9. (3),

whence • -> / (£) - ( 1 -*T) «•
Using this in (2), we get with sufficient approximation

a = 2V0rfl>+|2-Va«-l) (5>;

or, if <r0 be the value of a for the undisturbed condition,

From this we infer that, if tea > 1, the surface is greater after dis-
placement than before; so that, if X < 2ira, the displacement is of such a
character that with respect to it the system is stable. We are here
concerned only with values of na less than unity. If Tx denote the
cohesive tension, the potential energy V reckoned per unit of length
from the position of equilibrium is

We have now to calculate the kinetic energy of motion. It is easy to
prove that the velocity potential is of the form

<p = A Jo (iicr) cos KZ (8),

Jo being the symbol of Bessel's functions of zero order, so that

•'o 0 0 = I ~~ 22 "*" 2a 4? ~ 22 4? 6a "̂
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The coefficient A is to be determined from the consideration that the
outwards normal velocity at the surface of the cylinder is equal to
a cos KZ. Hence

iicAJ0' (ina) = d (10).

Denoting the density by p, we have for the kinetic energy the

expression T = \p I 2na. 6 < - dz;
J dr{ma)

or, if we reckon it in the same way as V per unit of length,

Thus, by Lagrange's method, if a oc eqt
t

2 ~P /(
•which determines the law of falling away from equilibrium for a
disturbance of wave-length X. The solutions for the various values of
X and the corresponding energies are independent of one another; and
thus, by Fouiier's theorem, it is possible to express the condition of the
system at time t, after the communication of any infinitely small distur-
bances symmetrical about the axis. But what we are most concerned
with at present is the value of g8 as a function of na, and especially the
determination of that value of na for which j 2 is a maximum. That
such a maximum must exist is evident a priori. Writing x for ica, we
have to examine the values of

(1 —a;3) . ix . Jo' (iz)

Jo<?»)

Expanding in powers of x, we may write, for (13),

or

Hence, to find the maximum, we obtain by differentiation

- = 0 (16).

If the last two terms be neglected, the quadratic gives aj' = "4914. If
this value be substituted in the small terms, the equation becomes

•98928 - £ a > ' + T V » 4 = 0 ,

•whence a1 = '4858 (17).
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The corresponding value df X is given by

K = 4*508 X 2a. .(18),

which gives accordingly the ratio of wave-length to diameter for the
kind of disturbance which leads most rapidly to the disintegration of the
cylindrical mass. The corresponding number obtained by Plateau
from some experiments by Savart is 4*38, but this estimate involves a
knowledge of the coefficient of contraction of a jet escaping through a
small hole in a thin plate, and is probably liable to a greater error than
its deviation from 4*51.

The following table exhibits the relationship between «8 or K*CL9 and
the square root of expression (13) to which q is proportional:—

as9

•05
1
•2
•3

•1536
•2108
•2794
•3182

a?8

•4
•5
•6
•8
•9

•3382
•3432
•3344
•2701
•2015

In the cases just considered, the cause of instability is statical, and the
phenomena are independent of the general translatory motion of the
jet ; but the other kind of instability has its origin in this very trans-
latory motion. In his . work on the discontinuous movements of fluids,
Helmholtz* remarks upon the instability of surfaces separating portions
of fluid which move discontinuously, and Sir W. Thomson,f in treating
of the influence of wind on waves in water, supposed frictionless, has
shewn under what conditions a level surface of water is rendered
unstable. In the following investigations the method of Thomson's
paper is applied to determine the law of falling away from unstable
equilibrium in some of the simpler cases of a plane or cylindrical
surface of separation.

Let us suppose that the equilibrium position of the
of separation is represented by z = 0, and that on the
and negative sides of it the velocities of the fluid are
to the axis of x, and of magnitudes V and V respectively,
absence of friction, the motion consequent upon any deformation of the
surface of separation is determinate, in virtue of a well known hydro-
dynamical law. By Fourier's theorem, any displacement in two dimensions
can be resolved into component displacements of the undulatory type,
and the effect of any two undulatory displacements may be considered
separately. We might, therefore, take as the initial equation of the

surface
positive
parallel
In the

• Phil. Mag., Vol. xxxvi. 1868. t Phil. Mag., Nov. 1871.
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surface of separation h = JBTcos KX, in which h denotes the elevation at
any point, \ the wave-length of the disturbance, and K = 2JTX-1. But,
as in almost all such cases, it is more convenient to use complex ex-
pressions, from which the imaginary parts are finally rejected. We will
therefore assume

h^He^e4" (19);

and the principal question which we have to consider is the dependence
of n upon K or X.

For the velocity potential of the fluid on the positive side, we may take

<p = Aeinteuxe-"+ViB (20),

in which A is to be determined by equating the value of the ndrmal
velocity at the surface of separation with that obtained from (21).
Thus (the positive direction of z being downwards)

- ^ ( * = 0) = Kie'-'e1"" =~ + F ^ = (m+iVF) EV"V",
dz at ax

whence A = tVr1 ( W + K F ) H (22);

so that <p = i/c"1
 (TJ+KF) Ht?"e?~e-"+Vx- (23).

Similarly, for the fluid on the negative side,

0 ' = -we"1 (n+KV) E.eMei«da+r'x (24).

We have now to satisfy the condition of the equality of pressures. If
a denote the density, the hydrodynamical equation of. pressure for the

firstfluidis p-G-a^-\aU% (25);

and approximately, when 2 = 0,

)' +*f (26).

In like manner, p'.= 0'-o'^-\v' IP (27),
at

where W* = | F^+ F ^ n + i c F ) Heinte<" (28).

Hence a (W + KF) 8 +er' (n+KV')3 = 0 (29),

which is the equation by which n and K are connected.
The simplest case of (29) occurs when a = n, and V = — F, so that

the equilibrium motions of the portions of fluid are equal and opposite.

We have then OT»+ic8Fl = 0 (30);

and for the olovations h = Ee~'vt cfs * * (81).
' B i l l « 3/
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If initially § = 0, we get
at

2 ; : (S2);
indicating that the waves on the surface of separation are stationary, and
increase in amplitude with the time according to the law of the
hyperbolic cosine. By (31), Fourier's theorem allows us to express

the consequences of arbitrary initial values of h and —, within the
dt

limits of time imposed by our methods of approximation.

Next, let us suppose that a = tr, V* = 0. "We get from (29)

» = ir7(-l±») (33),

whence h = HeT*ytf?l~*'ri*-\

of which the real part is
fc = HeT'rt cos K($Vt—x) (34).

In (34) an arbitrary constant may of course bo added to x. It appears
that the waves travel in the same direction as the stream, and with
one-half its velocity. [In the case of the positive exponent, the rapidity
with which the amplitude increases is very great. Since K = 2TT\"1, the
amplitude is multiplied by e", or about 23, in the time occupied by the

«i
tream in passing over a distance X. If \ = Vr, e**r* = e T, indepen-
dent of F.]

As a generalised form of (34), we may take

fc = .4 cosh (|*F0 coaKQVt-x)+Bsinh($KVt) sin K{\Vt—a)...(35),

which gives, when t = Q, h = A cos KX.

If — =±0 initially, B = A, by which the solution corresponding to
Civ

a surface of separation initially displaced without velocity is determined.

If initially ti= 0, and — is finite, we have, as the appropriate form,
dt

x). (36).
Again, suppose that a'=<r, V'= V. In this case the roots of (29)

are equal, but the general solution may be obtained by the usual
method. From (29) we have

T, if we put V — V (1+a),
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The corresponding solntion for h is

h = ei<xeW2+')'rt[AJ'n-+Be-i<vt-] (41),

where A and B are arbitrary constants.
Passing now to the limit when a = 0, and taking new arbitrary

constants, we get
h^e^e'^lA+Bf] (42);

or, in real quantities,

h = C^(Ft-x)lA+Bt] (42).

If initially h = cos KX, — = 0,
Oil

h = cos K (Ft-x) + KFt sin K (Ft-x) (43).

The peculiarity of this case is that previous to the displacement
there is no real surface of separation at all. Its bearing upon the
flapping of sails and flags will be evident.

The proportionality to V"l\ of the time of falling away from equili-
brium follows from the principle of dynamical similarity, as there is no
linear element but A.

When F'= F, the solution is the same, whether </= a or not. For
example, (31), (32), (33) are applicable when a—0.

In general, the solution of (29) is

If <TF+ O'F' = 0, n is a pure imaginary, and the waves are stationary.
We will now suppose that the two portions of fluid are limited by

rigid walls whose equations are respectively z = l, z = —l\ Then,
corresponding to h = jHe*n*e""f we get for the velocity potentials, iu
place of (23), (24),

c o s h f ; ) (45),

x (46),.5f e<Biahd

and, in place of (29),

a (n+icFy cotih rt +</ (n+KF'ycoth KV = 0 (47).

If T= Z, the result is the same as if I and V were both infinite.
If V be infinite, coth KV = 1; (47) may then be applied to a jet of

width 21, symmetrical and symmetrically displaced with respect to the
line z = I, and moving with velocity V in an infinite mass whose
velocity is F'. If F"= 0, <r'= <r, so that the jet is of the same density
as its stationary environment, (47) becomes

coth KI+VSZZO (48),
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of which the solution is

n ^ . F - 1 ^ ^ -(49),
1 + tanha v y '

a generalisation of (33).
Thus h^He^'cosKl- ™—--x~] (50),

Ll+tanhW J
where ? = ^TY] <5 1)-

Htanh*;t
When KI is very small, we may take in place of (50)

h = He^w*™ cos K (Ft-x) (52).

We see, from (52), that when I is small the time of falling away from
equilibrium is increased.

If the condition to be satisfied at z = I be p = 0, in place of -$~ = 0,
dz

the value of <p is

0 = —i*-1 (U+KV) H s i n h K [z~l) einte{"+ Vx (53) ;
cosh KI .

so that, if, as before, -f- = 0 when z = —1\
dz

= 0 (54).

If ?'=oo, a = a, T ' = 0 ,

(M+K^)atanhjc?+wa=0 (55).

This is applicable to a jet of width 21, moving in still fluid with
velocity F, and displaced in such a manner that the sinuosities of its
two surfaces are parallel.

When KI is small, we have, approximately,

h-Ee-^^'rtcosK(d.Ft~x) (56).

By a combination of the solutions represented by (52), (56), we
may determine the consequences of any displacements (in two dimen-
sions) of the two surfaces of a thin jet moving with velocity V in still
fluid of its own density.

[These solutions may be extended to cases where the surface of
separation is not plane, provided that the velocities of the fluids be
constant (F, V) along it. Let us suppose that <j>, \p are the velocity
potential and stream functions for the steady motion of the first fluid,
and that the surface of separation corresponds to \// = i/v At ty = \f/t

let there be a rigid barrier, which of course has no influence upon the
steady motion. Then, if the elevation at any point s, measured along
the surface of separation, be given by

h = He'" eint,
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the velocity-potential of the disturbed motion is

*-ft-» JET(»+rF)
smh K F " 1 ^

If Z be the width of a uniform stream of velocity F, whose whole
amount is equal to that of the stream between \p — \p0 and \p = ypv a n d
if dashed letters denote the corresponding quantities for the second
fluid, we get finally for the equation in n

a coth d (n + KVy + a coth KV (W+KVf = 0,

which is the same form as (47).]

We will now pass to the consideration of cylindrical surfaces of
separation, limiting ourselves for simplicity to the case of disturbances
symmetrical about the axis (#). If h denote the increment of distance
of any point on the surface from the axis, we may take, as before,

h = He{nte(<* (57),

and the corresponding value of the velocity potential for the fluid
inside the cylinder is

<p = AJ0(iKr) einteWt+Fx (58),
in which A is to be determined by the condition relating to the normal
velocity at the surface (r = a). Thus

<h = K-1 (n+icV) HJ°Si!Crle<nte{"+ Vx (59).
J0(lKO)

For the motion of the fluid outside the cylinder, we have, in the first
place, the general form

i =ST +1.21

in which, however, by the condition at infinity, we are to put O=0.
Writing for brevity

+ + W +
we have accordingly

<p'=BX(r)eintel"+V'x (61);
or, on determining the value of B,

X ^ I ( 6 2 ) .X^IeV+Fa?
X W

In the same manner as for plane surfaces, the condition of equality
of pressures now gives

oiK-*(n+KVy?±^+a\n+KVyXl& = ^ (63),
JQ(™O>) X («)

as the quadratic by which n is determined.


