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1. My object in this paper is to prove a theorem which contains as
special cases a number of well known theorems concerning absolutely
convergent series. Among these are, for instance, the following
theorems:—

(i.) the terms of an absolutely convergent simple series may be
permuted in any manner without altering the sum of the series ;

(ii.) an absolutely convergent double series may be rearranged in
any manner as a simple series ;

(iii.) an absolutely convergent double series may be summed
indifferently by rows or by columns (Cauchy's double-series
theorem).

It occurred to me recently that all these theorems are very particular
cases of a general theorem concerning the rearrangement of series. This
theorem not only includes all the known theorems, but is, as I shall
show, the most general possible theorem of its kind ; and, in my opinion,
its introduction lends to the theory a simplicity and generality which is
otherwise lacking.

Series of Type /3.*

2. The ordinary simply infinite series is of type w, that is to say, its
" ordinal type " is that of the class of numbers < w . The sum of two
infinite series ao+«-i-f- • • • + &oH~ &i+• • • ls °f tyPe w • %. A doubly infinite
series, summed by rows or columns, is of type o>2; summed by diagonals,
it becomes of type w. As the class of numbers •< /3 is enumerable, it is
clear that we can arrange any enumerably infinite set of terms in type j3.

* In what follows I shall denote by Greek letters a, &, y, ... numbers of Cantor's firxt. ami
.second classes 0, 1. 2, ..., w, a> + l, ..., w.2, ..., &>•, ..., ww, ... . When it is necessary to dis-
tinguish specially the finite numbers (numbers of \hejtrst class) T shall use m, •», p, ... .
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Suppose then that we have a series of type /3, and, for the present, that
its terms uQ, uXt ..., ua, ..., i^.o, ..., u^, ..., ua~, ... are all ^ 0. There
may or may not be a last term.

Sum of a Series of Type /8.

3. Since all the w's are positive,

«n = ««o+%+...-H*!»-i = 2 uy
y<n

tends to a limit for n = oo. We call this su or 2 uy. Of course it

may be that su = oo. If $„, is finite, sm+n = sa )+K>+---+Ki+n-i has a
limit for n= oo, which we call s.,,.2. This again may = oo, and, if
su = oo, we regard su,2 as also = oo . Thus we may define sm,n for any
value of n, and it is clear that su ^s.,,.2 ^ s u . 3 •••; so that lim sa.n is

71 = 00

determinate. We call this su*. It is clear that we may proceed thus and
define sa for all values of a ^ /?. We call sp the sum of the series. If
any sa = oo, we agree that so- = oo (a ^ a' ^ /?). In this case we say
that the series is divergent. If Sp is finite, we say that the series is con-
vergent in type /3, and write sp = S uy.

The object of this paper is to prove the following

THEOREM.—If a series is absolutely convergent in type /3, it remains
absolutely convergent token its terms are rearranged in another type /3',
and its sums in the two types are the same.

I may observe that the theorem covers the case of any rearrangement
of the series in the same type.

Elementary Properties of Series of Type /3.

4. The series thus denned possess some of the characteristic pro-
perties of ordinaiy series. Thus it is easy to prove that

Vy) = 2 Uy+ 2 Vy
y<P <P

if 21^, 2vy are convergent, and

(2) 2 KUy = K 2 Uy.
<P y</3
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These propositions follow readily from the equations

(a) 2 Wy = 2 iiy-\-ua
y<o+l y<a

and (jb) X u~ = Um 2 uy (a = lim an)

by induction.*
Again,

(8) If 2 uy is convergent, and vy^.uy for all values of y, then 2,vy

is convergent, and its sum ^ Sp. .

The proofs of these theorems are so simple that I need hardly write
them out at length. In each case we show by means of the equations
(a) and (b) that (i.), if they hold for series of type a, they hold for series of
type a - f l ; and (ii.) that, if they hold for series of types av a2, ...
( a 1 < a 2 < . . . , liman = a), they hold for series of type a. As they

evidently hold for series containing only one term, they hold generally.

Proof of the Theorem,.

5. In order to prove the theorem of § 3 we must establish a series
of lemmas.

LEMMA 1.—If a convergent series of type /3 is arranged in type w, the
new series is convergent and its sum ^ Sp.

For the sum of any finite number of terms of the series ^ Sp. This
follows from (3), § 4, if we replace all the other terms of the series by
zeros. The lemma follows immediately.

LEMMA 2.—If a series is convergent in type /3, we can find a finite
number of terms whose sum > Sp—S, where 8 is an arbitrarily small
positive quantity ; and, if it is divergent, we can find a finite number of
terms whose sum > G, an arbitrarily large quantity.

For suppose the first part true for series of type a. Then it is true
for series of type a + 1 . For, if ^n+^Y2-h...4-^YiV > sa—S,

Again, suppose the theorem true for series of the types av a.2, ..., and
a = lim an. Then, since sa — Jim sa , we can choose n so that

71 = 00 71 = 00 "

* One fundamental property of an ordinary series which is obviously not possessed by the
generalized series is that in an ordinary series we can assign a rank after which the terms are as
small as we please.
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But we can choose N numbers ylf ..., yjv < a,,, so that

As the first part of the lemma is true for series of one term, it is true
generally. A similar proof applies to the second part.

LEMMA 8.—If a series is convergent in type w and its sum is su, it will
be convergent when arranged in type ft and its sum will be ^ sm.

This follows at once by a reductio ad absurdum from Lemma 2.

LEMMA 4.—If a series is convergent in type ft, it will be convergent
when arranged in type a>, and the sums will be the same, and conversely.

Suppose it convergent in type ft. By Lemma 1 it is convergent in
type to, and its sum ^ Sp. But, if its sum < Sp, it follows from Lemma 8
that its sum in type ft < Sp, which is absurd. The converse is proved
similarly. From Lemma 4 the theorem follows at once.

A well known particular case of the theorem is the theorem concerning
the summation of a doubly infinite series by rows, columns, or diagonals.
In this case we have to deal with two arrangements in type w2 and one in
type co. Similar theorems for multiple series of any order follow at once.

[It is perhaps worth while at this point to emphasize the distinction
between a multiple and a repeated series, as it is only recently that the
notion of a multiple series has been made at all precise. According to

Jordan the double series 2 um,n is convergent only if all possible

simply infinite series formed out of it are convergent. According to
Pringsheim and Stolz it is convergent if a certain large class of them are.
The point of importance for my present purpose is that in any case to
assert the convergence of a double or multiple series is not really to assert
the convergence of one series of a type different from that of the ordinary
simple series, but to assert the convergence of a whole class of series of
the ordinary type. But to assert the convergence of a repeated series is
to assert the convergence of one series of a type in any case > <«. The
theorem applies to either kind of series.]

6. The theorem is easily extended to any absolutely convergent series,
real or complex.

An absolutely convergent series of type ft is a series of type ft which
is convergent when every term is replaced by its modulus. In the first
plane it is to be observed that the definitions and explanations of § 3 were
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given only for series of positive and zero terms. They apply, however, to
series of arbitrary terms, except that when the terms are not all positive
we cannot be sure that a definite limit (finite or infinite) will be found at
each stage of the process. However, we can prove that an absolutely con-
vergent series of type /3 is convergent; that is to say, a definite limit Sp
results if we carry out the process of § 8.

For suppose first that the terms are all real, and define two new series
"Zvy, 2wy by the equations

Vy = Uy (Uy > 0) = 0 (Uy K 0) , lOy = () (Uy > 0) = ~ Uy (Uy < 0) J

then Uy = vy—wy. Also, since | vy | ^ | uy |, wy ^ | uy |, 2-yv, Swy are
convergent. Moreover, from (1) of § 4, 2 uy is convergent and

V<a

2 Uy = 2 Vy— 2 Wy.
y <<* y < a 7 < a

Now apply the theorem of the last paragraph to each of these series
separately. We find that 2,uy = 2'vy—2'«yy, 2' denoting a series of the
new type. And the right-hand is 2'w7.

Next suppose the terms uy complex, and let zty = vy-\-iioy. Then,
since | vy | ^ \uy \, \ wy \ ^ | uy \, the series 2vy, 2?oY are absolutely con-
vergent ; and the theorem follows as before. The theorem is therefore
proved for all absolutely convergent series.

7. It only remains for me to justify the assertion that this theorem is
the most general possible theorem of its kind. This is evident if we con-
sider that any rearrangement of an ordinary series of type w must lead to
an arrangement in some type /3. The possibility of a series with a non-
enumerable infinity of positive terms is excluded by Cantor's theorem that
any set of intervals on a straight line must be enumerable.*

8. In conclusion, I give an example, suggested by a passage in
Schoenflies's Mengenlehre, of an arrangement of the series

- p + "2* +-32 +•••

• See e.g., W. H. Young, "On Sets of Intervals," Proc. London Math. Soc, Vol. xxxv.,
p. 248. Another question is whether it is possible to define the sum of a series with a non-
enumerable number of terms which are not all positive. It seems to me that the answer is
probably no ; but, as the question involves considerations of some logical difficulty, I shall not at
present attempt to justify this answer.

SBB. 2. VOL. 1. NO. 838. ^
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in type /3, where /3 is at any rate > a/". It is

L 4 JL 4 i 4 J L L . J j

I
72

1 52.72 • "••

"*" 2 2 .3 2 .5 2 "*" 22 .32 .72 ~*~ 2 2 . 3 a . l l 2 "*"'

+ ...

It is easy to see that, if we carry out this scheme systematically,
2 contains every l/?i2 for which n is a product of two primes (in-

2

eluding 1), 2 includes every 1/n2 for which n is a product of three

primes, and so on. Hence 2 includes only those terms for which n

is a product of different primes. The complete series (however we go
on with it) is therefore of type fi > co".


