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40. The numbers E,, I, J,, H, also serve to express the values of
the following definite integrals : —
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41. In the papers in the Quarterly Journal and the Messenger which
have been already referred to certain other quantities P,, @,, It,, S,
', have been considered; the expansions in which they occur as
coeflicients were given in § 11 of the preceding paper (pp. 202, 203).
T'hese quantities are all integers, and their congruence properties are."
therefore similar to those of the Eulerian numbers.

On the Theory of Simultaneous Partial Differential Equations.
By J. E. CamrrerL. Read December 8th, 1898. Received,
in revised form, May 24th, 1899.

The necessary and sufficient condition that any number of partial
diffevential equations, of any orders whatever, in one dependent and
» independent variables may be consistent is that by repeated
differentiations of the equations and eliminations it should not be
possible to deduce any relation between the independent variables.

Such a consistent system of differential equations is said to be
integrable (Goursat, Equations aux dérivées partielles du second ordre,
Tome 11, p. 41). If p is the order of the lowest differential equation
which' can be deduced by mere algebra from the system, and if by
snccessive differentiations and eliminations no equation algebruically

¢ Messenger, Vol, xxv1., pp. 174, 175.
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independent of the given equations of the system, and of order equal
to or less than p, can be deduced, then the system is said to be com-
pletely integrable.

When an equation system is integrable, it i8 not to be expected
that the most general solution of the system is a. general solution of
any one of the equations which make up the system ; in fact, in the
most ordinary case of an integrable system, the solution involves no
arbitrary functions, but only a finite number of arbitrary constants.
Thus, if we write down two partial differential equations f, =0,
fa=0 at random, they will not be consistent; if fy=0 and f,=0
are consistent, it must be owing to a relation between the forms of f,
and f, ; if we consider the form of one of these equations, say f; =0,
as known, then the form of the sccond f, considered as a function of
the variables and the differential coefficients it contains must satisty
certain differential equations. Now, when f; satisfics these equations,
fi1 = 0 and f; = 0 will be consistent; but the common solutions of this
system will ordinarily involve only a finite number of constants.

It is here that we notice an essential difference, between the theovy
of partial differential equations of the first order and those of the
second and higher orders: given any partial differential equation of
the first order f, =0, then a sccond equation f; = 0, also of the first
order, always exists such that f, =0 and f, =0 have common soln-
tions involving n—1 arbitrary functions; on the other hand, if f, is
of the second order, then it is not generally true that any other
equation f, = 0 exists having in common with f; = 0 solutions in- -
volving any arbitrary function. If f; is of a special form, then
fi = 0 may be an equation which belongs to a system having solu-
tions involving an infinity of constants. Such systems have been
called by Lie “ systems of Darbonx " (Goursat, ibid., p. 41) or “systems
in involution.”

If we have any integrable system, by repeated differentiations and
eliminations we can add new equations till, after a finite number of
operations, we have a completely integrable system. If such a
gystem is not in involution, it has the property that differential co-
efficients above a certain order can be expressed in terms of coefficients
of lower order; the complete theory of such a system is given in Lic-
Engel, Trausformations-Gruppen, 1., Kap. 10. The object of the pre-.
sent paper is to develop certain formule analogous to the Jacobinu
series of combinants, by aid of which it may be decided whether or
no a system is integrable.

Before the results arrived al can be stated, certain preliminary
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explanations and’ definitions must be given. If f is a partial

differential expression of order p, and, if we write for .- -—

da .. Qute
Zay ... ay then the quantic in the set of auxiliary variables ¢ ... &,

1 0 .--.a.f.u
S TARE Sp

aj..a,
(the summation being for all zero and positive integral values of

a_.a.f-.-— denoting ‘the partial
7

ay ... a,

differential coefficient of f with respect to z, _, ), issaid to correspond

a, ... a, such that a,+...+a,=p, and

to the differential expression f.*

* The following geometrical interpretation may be given to this quantic.
Cuauchy’s existence theorem may be thus stated : ‘‘If a differential equation of

.,
order » contains the "derivative a-;'., then a definito number of solutions of the
Iz

equation can be found which are of the form z = F(z,...2,); Fisa holomorphic
function of z, ... z» which can be so chosen that the locus z = F passes through the

1 —1-dimeusional locus { &= g(z, “oe Zn) , where ¢ is arbitrarily assigned, and has
z, =

contact of (p—1)* order at all points on { 2= ¢ with any arbitrarily assigned

& =

%= ¢ Apply now to the differential

n-dimensional locus which passes through { 0
Zy =

eqnation the point-transformation
I

d ~y

2 = (... 2),

,
Z2 = Ty

’
Tn = Ty,

.
then the transformed equation will contain ia)_z’:, if, and only if,
z
1

3 ( @i)l(@s&)* (2) Yo,

or 1 B:to,. 0%y, 1

Z
a)...a,

- #0 that Cauchy’s theorem may be stated as follows :—¢¢ A definite number of solu.-.
tions of the differential equation f=0 can be found which are of the form
z = F(z,...2.); Fisa holomorphic function of =, ...z, which can be so chosen

that the locus z = F passes through {‘; (=' ¢ (2 .)..z,,g, and has contact of
. Ty .o Zy) =

(p—1)* order at all points of {; = ?)) with any arbitrarily assigned n-dimensional.
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du1+...+a“ *
B gL dae

1 "
is said to be the operation which corresponds to the quantic. 1t

follows that the operation which corresponds to the quantic which
corresponds to f is

If we have any quantic Za, ., &'..¢€", then Za

af dat..ta,
1 a
az . ay, dﬂl ves "n

3

We may speak of this as the operation which:corresponds to the
differential expression f.

Let w, ... w, be the s quantics which correspond to the s differential
expressions fi ... f, which are respectively of orders p, ... p,; let

Uiy Ugpy ey T

Vygs Vggy «vey VUn2

1)
vl" vz’" ey vl"

be r scts of quantics such that for all values of « from 1 up to » in-
clusive
n w4+ v, W+ . to,w,=0; (2)

then, if A, ... A, are any other arbitrary quantics, the identity
hev
SAvw=0
al
is merely an algebraic consequence of the identities (2), and is said
to be reducible.
An identity of the form (2) which is not a consequence of identiticy
of the same form and of lower degree is said to be simple.

locus which also passes through {; = 3; the only limitations placed on the

arbitrarily assigned holomorphic functions ¢ and ¢ are that the direotion cosinen
&, ... & of the normals to ¢ = 0 must not satisfy the equation of the quantic which
oorresponds to £."'

* The symbol £— is used to denote total differentiation with respect to z,, thus,

d 9 0 ] 9
dz. 3t'+zr 5:+z"fq+zz'35+""
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1t will be proved (§ 1) that, given the quantics w, ... w,, there are
only u finite number of simple identities.
liet the » sets of quantics (1) generate simple identities, and let

P Pay eeey Par

Grgy Bggy +ovy P

(3)

q’lv'! (P'lrl srey q'n’
be the set of operations which correspond to them; then

prfitdufot .+t (4)

is said to be a combinant of the differential expressions f; ... f..

IF'rom the definition here given of a combinant, and from the fact
that there are only a finite number of simple identities, it at once
follows that there are ouly a finite number of such combinants. If a
combinant vapishes in consequence of the vanishing of f, ... f, and
the total differential cocflicients of these expressions which do uot
contain differential coeflticients of z of order.higher than appear in
the combinant, then the combinant is said to be satisfied.

""he first theorem, then, to be stated is: “ If all the combinants wre
satisfied, the (ifferential equations fi=0 ... f,=0 will be
integrable (§3). .

If the combinants are not all satisfied, then we take those which
are not satisfied as new equations, additional to f; =0 ... f, =0.

It may now happen that we have more equations than arve
algebraically sufficient to determine all the diffevential coeflicients
duvolved in them; in this case we see that the equation system is in-
consistent ; if not, we proceed as before with this increased system,
and tind its combinants.  If these uro satistied, then the new eqnation
system, and as a consequence the original one, ig cousistent ; if not,
we procecd further till we finally reach a satistied system of com-
binants, or vbtain more equations than wnre suflicient to detevinine
the coeflicients involved : in the former case the original system is
consistent, in the latter it is not. That this question will be decided
in every case by a finite number of operations is, 1 believe, true, but
I have not yet succeeded in finding a general proof of its truth.

When all the differential equations ave of the first order, com-
binauts, as 1 have defined them, are eusily seen to coincide with the
Jacobian series of combinants-aud ave all of the first order; the
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operations in this case then obviously form a closed series; so that
the method of this paper will prove that Jacobi's conditions are
necessary and sufficient, and may therefore be considered an ex-
tension of those conditions to the case of equations of higher order.
It may, perhaps, be worth while to point out that the question
whether or no given equations are consistent is of interest quite
apart from any light it may throw on the solution of equations;
thus the question might be asked: “Is there any infinitesimal trans-

formation ¢.- 4y .=, which leaves the equation
e By
Oy O
o Fy.—=0
Oa? Jay’

unaltered " The answer to this would depend on the possibility of
certain differential equations having common solutions, and it may
be proved that these equations are inconsistent; so that
« 8239 y Ou _
e ay"

does not admit any infinitesimal transformation.

0

[t will be proved (§2) that, if we have s quantics w, ... w,, where
& <, then, unless a special relation exists between their coefficients,

the only simple identities are the obvious ones
wyw,—w,w, = 0.

It follows then from the definition of a combinant that, if we have
s differential equations f, =0 ... f,=0, where s <=, then, unless

the quantics which correspond to them ave of special form, the only
combinants are of the form

s Ofi_ dwtetef o Of,  dPrethuf
azal e, G dal azmm,," d.z:f' cer P ’
the summation in first 3 being for all zero and positive integral
vulues of «, ...a, such that «;+...+a, =ps and in the second for
such values of 3, ... 3, a8 make 3, + ...+ 5. =p..
As an example of the application of the methods discussed in this
. paper, it is proved (§ 4) that, if

F(r,y,2)=0
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is any. mixiimum surface, then 3
7 (Qﬁ, Ou ay) =0
9’ 3y’ O

Ou O , O
and — +—+==0

o Oyt 02
are - consistent, and their common solutions involve two arbitrary
functions ; and no other equation of the first order of the form

Ou On On
— =0
(8;.;’ ay’ az>

has & solution satisfying V'u =0 and involving two arbitrary func-
tions, It is shown how, given any minimum surfaco, a solution of
e =0 can be made to depend on the solution of a partial
difterential equation of the second order intwo independent variables.
These results were suggested by Prof. Forsyth’s paper in the
Messenger, us was also the second example discussed. The second
exnmple (§ 7) proves that not only are the equations

Qu | Ou a"u Ou

.'+",,+ ,,+".‘,=0
a.r:: a.z:; aw; a,u: :

and (Qﬁ)zﬁ- (Ql—‘)a+(-a"~)2+(-a-u)z=0

a:n, o, Ouy a.r‘
consistent (as the common solutions obtained in tho Messenger show),
but that they form with one other equation of the second ordor a
completely integrable system whose common solutions involve fonr
arbitrary functions of one urgument.

1. If wo take any number of géven quantics w, ... w, in uny number
of variables 2, ... 2,, und of any degrees, the question arises us to the
form of s quantics v, ... v, such that

v+ .o, = O
It must first be proved that there nre only a finite number of simpleo

identities of the above form—thpt is to say, there are only a limited
number 7 of sets of quantics

Uiy Vapy eeey Vaty

Vpay Vgay eevy Uy

Utry Uzry very Uppy
VOL. XXXI.—NO, 694, I
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such that VieW; F Wyt Fopw, =0 (k=1,2, ...,7),
and that every other sct v, o Uy such f:hat

'v,'wl.+ otv,w,=0
is given by v, = Ava+Ava+ . Ay, (p=1,2 .., ).

This theorem is almost an immediate consequence of Hilbert's very
general theorem : “ If § denotes any system of forms in n variables
@, &y ... @,, there can be so selected from 'S a finite number of forms
F,, F, ... F, that every form F of § can be expressed in the form

F=AF +4F+..+4,T,

where A,, 4, ... 4, ave forms in the variables z,,z, ... z,” (Weber's
Algebra, first edition, Vol. 1., pp. 165-168). Now take for the
system S that of forms which can be expressed in both the shapes

W, + VWt ...+ U, w,., and —v,,.
The theorem which I-wish to prove follows, except as regards sets

of v, v, ... v, in which », = 0. As to these, tuke for S the system
of forms which can be expressed in both the shapes

vVt .o, and —v, 0, .

It follows as to sets in which v, = 0, but v,.1 5 0. Continue in like
mauner. After at most s—1 repetitions, the theorem follows in its
generality.® ‘ ‘

An example on the calculation of simple identities having an in-
teresting application to the differential cquation

3 2 2
T IV v @V
de,  dwy  duy  dzg
had perhaps best be given here.

Lot w, = ( X,

i<

|
o ln
N

i

= Yi’

k3
]
—
in
I
R
S
W

- ® [I owe this reforence and proof to the kindness of Prof. Elliott, who has also
given me very wuch valued help in other parts of the paper. 1 desire to express
to him und to both of the referres my tha Y(s for the great trouble which they huve
taken in considering this puper.]
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1f, now, .ty o tow, =0,
then . 'le’+v,yn+'v,, (X+Y)=0,
or (o1 + 05) X0+ (vg40,) Y9420, XY = 0;

therefore v, +v, must be divisible by ¥, so that
v, 40, = 2YP,
where P is some function of @, y, and 2. Similarly, -

v 4o, = 2XQ;

consequently QYPX'+2XQY +2X Yo, =0;
and therefore ' 20,4+2PV +2QY = 0,
that is, oy = (2Y+X) 1_’+ YQ,
v, = (2X+Y) Q+ XP,
vy=—XP-YQ.

The simple identities are then given by

Y z 2 Y z z i
N = - - — Py = Yo — -— Vg = — — A
b ¢ a' YT ¢’ c b
z z @ z 2,
and m=—24+ 2, g=t E Y, _F_ T
¢ a a ¢ b c a

243

(10y

2. Tt is now to be proved that when s <=, unless the quantics

w0, ... w, are such that their coefficicnts arve connected by certain rela-

tions, there ave no simple identities except those of the type

Wy — 1wk e, = 0,

Any term 27 . & i3 said to be derived if a, > p, or ay > p, ...

ora, 2 p,, where s is a given integer » n and p, ...p, any s given

integers; o term which is not derived is called arbitrary; Sa is the

order of the above term.

R 2
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Tt is ensily seen that the number of arbitrary terms of order 7 is
the coeflicient of 2" in

1=2") .. (1=a")(1—2)" =g+ z+... +aa"+...;

ty a,, ... tre, of course, positive integers ; if s<n, the series is infinite ;
if & = =, the series is finite. From the series

(1—2)" = (ag+ a2 4...) (L—a") " ... (1—2") 7",

it follows that, if II, denotes the coeflicient of 2" in (1—2)"",

Keg
Kos tmn

I, = a4 Ela,..,,' + El O pempyFoeey
LL) =
‘-

=1

the sununation on the right being continued so long as the suffixes
are non-negative.

It should be noticed that JI, € a,, and that, if s = », there are no
arbitrary terms of ovder higher than (p,—1)(p,—1) ... (p.—1).

I1f we have s quantics of order 7 in the n variables =, ... «,, we can
form a matrix; thus the first row consists of the coefficients of the
tirst 7% in any assigned order, the second of the corresponding co-
efficients of the second in the same assigned order, and 8o onj; z.e.,
the coeflicients of the same term in each #*° form a column of the
matrix.,

From any quantic w of order p, we can form II,_, derived quantics

a™ ..., by taking all positive integral and zero values of a, such

that 2a =r—p. et us therefore form the matrix of the ‘E-.]f,_,,
derived * of 1, ... w,. ot )

Now it must be shown that in general not every JI,—a,-vowed
determinant of this matrix will vanish. To prove this it will be
suflicient to take

P 2 -
wy Ea LLow, = at

Then we can choose as JI,—a, derived quanties the JI,—a, devived
terms, that is, the distinet terms which contain #f or @) ... or 2]. In
this case, wo see that in each row there is one, and only one, term
which is not a zero coeflicient ; and no column ean contain two non-
zero cocflicients, so that the matreix will contain one determinant of
ovder II[,—a, which docs not vanish.

Unless, then, the quantics w, ... w, ave of *“special form,’

not all
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H,—a,-rowed determinants of the matrix will vanish; and we may
ngsume without any real loss of generality that, in particular, the
determinant of the derived terms will not vanish.

It will now be proved that all H,—a,+1-rowed detecrminants of
the matrix do vanish.

We may assume that, b, denoting zero or some positive integer,
not all II,—a.+D,-rowed determinants vanish,” but that all
o.—a,+b.4+1-rowed determinants do vanish.

It follows that we can cxpress all derived terms, and a certain b,
arbitrary terms, in terms of «,—b, remaining arbitrary terms and
the derived quantics of ¢, ... w,.

Every o' can therefore be expressed in the form

w1+ ...+ w,v,4 P,

where v; ... v, are respectively quantics of degree r—p, ... r—p,, and
P, is an ¢ which only contains the above a,—b, arbitrary terms.
Treating v, by the same method, we sce that it can be expressed in
the form
wyry+ . bweg+ P,

where v is of degree r—py—p,, and I, only contains a,_,—0b,_,
arbitrary terms: proceeding thus, it is clear that every ' can be
oxpressed in the form

Pt Do, 40, Iy S SO0 ANPE S URTIN SR SN (1) ‘

where the term I’,_,, for instance, represents a quantic of degree
r—px, which only contains «,_, —b,_, arbitrary terms nnd no derived
terms.

I'he number of arbitrary coeflicients in the above form cannot
then exceed

Kos

Ke) tra
< 8

a,—b+ = (“»'~p, - ”"-:'.)+:‘ (at'-x'. ~l'1_br-l’.-m)+ vee e
K=l l“l‘

1t is said that the number of arbitrary coeflicients cannot exceed the
above limit, rather than that it is equal to it, because of possible
identities of thie form (L.).

Now the number of effective arbitrary constants in any 7' is H,,
so that

I, __<_ «,—b.+ EI (av,._‘,,‘—b,-,,.) +..3
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Kea

but Ho=a+3a._+..;
K=l
therefore b, +3 byt 20,
Kul ot

an inequality which (since b, is a positive integer or zero) can only
hold when
be=0.

The conclusions that we draw are, firstly, that every I, —a,+1-
rowed determinant of the matrix of s non-special quantics does
vanish, and that therefore the derived terms, and no others, can be
expressed in terms of the arbitrary terms and the derived qnantics;
and, secondly, that every »* can be expressed in one definito way
only in the form

Kuga

P+ 2‘ welP, , +.., aL)
Ko

where P, ... denote quanties, of degree equal to their suflix, and only
containing arbitrary terms; and consequently there can beno identity
of this form. When an #'® is so expressed, it is said to be in
‘“ gtandard form.”
It is now required to investigate the form of s quantics v, ... v,
such that
v+ ... +voe, =0 (111.)

Remembering that v, ...», can each be thrown into standard form,
and that there can be no identical relation between ..., and
srbitrary terms of the Torm (IL), we conclude that the cocflicients of
cach arbitrary in the above identity must be zero.  The problem is
therefore really reduced to finding the forms of s rational in-
tegral functions of w, ... w,, such that

v+ ...+, =0

Now any rational integral function of ;... w, may be written in
the form

Knit

L=a

2‘|E.P| +102Plg+ . +'IU,P|, >;| W, Pl,.+ v Fwerg ... 'wsPl‘z T
. . Ke

wheve Py, for instance, denotes a rational integrnl function of w,, w,,
and w, only
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Expressing’ v,...v, also in similar forms, we deduce from the
equation (IIL.)
P,=P,=P, =..=0,
P4 Pon =0, Prpe+ Pure+Prn = 0,
P+ P nAth+P tng + Prmge = 0.

It is clear that in the P functions all the suffixes except the first mey
be interchanged without altering the form of the functions.

- In case of equal suffixes the equations deduced differ slightly ; thus,
if g =m, he equations last written would be replaced by

Pult)ﬂtl + Phnhnl + -thml =0 H
llnd, if qg=m= t, by Pmmlun +thlu'|h =0 H
if, ﬁl’lﬂ.]ly, h = m, by o P = 0.

It is not difficult to see that consequently %, ... v, may be written
in the form '

V= Quwy+ Quwy+ ...+ Qiw,

V3 = Qg wy + Qos s+ ... -+ Q104 R (Iv,')

v, = Q:lwl + Q2awq+ vk Qu!—l W,
“’hel'c th + th = 0|

but except for this restriction the @’s are any functions whatever
of w, ... w,

It follows that the only simple identities are of the form
W —wewy, = 0.

In case all the quanties are linear forms in x, ... a,, it'is obvious
that the system is non-special ; in fact, we lose no essential generality
in taking w, =2, ... w,=1,, in whicl it has been shown that not all
H,—a,-rowed determinants of the matrix disappear.

We can now write down the combinants of the differential ex-
pressions f, ... f, for the case here considered, viz., when = s, and
the quantics w, ... w, which correspond to f;...f, are non-special.
Since the only quantics which now gencrate simple identities are
awy ... 1w, we sce that in (1) wv,, = w,, where « 18 some integer 3 s
and £k, and v, = —w,, and all other quantics in the row which
contains v, and v, are zero.



248 Mr. J. E. Campbell on the Theory of [Dec. 8,

1t follows that the operations ¢ and ¢« in(3)- which correspond

to these are
af,, dB|+...+ﬂu

3 == y
Ozp,..pn daft... da2"

the summation being for all non-negative integral values of f, ... 3,

such that
B]+ e +Bn =Pn

_s afh (lal+...+n,,

9
O,
Oza,...a, dald ... do®

and .

the summation being for such values of q, ... a, that

a+...+a, =pp;
and therefore we get the typical form of ecombinant for non-special
cases to be

afh.. (lal+m+a"'j_‘,f 3 af‘ ii?l+"‘+ﬂ,l.fh_
T g daf o det

s
Ve, .

an

We can easily verify the fundamental property of this combinant,
that all partial derivatives of order p.+p, disappear from it, for the
derivatives z, .5  ,.4g, @ppear under each summation with the

coefficient

% %

“a, ... a, ZB| w.Bn

and consequently the terms cancel.

3. From the s differential equations f, =0 ... f, = 0 respectively of

orders p, ...p,, we obtain, to determine the differential coeflicients
of the +*" order, the system of equations

(]ﬂ-|+...+¢" f

L

where all zero and positive integral values of q, ... a, -are to be tauken,
such that
Sa= 7= Py

and « is to have any value from 1 up to s inclusive.

After 7 attains a certain value there will be more equations of this
systom than there ave diffcrential coeflicients of the " order; so that
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we can eliminate the coefficients of the +'" order, and obtain a reduced

system of equations not containing any coeflicients of order higher
than r—1. The system of the r*" order may then be divided into two
pavts: the first will not contain mote “equations than are sufficiont to
determine the coefficients of the ™ order in terms of cocflicients of
lower order (and it may not contain so many)—it will be convenient
to spenk of these equations as the effective ones of the +™ order; the
sccond part will consist.of reduced equations not containing coefficients
of the »" order. The system of the »" order will then contain
effective and reduced equations; the reduced eqnations of the »
order may of course be effective in determining coeflicients of the
(r—1)"orders. It is now necessary to cxamine the forms of these

reduced equations.
. . . . . . ay+agt ..t ay, ’~
The highest differential coeflicients which occur in *° -—- /%

ocear in the part

E)f,‘

a,+ n azl l,

2za|+l|, a2+lg H

where the summation is to be taken for all posltlve mtegl al and zero
valnes of I, Iy ... 1, such that -

l|+l~z+ e + lu =Z7n
P« being the order of the highest derivative in f,. They occur linearly.

x ap, a;+a +...+a"
For s s T e =0, (11)

K @1a3 .0 Gy (l.’ta' dz®n
A

where A, . is some function of z2,...2.2 and differential co-
A}

eflicients of order not exceeding p,, and where the summations cover
all non-negative integral values of a ... «,, for which Sa = r—p,, and
all integral values of x from 1 to s in(,]usm,, to be free from differ-
entinl cocflicients of order exceeding r—1, and so to be an equation
of the reduced system, it is then necessary and sufficient that '

galaqz...a,, \ J,l.,i.l 6/._ _ (12) ‘

Kayay... a, “I +ly a34ly . a,+ly azl L
1°2-

vanish identically, where the summations for 41, ... 1, for ayty ... «,,
and for x are as explained above. And this sum will vanish
identically if, and only if, the sum
Wlg...ln of
ay+1; gag+l; an+ln __ X
IO gurhgtn g * " ’
“Hig... ln

K ayeg..

EEA

(1 TL PR



250 Mr. J. B. Campbell on the Theory of [Dec. 8,

where ¢, §; ... £, are any distinet quantities or “symbols, vanishes
identically ; 7.e., if

X a . Wa...ln
R S VN P A T O F— Y ay
llg 17
vanishes identically, l

Now here, for any «, '3 ")‘m,a,...a,, £r&m... & is what we have
earlier defined as the quantic which corresponds to the operation

a .iu" dutazt..tay,
e tndaft L dain )

bl ..

and s f" fl’ g ./n .
" Oy,
is what we have defined as the quantic which corresponds t0 fe.
We have, then, established that, if »,, v, ... v, be the quantics which

correspond to the 8 operations

a)dg... &, du,+u.,+ ta,
e (k= 1,2 8),

dy ...
KO Lt dal2 | das
T .2 n

and if w,, w, ... w, be the quantics which correspond to f,, f; ... f, re-
spectively, what is necessary and sufficient that (11) may be an
equation of the reduced system is that

v W+ v, Wy + ... 0,20, = 0.

Here wy, w, ... w, are doﬁﬁ{tcly given quantics. We apply then the
conclusion of § 1, and are ena.bl(,d to state that every v, must be of

the form
Al’l’xl'l")\g'vx-rl" ven +Am1’xm (" = 1’ 2 .. 3))

where Uy Vgy oo T

Al

Vygy Vog ees Uszy

Uimy Vo oo Vg

are the m sets of quantics which occur in the simple identities of
0y, 10y ... w,; and where A, A; ... A, ave of orders »—p;, 7 —p,; ... ¥ —Pu-

We proceced to apply this conclusion to the supposed reduced
equation‘(11). '
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If we write it
o fit o fat .. 'f'P.f. =0,

then ¢, (k=1,2 ... 5) is the operation to which corresponds the
by L 4 4 4

dz, dar 2q " da,
in that quantic. Now let ¢, (v =1,2 ...s; v=1,2 ... m) be the
operations to which correspond in like manner the quantics v,,, and
let py, py ... p be the operations to which correspond the quantics
A, ... A;. What we have learned is that ¢, is the result of omitting
from '

quantic v,, 7.e., i8 the result of repla,cingl £,&6 .. &

# ?Kl + ] ‘pkﬂ +... +f"m ¢ltm

all operations of differentiation of lower order than the highest which
occur, 7.e., than order » —p,.*

Consequently (11) differs from

‘Kag

M E ?Klfx""l"g 2 ¢Kﬂfl+ +F’mz ¢lmfx bd 0

only by terms which have for factors derivatives

du|+...+a" 1 2
T R
for which a,+ a3+ ... +a, < 7—py, .6, by terms whose vanishing is a
result of the vanishing of total derivatives of f,, f, ... f, which are not
of high enough order to involve partial derivatives of z with regard
to a,, 2, ... @, of order exceeding »—1 ; that is, all reduced equations
of the r"‘ order [since (11) was the genernl form of such equations]
can be obtained by differentiation of the combinants, and by the
addition of total derivatives of f,, f, ... f, which are not of high
enough order to involve partial derivatives of z with regard to
@, 2, ... @, of order exceeding r—1.

Now suppose that all the combmauts are satisfied; then there will
be no reduced equations of the #*" order; and, proceeding similarly
with the equations of the (»r—1)* and lower orders, we see that there
are noue except the effective ones. The number of effective equa-
" tions is never greater than. is sufficient to determine the coefficients,

* In the acotnal vk, AV, Aqtx2, &o. .are mere algebraical products ; whereas the
operator y; ¢« i the sum of such an algebraic product and other parts resulting
fromn operations of u, on the coefficients of symbols of differentiation in ¢x;.
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so that in this case the system must be integrable; and by subtract-
ing the number of effective equations of any order from the number
of differential coefficients of that order we measure the generality of
the common solution. possible.

4. It is required to find the form of the most general differential
equation

au a’ll: au
F (5 5 5 =0

oz’ 8 y Oz
such that F=0
and azq + ajﬂ + u =0

0 Oyt oz
may have common solutions involving two arbitrary functions.

We have wherewith to determine thederivatives of the second order

O, O O
7% =,

e Top T T
A _ o dAF _, ar

= gy =0 =0

F must therefore be of such form that it is not possible to deduce
any equation of the second order independent, algebraically, of these
four; it follows that the first combinant of F' and ¢*» must vauish
identically by aid of F'= O and these four equations. It will lighten
the labvur of determining F if we use. the following notation

Ou Ou Ju O
= Ay =, c= Ay o = Ay,
P Y v A
. . . . Fu Ou
with similar expressions for [ -, S
P et Dz
Ww_, I _,

M T A
Since there are only two equations F =0 and v’s = 0, and the
quantics which correspond to these are respectively a ling, and
& +&+¢, and the latter does not break into factors, we see that
the only combinant is

oy )= rns ) e
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:NOW . :%F"-': Al,F‘+Ang,+ngFv

(]

so0 that, remembering that derivatives higher than the second dis-
appear identically from the combinant, we obtain without much
Inbour that the combinant is

F, 0‘31 +)‘?g+)‘:a) ..o+ 2F, {)‘19)‘13'*')‘93 (}‘m"'}‘u)} H
then, from the fact that

dF _dF _dF _
dz, ~ dmy  dzs

we have A, F,+4\,,F2+)\,3F, =0
MNPy Tyt Ay Fy =0 (14)

AP i+ A Fy+ Ay Fy =0
If now we write A\, =@, Ay=0b, Ay=cg,
Ae=h, Ayg=Ff, Ag=y,

and employ the notation usual in the theory of conics, we have (since
a+b+c = 0) as combinant

~(B+C0)F,,—(C+A4) Fy—(A+B) Fy+20HF, +2FHF, +2FGF,.
From (14) we deduce
R _FR_F
GH FH F@'
since the discriminant
. abc+2fgh—af*—bg*—ch® = 0,

and B+0=%.7+ QF@

for the same reason, 8o that, finally, the combinant takes the simple
form '

(Fy+ F}) Fy+ (Fy+ F}) Fu+ (F{+ F}) Fyy
= 2F,F,Fyy+2F,F,Fy+2F,F,F,,

that is, when F = 0 is looked on as a surface in space whose co-
ordinates are A, A, Ay, it has the sum of its principal curvatures
everywhere zero, that is, is & minimum surface.
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We may verify this result, and at the same time see how to obtain
particular classes of solutions of the equation

Viu =0
in the following method.
Let z=f(zv)
be any solution whatever of the equation
(1+p" t+ (1 +¢") r—2pgs = O,
that is, any minimum surface. It is well known that
v =az+by+f (a, b) 2+ ¢ (a, b),

where we consider z, y, and z as independent variables, and ¢ (q, b) is
any arbitrary function of ¢ and b, and a and b are given by

Ou _ glg —

EP S

iu the general integral of

oo )

We wish to find the form of ¢ in order that this may be an integral of

Vi =0
Lot us write g:ﬂ=,4", gg-ffl',‘gibf,:‘ B,
ra=a Jhom Se=s
33=o_is then wt+Pr4+P =0,
% _0 1 y+Qs+Q=0.

ob
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Differentiating these two equations with respect to z, y, z, we get
1+ (24" + ~I) % 4 H +II) a—

(e4'+ 4) ¢ _+(zﬂ'+u)g—”_. 0,

Pt (A + A) 24+l ) .aﬁ =0,

1+(zB'+ D) ab+(zH +H)§'—"-—0.
)5 3

(:B'+B ab+(11+zr du_ o,
Or
aa

Q'+ (=B +B) + (= + H)

au au_. — b a‘lb

Now - = , b),
aa/ @, ay =f(a, b)
so that V¥u = 0, if, and only if,
Ou Ob aa ab
+ +
AR P R
Solving the first six equations, we obtain-
Oa __ _sB+B
0x D
% _ _sd'+4
dy D
O _ _ P B+ 1)~ Q@ G +0)
0z D ’
b _ Q(A+A)—-P'(zII+1[)
0z D

where D=2 (A'B—~I*)+z(AB+BA'—2HH") + AB—H},
and we at once deduce
{4 A+QY+B (1 +P)—2HP Q)
+4(1+Q*)+B(1+P*H—2HP'Q =0;
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but the coefficient of z vanishes, from the definition of f, and we see
that ¢ must satisfy the equation

Fo (v (Y Fo (. /D o O 9
@) (@)} e L E =0

Knowing now the form of f, and choosing ¢ so as to satisfy the
above equation, we see that
u = az+by+f (¢, b) z+¢ (a, b)
will be a solution of V¥ = 0, provided that we choose a and b 8o as
to satisfy
au au,

=0,

aa ab =0.

5. In the Messenger of Mathematics (November, 1897, p. 100),
Prof. Forsyth proves, amongst other theorems, that, if p,, p,, 1, P4
denote four arbitrary functions of n subject to the single condition

ntetrtr,=0,
and if % be determined as a function of ,, 2, @, @, by the equation

ay = @, py+ ;3 Py + 2y Py + 24 Py

where a is a constant, then, if v denote any arbitrary function of u, it
satisfies the equation

0% , 0% , 0% , O _
5;:-'-—8;:;—'-8%—’-—-—0’

PR
and also the equation

Ou\? Ov\? Ov\? Ov \?
Sy (224 (2)'+ (&) =o.
) (5)+ @)+ G
Now, it is very easily verified that « not only satisfies the above
two equations, but also the equation
O (Ou\%, G (Ou O [ Ou) (Ou
SU(HYy LU (TR 2 ( =0
o (az,) X (m,) aw,az,(aml) aa,>
and five others of the same type. The question is thus suggested
whether these six are mere consequences of the first two; it will be

found that, though consistent with them, as of course they must be,
they are not necessary consequences. The system

(B + (32)+ (3e)'+ (52)' =0,




1898.]  Simultaneous Partial Differential Equations. 257

Viu = 0, and the combinant of these two will, however, be praved to
form u complete system whose common solutions involve four
arbitvary functions of one argument.

Let us write

au O'u 2 O
=A,. =Xy n om = MNAy;
84::‘ av Y O, 0n, UM

the equations which we have to consider are
HENHN+HA+A =0,
fi = auXi+agdy+agh; +ay A= 0.

Forming the combinant (herc there is nbviously only one)

2 g . ‘
Ui fo) = ("d“+ + d—) AN X+ 1D
dz]‘ dz*

_2( A, ,)(a")\f+...+a“)\i),
l 4

we get )t ()L at + A\ au+)\ a,,,+)\ a“)

14
A5 (N, + Ny agy + N+ Nias,)
+ A5 (N} g+ Ny a2, + Ny + Ny,
+N (AN ), + A e, +Mag + ) =0
Differentiating f; = 0 with respect to z, ... z,, we get
ay, 4\?+a,,A§+a,,A§ +a,N=0
du N+ N+ agg Ay +ag Ay = 0 15)
Ay A+ A N+ 2y Ny + ay Ay = 0
agAi+aghi+aghi+a A =0
If now we write @+ ay—2a,; = by,
ay, + tgs— 2,5 = by,
Qg+ 135—2ays = byy,
a,;+a“—2a“ = by,
@yg+ gy —2a, = by,
Qyy+ @y — 2y, = by,

(Notice Prof. Forsyth's solutions requive all the b's to vanish.)
vOL. XXXL.—No, 695. 8
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The above four equations take the simpler form (by aid of f, =0
and f,=0)
b,,)\i+ bw)‘:"' bu)‘i =0
b AT+ bys Ay + by Xy = 0
b Ay +bss Ay + by A; = 0
by A 4 Dy A+ by Al = 0

, (16)

which equations may also be written in the form
AoAgbog + AN b5+ A NG by = O } an
)‘D:bza = X;’Aibm Xj)‘:bm = M'\i bay, Xal)‘:bw = )‘ihibu

Expressing all such terms as 2a, in the equivalent form a,+dy—1,,

we ses [by aid of £y, =0, f;=0 and (16)] that the combinant
which is

23 Ala), + SN, (@ + s —b,,)?
= SN aj+2a AT (AN N+ X) + 2SN, oty
=254, N} (Wi Dyg+A2bis+A5D,) + SN D),
may be written SAALD, (18)
The combinant can also be thrown into the form
A+ NN (Brat byy—big— by) -+ (NN + A3A0) (Big 4 by — by — 1)
+ AR+ (b + by, — big—Dy))%. (18)
To prove the identity of these two expressions (18) und (18)" write
=y, y=1by, z=1,
and let us write for sake of brevity
6= NAHRN, b= AN, o= AN,
then the expression (18) is equal to

sa( .- Y,
AINS R

by aid of (17); but (,\i + ;\L +_§§)9 o,
1 ] 3
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by the first of equations (17); therefore (18)’ may be written in the
form

(b‘; 3:2’; *; D) (e N+ by A+ AN, (18)”

and this, by (17),

- (b(:r)\gq;r ?b) ()‘:)‘ b +)‘ A4.1’1-4'*')‘-)‘ bn+A2}‘4b24+xl)‘ bﬂ'*'xlA b“),

1231

that is, the equations obtained by equating (18) and (18)" to zero
are equivalent.

We must now prove that the system f, =0, f; = 0, and (f,f,)) =0
is complete ; and first we shall prove that the combinant [f, (f,f.)]
is satisfied.

Notice that

1 d
N da Qg = Qe yg (@1 + ), 19)
O
where Qe = + MG
" O, 0 az,aa,,, )
d d

therefore ()&, Jd +A, —— o +As- e, A, d‘;—) Qe
Ty 4

3 2 2 2
— Al Qixl + Ag Qpxa + A.\)a'hltﬁ + A; Qhndy

the other terms disappearing by (15).

F«)rming the combinant of a,. and f,, we get

1
A/‘ A da:;,d

(2 XA X)) — 2(A,—+ Ax LY o
4

=2 ()\i Gty + x; Qax o, + ’\:aax am+ Xi Qi Byn)-
[f, then, we form the combinant of a,,+ ag—a,;—a,, with f;, we get
K=t
2] A (g Qe F Qg By = Ty Cy— Qg By ).
Ke

Ixpressing every term 2a,; in this in its equivalent form a, +ay,—b,,
as before, and using (17) to reduce this expression into terms in by,
by by only, we see that it vanishes identically ; but

Qg+ Oy — @iy — gy = byt byy—byg—byy;

therefore the combinant of the latter with f, is satisfed.
s 2
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1t follows that the combinant of (by,+ bg—byy— by)? with £, is also
satisfied.

LY}
Notice now that 3 )\,,di annihilates any function of A, Ay, Ag, A,
Kol Lo

only, since, in operating on such & function, the coefficient of 2 is

O,
)\f Qe+ A; an+ A: Qe+ A:aln

which is zero, by (15). Using these results, we see that the combinant
of f, with (f,f,) is satisfied.

‘We must now prove that the combinant [f, (f,f;)] is satisfied; when
this is done, we can say that fy =0, f;=0 and (f,f;,) =0 form a
complete system.

Instead of directly proving this, it will be sufficient to prove that
the combinant of (f,f;) with ¢, is satisfied, where ¢, =0 is any
expression of the form

Kad afl _
psfat E]I-‘lx'a‘"‘ +ufi =0,

2,

Py -o» e being any functions which do not contain derivatives of the
second or higher orders, pu a function not containing derivatives of
the first or higher ovders, and py a function which does not vanish
identically nor contain derivatives higher than the first order.

If, then, we prove that
(Ff) =0 and NAb+ NI, +A2A%h, =0,

or any two equations algebraically equivalent with these, are complete
in themselves, that is, if all their combinants are satisfied, we may
conclude that f, = 0, f, = 0, and (f;f;) = O form a complete system.

Now, from (f,f;) =0, in its form (18)”, and
)‘;A:bas+"s'\zbzs+’\f)‘:bls =0,
we deduce by algebraical solution

- bag = ... by =. by .
Ai (Alki:i:'\axd)a x; (A:+A;)’ A.‘; (I\ﬂ AS:FAI Al)’
Writing 2=by y=by z=0b,

wo have now to test two equations of the forms
z = p,

y=q%,



1898.]  Simultaneous Partial Differential Equations. 261-
p and q being homogeneous functions of A,, A, A, A, of zero degree,
and connected by the relation

p+g+1=0.
‘We shall now prove that any such pair of equations is complete.

The quantics which correspond respectively to «, y, and z are
,, 0y, W5, where

w=(f-f) me(f-f) w= (- 0))

and we proved (p. 243) that there were two simple identities in this
case (10)

shH & 2% -6 _& =& _&
“ 8 * AN “ AN o A A
_& & o b b 2% & _ &
and v, AN % A + W vy e
There are therefore two combinants,
14 _1 & - 14 1 4 -
()‘! dm, A dar,) (bis+by—byg) +2 ( X.s— E;a - )\_, d.:_r—l) by (20)
and
1 d 1 d 1 4 1 4
ae BB (bt by 14 1 d
(A, dvy, A da:l)( 1 by—bu) +2 ( A da, A d%) by (21)

Using (19), we see that
( 1 d 1 d

[t S Apxe = Qppr==Cprz—Q, a Qg — A=y ).
N day A dma) g x ae (@3 + Qg — Aps—ys)

Iixpressing all terms b which are to be operated upon in terms of
e ..., we verify that the combinants (as we expected) do not contain
derivatives above the second order, and arve, in fact, the first

(013 =a10) (byg +byg—1;5) —2 (@3 —ay) by, (22)
and the second
= (agy— 1) (g + Dyy—1y,) +2 (ayy=—ay,) bys. (23)

1£ then we write a’ for 1 1 d

Wl i

L1 od 1 d
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we may express these results by the formule
@ (yta—2)+2 = (ay—an)(y+e—2)=2 (ay—ay) 2, (24)
¥ (@+y—2)+2y = — (ay—aw)(y+2—2)+2 (ay—ay)y.  (25)
Now  {(1-@)y—g'} (2—p'2) + {(1—p) &—py'} (y—1%)
is ensily seen to be the only combinant of 2—p% and y —g’z, and, ex-
panding it, we get
(1-g)yz~(1—q) py's—gu'z+gp'cs+ (1—p) 2y
—Q=p) g s—pyy+peyetz{~(1—0) ¥ +92'}
+2 {py—(1-p) '} 7"
The last two terms taken together ave
z {q @ +y) p*+p (&' +y) ¢~y 27’}
=z {29p (&' +) (p+9) —2pyp— 2050},
which becomes (since p+q = —1, a constaut and therefore anni-
hilated by a'+y)
=2 (pyp+9'D);
the other terms reduce (using the fact p+q =1) to
—p {y (e +y—2)+ 2y} —q {2’ (e +y—2) + 2y}
Using (24) and (25) and remembering that
x=ph, y=q%,
we sec that these terms all disappear.

We have now only to prove that pyp+qa’q or (py'—q2’)p
vanishes. First, we shall prove that

, o A
(py' —92) —):l- =3
3
this is to prove that

1l ada, pd, 9 d\A_o,
(A, d:v,+ A, da, t+ A, dwg) A
thiat is to prove that
—ay+ag—p (e —ay) —q (a3—ay) = 0.
The expression on the left may be written

-P (‘7-11"2“13'*'033)—9.(“134'asa"“'sa—“;s) =—py+ %‘ (z—a—y),
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which vanishes when we put
z=7p% y=d=

Similarly, we may prove that
’ ’ x
(py—g=) 3+ =0,
M

AHATHA A
2

and therefore py — ge’ annihilates , and therefore - )\_a; that

3
is, py'—qz’ annihilates any homogeneous function of A, A, A5, A, which
is of zero degree, so that

(py'—g2) p =0.
‘We have seen that

{Q—9y—er'} @=p")+ {A-p)2"—py} (y—q'2)
is the combinant of —p% and y—gq°2, and we have now proved that
it is satisfied. s
The system f, =0, f; =0, and (f,f;) =0 is now proved to be
complete, and, as we have two equations of the second order and one
of the first in four independent variables, the formula
Q-2 (1=2a)(1—2)* =1+z)(1—a)"' =143z + 4z’ +4a®+...

shows us that four derivatives of any order above the first are
arbitrary ; we could take these to be

_a_"y ou O'u and o
aa::’ amgaa;:'l’ am,aa::'p Oz, 0x,”"’

o that the most general common solution could be taken to be

U = ay+ a2+ agzy+ a2+ ...,

a series in powers of m, x;, z,, the coeflicients being functions of u,,
the first four arbitrary and the remaining ones given in terms of
these.



