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Abstract 

Particle reconstruction is a significant task in analysis of CMS data. Currently physics based 

algorithms in conjunction with CMS readouts are used. In this project we explored deep learning 

as a technique for photon identification and reconstruction on the public LCD CaloImage dataset. 

Several network architectures were tested for performing classification (photon vs pion 

discrimination) and regression analysis of energy of particle hits. The performance of the topologies 

were plotted and compared. 
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1. Introduction 

The Large hadron collider accelerates particles close to the speed of light and smashes them 

together 40 million times a second. Some of these collisions are very energetic and head on. 

When this happens, some of the energy of the collision is turned into mass and previously 

unobserved, short-lived particles. [1] 

CMS (Compact Muon Solenoid) is a particle detector which captures data about these collisions 

using various layers of detectors. The various layers of CMS detector are:- 

1. A high quality central tracking system 

2. Electromagnetic Calorimeter 

3. Hadron Calorimeter 

4. A high performance system to detect and measure muons  

A representation of a slice of the CMS detector 

 

Source: - CMS Document 4172-v2 

The data from all of the above mentioned detectors is filtered and only the data from interesting 

physics events are kept for further processing. Analysis is then carried out on this set of filtered 

data. One of the most significant tasks of this analysis is particle identification and reconstruction 

i.e. identifying which types of particles were formed and their energy 

The data generated by CMS is around 600 megabytes/second and only set to increase in the 

coming years. This provides a challenge for both the trigger systems as well as particle 

reconstruction algorithms. One approach to tackle this is automated self-learning algorithms that 

can detect patterns and perform analysis independently. 

We approach this problem from a machine learning perspective. 
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2. Machine Learning 

Machine Learning is a field grown out of field of AI. One of the formal definition of 

machine learning was given by Arthur Samuel (1959): "Field of study that gives 

computers the ability to learn without being explicitly programmed". 

A more recent definition of a well posed learning problem is given by Tom Mitchell 

(1998), Well posed learning problem : A computer program is said to learn from 

experience E with respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E.[2] 

Machine learning basically is the study and development of algorithms that learn from 

data and make a mathematical model, then use that model to make predictions on new 

unseen data. 

Learning problems have been broadly classified into 3 main categories: 

1. Supervised Learning: - The machine is presented with a set of inputs and their 

corresponding outputs, and the goal of the algorithm is to learn a general mapping 

between inputs and their outputs. This mapping is then applied on unseen inputs 

to predict their corresponding outputs. 

2. Unsupervised Learning: - The machine is not given any outputs/labels. It is just 

given input data and is expected to find some existing structure in the data. 

3. Reinforcement Learning: - The machine interacts with a dynamic environment to 

perform a certain task (example: - driving a car). It receives feedback from the 

environment in the form of a reward function and aims to maximize/minimize the 

reward. 

Some common machine learning algorithms are decision trees, support vector machines, 

artificial neural networks etc. 

2.1. Artificial Neural Networks 

Artificial Neural Networks are biologically inspired networks that are used to estimate or learn an 

approximate functions that map a large number of inputs to specified outputs. These are mostly 

used in the field of supervised learning where the outputs/labels are known. 

An artificial neural network is made up of basic units called perceptron. A perceptron takes in 

multiple inputs and linearly combines the input after multiplying them with their respective weights 

and then outputs the result. In neural networks, perceptron might have an optional non linearity, 

which is applied to the result of the linear combination of product of weights and inputs and the 

final result obtained is the output of that unit. 

Depending upon the problem being tackled (regression/classification) and also the depth of the 

networks, the activation functions are varied to obtain the best possible performance. 
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Source: - commons.wikimedia.org 

2.2. Deep Learning 

Deep learning (also known as deep structured learning, hierarchical learning or deep machine 

learning) is a branch of machine learning based on a set of algorithms that attempt to model high-

level abstractions in data by using a deep graph with multiple processing layers, composed of 

multiple linear and non-linear transformations. [3] 

 The quintessential example of deep learning model is Multilayer perceptron (MLP). A multilayer 

perceptron is just a mathematical function mapping some set of input values to output values. The 

function is formed by composing many simpler functions. We can think of each application of a 

different mathematical function as providing a new representation of the input. [3] 

Deep learning uses deep neural network to learn hierarchical abstraction in data. 

2.3. Convolutional Neural Networks 

Normal Neural networks do not scale well to images. The number of parameters increases 

drastically with increase in size due to full connectivity of neurons in each layer. This makes it 

computationally expensive and requires a great deal of memory. Further a lot of these connections 

are wasteful and a huge number of parameters might lead to overfitting. 

Convolutional Neural Networks unlike normal neural networks have their neurons arranged in 3 

dimensions (width, height and depth). The depth here is used to refer to the depth of activation 

volume rather than the whole network. 

There are 3 main types of layers in a convolutional neural network. 

1. Convolutional layer: - This layer consist of a set of learnable filters. Each filter only covers 

a fraction of the whole image in width and height but extends through the full depth of 

input volume. During the forward pass we convolve each filter along the input volume and 

compute the dot product of input volume and filters at any given position. The weights of 

the filters are shared and hence the layer is also called locally connected layer. There are 

three hyperparameters for this layer: depth of the output filter, the stride and padding. 
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2. Pooling Layer: - pooling layers are inserted between convolutional layers to progressively 

reduce the spatial size of representation to reduce computational time and prevent 

overfitting. Some common type of pooling are max, average and L2 norm pooling. 

3. Fully-Connected Layer: - These are normal dense fully connected layers which are 

generally situated at the end of a convolutional neural network.  

3. Dataset Used 

 Two sets of data were used for this project:- 

1. Old LCD dataset 

2. New LCD dataset 

These were simulated calorimeter readouts of particle hits (photons and pions). The old 

LCD dataset contained simulated readouts of Electromagnetic calorimeter (ECAL). The 

initial data was a calorimeter readout of the whole barrel of calorimeter. A python script 

was used to find barycenter and extract readings of 20x20x25 cells around it and store it 

as an 3d array under ‘images’ key in an h5 file. The energy of the particle along with 

particle type was stored under ‘target’ keys. There were a total of 20 .h5 files for each 

energy containing 500 events each. These were concatenated and shuffled to form 100 

files with shuffled data. 

The New LCD dataset had readouts of both the Electromagnetic calorimeter (ECAL) and 

Hadron calorimeter (HCAL). The ECAL reading script was modified, to find the HCAL 

cells corresponding to the ECAL shower, using the absolute coordinates of the ECAL 

barycenter and store their information as well. The ECAL data was stored as 24x24x25 

3d array and HCAL data was stored as 4x4x60 3d array in single h5 file with ’ECAL’ 

and ‘HCAL’ keys respectively. The particle energy, type and momentum information 

was stored under ‘target’ key in the same h5 file. There were 50 of these files for photons 

and 50 for pions each containing 10,000 events each. These were concatenated and 

shuffled to form 100 files with shuffled data. 

4. Project workflow 

The Project workflow: - 

1. Generate simulated calorimeter readouts of particle hits. (Photons and Pions). 

2. Process the readouts to find the barycenter of energy deposits at ECAL and take a 

window of reading around it. Find the coordinates of the corresponding point at 

HCAL (using absolute coordinates of ECAL barycenter) and take a window of 

reading of HCAL cells around that point. Store these window of readings as 3d 

arrays in h5 files along with the target energy and particle type. 

3. Merge and shuffle the h5 files. 
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4. Feed the ECAL and HCAL readings as ‘images’ to convolutional neural networks 

and train them. The target provided depended upon the type of model we are 

training. We used three different types of model setups:- 

1. Regression only models: - Tested out various network topologies to perform 

only regression analysis of the energy of particle hits. 

2. Classification only models: - Tested out various network topologies to 

perform only classification on the particle type. (Photon or Pion). 

3. Regression and Classification models: - Tested out various network topologies 

to carry out both regression analysis of the energy of particle hits and perform 

classification of the particle type. (Photon or Pion). 

4. After training test them out on unseen data and plot the results. 

5. Experimental Setup 

The initial testing and training of our models was performed on Nvidia GeForce 900 series GTX 

TitanX graphics processing unit (GPU), built on 28 nm Maxwell architecture, and coupled with the 

Intel Core i7-5960 X CPU. 

After the initial testing specific model topologies were selected and then trained on the CSCS 

(Swiss National Supercomputing Centre) Piz Daint supercomputer.  

The Piz Daint supercomputer is a 28 cabinet Cray XC30 system with a total of 5'272 compute 

nodes. The compute nodes are equipped with an 8-core 64-bit Intel SandyBridge CPU (Intel® 

Xeon® E5-2670), an NVIDIA® Tesla® K20X with 6 GB GDDR5 memory, and 32 GB of host 

memory. The nodes are connected by the "Aries" proprietary interconnect from Cray, with a 

dragonfly network topology. [4] 

For the actual training and testing of neural networks, we used Keras, a minimalist, highly modular 

neural networks library, written in python and capable of running on top of either TensorFlow or 

Theano. Keras was used for this project because of its modular nature, easy and fast prototyping 

and community support. We used Theano as the backend for Keras to train our models. 

The datasets used were too large to fit in memory all at once and there was a need to split these 

datasets into test, train and validation set. To overcome this problem, we used a custom made data 

generator. Some features of the data generator used: - 

1. The data generator is a python class which goes through all of the files and continues 

yielding batches of specified size indefinitely. 

2. It keeps a record of where it left off reading after reading from a file and resumes reading 

from there for the next batch. 

3. The generator also takes care of splitting the data into training, testing and validation set 

by using different methods in the class, train (), test () and validation () respectively.  

4. Keras fit_generator() function is used to train model using this generator. 
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5. The generator feeds in batches of a specified size until the requirement of samples per 

epoch is satisfied after which a new epoch begins. 

After the training is completed the models are tested on unseen data using the test () method of the 

generator class. Their performance is plotted using matplotlib library in python. 

6. Results 

6.1. Energy Regression 

Here we tested various topologies to perform regression analysis on the energy of particle hits. The 

target energy in GeV was provided. The input data was just the ECAL readouts for the old LCD 

dataset and ECAL+HCAL readouts for the new dataset. 

6.1.1. Network architectures 

For the old LCD dataset containing just the ECAL readouts we used the following architectures. 

Since we just had ECAL data in the shape of 20x20x25 3d array, the input dimension of the first 

layer was same. Most of the topologies were convolutional 2d models with varying levels of dense 

layer after them. We also varied the activation function, experimenting with Leaky ReLU and 

Sigmoid. We were facing the dying ReLU problem with ReLU and hence avoided using ReLU for 

these models. 

CNN2D_1 

 

CNN2D_2 

 

CNN2D_3 

 

CNN2D_4 

 

CNN3D_1 

 

For the new LCD dataset, we had readouts of both the ECAL and HCAL. The ECAL readouts were 

of the shape 24x24x25 and HCAL were of the shape 4x4x60. Since the shape of both the readouts 

were different, we decided to use branched convolutional neural networks. The ECAL and HCAL 

data were fed into different input branches of the same neural network. The number of dense layers 

and convolutional layers were varied to get different topologies. We also tested one dense network 
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to benchmark the performance of the convolutional networks. We used linear as the activation 

function for the output neuron in the last layer. 

BCNN1_REG 

 

 

BCNN2_REG 

 

BCNN3_REG 

 

BCNN4_REG 

 

BCNN5_REG 

 

DENSE1_REG 

 

6.2. Particle Classification 

Here we tested various topologies to perform regression analysis on the energy of particle hits. The 

target was the particle type. This was a binary classification problem. We performed classification 

on the new LCD dataset with both ECAL and HCAL readouts. 

6.2.1. Network architectures 

For the new LCD dataset, we had readouts of both the ECAL and HCAL. The ECAL readouts were 

of the shape 24x24x25 and HCAL were of the shape 4x4x60. Since the shape of both the readouts 

were different, we decided to use branched convolutional neural networks. The ECAL and HCAL 

data were fed into different input branches of the same neural network. The number of dense layers 

and convolutional layers were varied to get different topologies. We also tested one dense network 

to benchmark the performance of the convolutional networks. We used sigmoid as the activation 

function for the output neuron in the last layer. 
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BCNN1_CL 

 

BCNN2_CL 

 

BCNN3_CL 

 

BCNN4_CL 

 

BCNN5_CL 

 

DENSE1_CL 

 

6.3. Classification and Regression 

Here we tested various topologies to perform both regression analysis on the energy of particle hits 

and classification of particle into photon or pion. The target was the particle type and energy of 

particle hit. We used the new LCD dataset with both ECAL and HCAL readouts for this. 

6.3.1. Network architectures 

For the new LCD dataset, we had readouts of both the ECAL and HCAL. The ECAL readouts were 

of the shape 24x24x25 and HCAL were of the shape 4x4x60. Since the shape of both the readouts 

were different, we decided to use branched convolutional neural networks. The ECAL and HCAL 

data were fed into different input branches of the same neural network. The number of dense layers 

and convolutional layers were varied to get different topologies. We also tested one dense network 

to benchmark the performance of the convolutional networks. 

Further since the networks performed both classification and regression they had two output 

neurons at the last layer, one for classification and one for regression. The activation functions were 

linear for the neuron performing regression and sigmoid for the neuron performing classification. 

BCNN1_REGCL 
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BCNN2_REGCL 

 

BCNN3_REGCL 

 

BCNN4_REGCL 

 

BCNN5_REGCL 

 

DENSE1_REGCL 

 

6.4. Results 

6.4.1. Energy Regression 

The performance of trained neural networks was tested on unseen test data. 

For the old LCD dataset (containing only ECAL data):- 
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We can clearly see that in case of the old dataset cnn3d which is a convolutional 3d neural network 

outperforms most of the 2d convolutional networks. 

For the new LCD dataset containing both ECAL and HCAL:- 
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The convolutional 3d networks are performing better than the 2d convolutional networks and 

simple dense neural networks. The performance of neural networks degrades below 100 GeV and 

while approaching 500 GeV. 
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6.4.2. Classification 

 

The highest signal to noise ratio we obtained across all energies was 80:20. The performance might 

vary along different energies. 

7. Future Work 

The future scope of this project is as follows: - 

1. Trying out new type of branched networks using up- sampling/down-sampling to 

enable branches to see the whole of ECAL and HCAL data at once instead of at 

separate branches.  

2.  Hyper-parameter optimization for improved networks which perform well in a 

wider range of energies. 
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3. Publication: - 

a. The dataset will be released to public under the opendata initiative 

b. Publication of our results on applying machine learning to this dataset 

4. Classification of charged particles and jets. 
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