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REPEATED UPPER AND LOWER INTEGRALS OF A
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1. When fix, y) is a bounded function of two variables, the inequalities

j] fix, y) dxdy^\ dy J/(aj, y)dx^\ dy f f(x, y) dx > j] fix, y) dxdy,

or, using obvious abbreviations,

upper double ^ upper-upper ^ lower-lower ^ lower double,

between the upper and lower double (proper) integrals and the two
extreme repeated (proper) integrals are well known.*

That these inequalities do not necessarily hold when the integrand
is an unbounded function, in which case the integrals concerned are
improper integrals, may be inferred from the study of stray examples
given incidentally by previous writers.

Thus, in the example given by Dr. Hobson,t fix, y) has an improper
double integral, whose value is zero, while its integral with respect to y is
infinite for a set of values of x everywhere dense, and is elsewhere zero.
Integrating, first with respect to y and then with respect to x, we have,

' double integral = lower integral of integral = 0,

while upper integral of integral = oo,

so that the inequality at the head of this article is violated.
It might be contended that the idiosyncrasies of this function are of

an extreme character. Here fix, y) is a discontinuous function as well
as an unbounded one; moreover, its integral with respect to y is infinite
at an everywhere dense set of points on the ?/-axis.

* Prof. Pierpont has given conditions under which these inequalities still hold for in-
tegration with respect to a set of points. "On Improper Multiple Integrals," 1906, Trans.
of the American Math. Soc, Vol. vn., pp. 155-174.

t " On Absolutely Convergent Improper Integrals," 1906, Proc. LondonMath. Soc, Ser. 2,
Vol. 4, p. 156.



1908.] INTEGRALS OF A FUNCTION OF TWO VARIABLES. 241

Now, in the first place, the admission of infinite values for the integral
constantly produces abnormalities. For example, as I have lately pointed
out elsewhere,* the theorem that the integral of an unbounded function of
a single variable is a continuous function of its upper limit is no longer
always true if + co or — oo be allowed as values which the integral may
assume, and this is the case even when the integrand is continuous in
the extended sense.

In the second place, the doubt might arise whether, if we took as
integrand a continuous unbounded function f(x, y), the usual inequalities
might not inevitably hold good.

I have therefore been at pains to construct an example of an unbounded
continuous function such that (1) its double integral is finite, (2) its
integral with respect to x is a bounded non-integrable function of y,
(3) this function of y has for lower integral the double integral.

This example (§ 4), beside setting at rest the doubts in question, is
found to throw considerable further light on the various possibilities
which may arise with regard to the inequalities which form the main
subject of the paper. No systematic investigation of these possibilities
appears to exist, and the theorems given in the paper are, I believe,
stated for the first time. I shew that (I.) for functions with a finite
upper bound, upper double ^ upper-upper ;

(II.) for functions vjith a finite lower bound,

lower-lower ^ lower double ;

(III.) for any functions whatever,

upper double ^ loioer-upper,

and (IV.) upper-lower ^ lower double.

In case (I.) the sign of equality holds when the integrand is upper
semi-continuous, and it holds in case (II.) when the integrand is lower
semi-continuous.

The example already referred to (§ 4) shews that the inequality (I.)
may be violated if the restriction as to the finitude of the upper bound
is removed. Similarly, of course, (II.) may be violated when the corre-
sponding restriction is removed.

It is then shown by means of two examples (§ 8) that a connexion
between the inequalities (III.) and (IV.) cannot in general be established ;
even in the case of bounded functions, the lower-upper may be either
greater or less than the upper-lower.

* " On a Test for Continuity," 1908, Proc. of the Royal Society of Edinburgh, Vol. xxvin.,
§ 8, pp. 254, 255.

8ER. 2. VOL. 6. NO. 990. B
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From all this it follows, in particular, that the double integral of an
integrable function may be found by successive upper and lower integration
whenever one bound of the function is finite. If, however, the bounds
are both infinite, the double integral will not, in general, be capable of
calculation by this method.

One additional result may be noticed. It is known that, if f(x, y) is
a bounded continuous function of the ensemble (x, y), its integral with

respect to x between fixed limits, say f(x, y)dx, is a continuous function
Ja

of y. It is shewn in §§ 1-3 that, when/, remaining continuous, is un-
bounded even at one point, the integral is in general an upper or lower
semi-continuous function of y according as / has a finite upper or lower
bound in the interval considered. We may, of course, divide the segment
of the axis of x under consideration into a finite number of segments in
each of which one of the bounds is finite, since/ is continuous.

It should be added, in conclusion, that the paper has been so worded
that the definition employed for improper double integrals may be taken
to be that of de la Vall6e-Poussin. The definition given by myself in
my paper quoted below, presented to the Cambridge Philosophical Society,
leads more naturally to the results obtained, but I have not explicitly
employed it, with the object of rendering the paper more readily com-
prehensible to those acquainted, with the existing literature of the subject.

The range of integration I have always taken to be a finite rectangle,
and I have not thought it necessary to enter into the obvious general-
isations which arise when the number of independent variables is more
than two.

1. The following preliminary theorem is fundamental:—

THEOREM 1.—If f(x, y) is an upper {lower) semi-continuous function
of the ensemble {x, y) having a finite upper (lower) bound, (1) its upper
(lower) integral with respect to one variable x is an upper (lower) semi-
continuous function of the other variable y, and (2) its upper (lower) double
integral is its upper-upper (lower-lower) integral.

It will be sufficient to prove these theorems when f(x, y) is upper semi-
continuous.

Since f(x, y) has a finite upper bound, it may* be expressed as
the limit of a monotone descending sequence of bounded continuous

* " On Monotone Sequences of Continuous Functions," § 5, Cor., Proc. Camb. Phil. Soc,
Lent Term, 1908.
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functions fx(x, y) > f2(x, y) > f3(x, y) > ....

Keeping y constant and integrating from a to b with respect to x, and
denoting the integral of fn by Fn{y), the functions

F^y) > F&) > FB(y) > ...

form, a monotone descending sequence of continuous bounded functions.
The limit of this sequence is therefore an upper semi-continuoua

function of y. By a known theorem,* however, this limit is the upper
integral with respect to x of the upper semi-continuous function f{x, ij).
This proves the statement (1).

Again, the double integrals of fL{x, y), f2(x, y), ... also form a mono-
tone descending sequence whose limit is again, by a known theorem, the
upper double integral of f{x, y).

Since fn(x, y) is bounded and continuous,

|f fn (x, y) dxdy = J dy \ f(x, y) dx,

so that \\f(x,y)dxdy= Lt f dy \fn(x, y)dx = Lt \ Fn(y)dy.

But, since it has been shewn that Fx{y), F2{y), ... form a monotone
decreasing sequence of continuous bounded functions of y, whose limit
F(y) is therefore an upper semi-continuous function of y, the last-
mentioned limit is the upper integral of F(y), that is, by what has been
proved - - -

JJ fix, y)dxdy = J dy]f(x, y)dx.

This proves the statement (2).

2. On account of the fundamental character of the above theorem, we
now give an instructive alternative proof of the first result.

We require the following lemma :—

LEMMA.—If f(x, y) is an upper (lower) semi-continuous function
of the ensemble {x, y), and Uy and Ly are the upper and lower bounds of
f(x, y) on any particular parallel to the axis of x between fixed limits
for x, then Uy and Lv are both upper (loioer) semi-continuous functions
of y-

We give the proof for an upper semi-continuous function.

* For the upper integral of an upper semi-continuous function is its generalised or
Lebesgue integral, and generalised integration, term by term, is allowable in the case of
a monotone sequence. It is easy to give an independent proof of the case of this theorem
used more than once in our investigation. For the general theorem, cp. Beppo Levi, Atti di
Torino, 1907.

R 2
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For, if ylt y^ ... is a sequence of values of y having y0 as limit, there
will be a point Pn on the line y = yn where f(x, yn) assumes its upper
bound UVn. These points Pn for all values of n have one or more limiting
points lying on y = y0, and at such a limiting point, f(x, y) being upper
semi-continuous with respect to the ensemble {x, y), the value of f(x, y^j
is not less than any limit approached by the quantities UVn; a fortiori,
the same is true of UVo, which shews that Uy is an upper semi-continuous
function of y.

Again, on the line y = y0 there will be a point Po where f(x, y) has
a value less than L, where L is any quantity greater than Ly. Since
f(x, y) is upper semi-continuous with respect to y, its values on all neigh-
bouring lines y = yn on the ordinate of Po are also less than L, and
therefore the same is true of the corresponding lower bounds LVn. That
is to say, Ly is an upper semi-continuous function of y.

COR. 1.—If f{x, y) is a continuous function of the ensemble (x,y),
its upper and lower hounds Uy and Lv on any parallel to the axis of
x between fixed limits for x, are continuous functions of y.

COR. 2.—If f(x, y) be upper {lower) semi-continuous with respect to
y only, then the lower (upper) hound only is an upper (lower) semi-continuous
function of y.

Alternative proof of (1) in Theorem 1:—
Since f(x, y) has a finite upper bound, it may be shewn* that its upper

integral with respect to x is the lower limit of its upper summations.
Now, taking any fixed division of the segment (a, 6) into a finite

number of segments, and for fixed y taking the upper limit of f(x, y) in
each segment and summing, so as to form one of these upper summations,
we get, by the preceding theorem, an upper semi-continuous function of y.

Taking any monotone sequence of such upper summations, descending
to the lower limit, it follows that that limit is an upper semi-continuous
function of y, which proves the required result, viz., that the upper
integral of the upper semi-continuous function f(x, y) with respect to
x is an upper semi-continuous function of y when f(x, y) has a finite
upper bound.

3. As a speciaL case of Theorem 1, we note the following :—

THEOREM 2.—If f(x, y) is a continuous function of the ensemble (x, y)
with a finite upper (loioer) hound, its double integral is the upper (lower)
integral with respect to y of the integral with respect to x.

* This theorem, which is easily proved, is probably contained in Severini's Time, which,
however, I have not been able to procure.
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Further, the integral with respect to x of such a function is an upper
(lower) semi-continuous function of y.

The following example shews that the result just stated is all that
can, in general, be predicated:—

Construction of a Continuous Unbounded Positive Function f(x, y),
whose Integral «

F(y) = \ f(x,y)dx,
Jo

with respect to x, is a Bounded Lower Semi-Continuous Function of
y, not Continuous.

FIG. 1.

Take the unit square (Fig. 1) and divide it by the lines

x = y, x = 2y,
into three triangles.

In the isosceles right-angled triangle put

u=f{x,y)=j-.

In the other right-angled triangle put

ic=f(x,y)=x-K

In the remaining triangle, shaded in the figure, put

2 1

(1)

(2)

2 1 /I 1 \ /Q>

= 7 - ^ - * (7-^7)- <3)
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so that in this triangle, for any constant value of y,

(4)

the sign of equality holding only at the respective extreme points, and
f(x, y) decreasing in a monotone manner from the former to the latter
value. Thus, for constant y, f(x, y) is a monotone decreasing continuous
function of x; it is always positive, and, except on the axis of y, always
finite. On the axis of x it is x~*.

The formulae (1), (2) and (8) being continuous functions, it follows that,
at any point of the unit square not on one of the dividing lines

x = y, x = 2y,

f(x, y) is a continuous function of the ensemble (;c, y). The same is true
on the dividing lines, with the possible exception of the origin, since the
expressions for f(x) in the two triangles having that line as boundary
agree on that line. The only doubt remains at the origin, where f(x, y)
is infinite. But, if we draw any rectangle, as OA GB in the figure, having
the corner opposite the origin on the line

x=

and in this rectangle draw any line parallel to the ic-axis, since f(x, y)
decreases monotonely along this line, its value at any point, such as P, or
P' or P" in the figure, is greater than that on the bounding ordinate AC,
that is, greater than at A, where it is x~h. Thus, by taking A sufficiently
near to 0, so that 1

all the values of fix, y) in the rectangle are greater than k, so that / is
continuous at its infinity, the origin.

Integrating, we have

F(0) — \ x~*dx = 2, (5)
Jo

and when y is not zero,

F{y) = [V fix, y) dx+ ?Vf(x, y) dx+ P f(x, y) dx,
JO Jy J2y

or, using the formulas (1), (2) and (3), and integrating

Fiy) =

From (5) and (6), we see that

= 2 <£<Lt
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so that F(y), though elsewhere continuous, is only lower semi-continuous
at the origin.

4. Construction of a Continuous Unbounded Positive Function f(x, y),
whose Integral n

F(y)= f{x,y)dx,
Jo

with respect to x is a Bounded Non-Integrable Lower Semi*
Continuous Function of y.

rj

FIG. 2.

Ex. 2.—We define fix, y) in the unit square as follows :—
On the y-axis take the typical ternary perfect set of positive content*

(lying between £ and §), say G. On each black interval of G erect an isosceles
right-angled triangle (black in the figure), and an isosceles triangle whose
altitude is equal to its base (shaded outside the black triangle).

Let <2t be the lower, and fa the upper end of the i-th. black interval,
and Wi its middle point. Then the line

y = wk

divides the strip bounded by the parallels through a,i and fa symmetrically.
In each half-strip we have one black and one shaded triangle and a

white part. We define f(x, y) in the lower half-strip as follows, and then
change (y—at) into (fa—y), so as to get the corresponding formulae in the
upper half-strip.

In the black triangle f(x, y) — ;
y <Zi

(1)

* Young's Theory of Sets of Points, Ex. 1, p. 78. The construction is by means of division
into 3, 32, 33, ..., 3", ... equal parts. The complementary set of " black intervals " consists of
the central third of the segment (0, 1), the central ninth of (0, | ) and (§, 1), and so on.
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in the white part f(x, y) = x~h; (2)

in the shaded triangle f(x, y) = -*—& Y == , (8)

where, for shortness, we write y' = y—ai. (8a)

This function is, by the preceding example, continuous throughout the
half strip, and therefore throughout the whole strip, since the values of
the given expressions in the two half strips agree on the median line. On
the two extreme lines

y = ah y= bh

we have f(x, y) = x~h, (4)

which also expresses the function on any parallel through a point of the
perfect set G. The function f{x,y), so defined for the whole unit square
is then clearly a positive continuous function of the ensemble (x, y), and
is finite everywhere except at the points of G, where it is infinite.

Integrating, we have

F(y) = 2 at all the points of the perfect set G,

while elsewhere

) i[l(d*] or J f l - f o

according as y lies in the lower or the upper half of the black interval
(aif bi) or di. Thus F(y) is lower semi-continuous at every point of the
perfect set G and is elsewhere continuous; it is therefore a non-integrable
function of y.

Since F (y) is lower semi-continuous, its lower integral is its generalized
integral, that is

21+22 pF(y) dy = 21 + 72 [M-f ^ \

(where I is the content of G), which is the value of the double integral of
f(x, y) over the unit square.

It may be noticed that the upper integral of F (y) only differs from the
above by taking \ instead of 2 at all the points of G, so that

Thus the upper integral of the integral is greater than the double integral,
contrary to what can happen when the integrand is bounded, in which
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case the double integral is always greater than or equal to .the upper-
upper integral, whether the integrand is continuous or not.

If we integrate f(x, y) with respect to y from 0 to 1, we get a function
of x which is clearly finite and continuous for all values of x other than
zero, and is always greater than Ix~*, so that it has the limit + <x> at the
origin. The value at the origin is also + °° • Thus the function is a
continuous unbounded function, having a single infinity at the origin.
The integral of this function is, of course, the double integral of f(x, y)
over the unit square, and has therefore the value already found.

THEOREM 3.—Given any function f(x, y) whatever with a finite upper
bound, its upper-upper integral is less than or equal to its upper double
integral, that is

\dy\ f{x, ij) dx < jj f(x, ij) dx dy.

Let <p(x, y) be the associated upper limiting function oif(x, y), that is
the function got by taking at each point (x, y) the highest value which can
be approached as limit by f{x, y) in the neighbourhood of the point in
question. Then 0 is an upper semi-continuous function of the ensemble
(x, y), and it has the same finite upper bound as / itself. Hence, by
Theorem 1, its upper double integral is its upper-upper integral. Since,
however, as is easily seen, / and <f> have the same upper double integral,
this proves that - _

J dy j 0 (x, y) dx = |j f(x, y) dx dy. (1)

Now the associated upper limiting function of / (# , y) when y is con-
stant is evidently less than or equal to <p (x, y) at each point (x, y). Hence
the upper integral oif(x, y) with respect to x, y being constant, which is
the same as the upper integral of that associated upper limiting function,
is less than or equal to the upper integral of <(> with respect to x, that is

j f(x, y) dx < J <p {x, y) dx. (2)

Hence, by (1) and (2),

dy J/(z, y) dx < JJ f(x, y) dxdy.

A similar argument proves the alternative theorem :—

Given any function f(x, y) whatever with a finite lower bound, the
lower-lower integral is greater than or equal to the lower double integral,
that is f- c c

JJ f(x, y) dxdy < J dy J f(x, if) dx.
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COR. 1.—If fix, ij) is any hounded function of the ensemble ix, y),

f f fix, ?/) dx dy < j dy f fix, y) dx < j dy j/(z, y) dx < [ [ / (x, y) dx dy.

COR. 2.—If fix, y) is an integrable bounded function, then in the pre-
ceding inequality the sign of equality must he taken throughout.

6. THEOREM 4.—Iffix, y) be any function of x and y, its lower-upper
integral is less than-or equal to its upper double integral, that is

| dy J fix, y) dx < [[/(z, y) dxdy.

Let <j> be the upper limiting function of / . Then <f> is an upper semi-
continuous function of the ensemble ix, y), and therefore* can be expressed
as the limit of a monotone descending sequence of continuous functions
each having a finite lower bound,

and the upper double integral of <f> is the limit of the double integral of <f>n.
Thus, if the upper double integral of <f> is finite, we can find n so that

\\ <j>n ix, y) dx dy—j J 0 ix, y) dx dy < e, (1)

e being any positive quantity previously chosen at will.
But, by Theorem 1, since <f>n has a finite lower bound, and is continuous-,

J J <l>n ix, y) dxdy = j dy j <£n ix, y) dx dy

= } dV \ <f>n (A y) dx dy^^dy^f ix, y) dx, (2)

since at every point $n J> <p ^f-

Since / and <p have the same upper double integral, it now follows
from (1) and (2) that

J|/CT> y) dxdy+e ^\dy\fix, y) dx,

which, e being at our disposal, proves the theorem.

• Theorem of § 5, Case 3, of my paper, "No te on Monotone Sequences of Continuous Funo-
tionfl."
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7. Summing up our results so far, we have shewn that for functions
with a finite upper bound,

upper double ^ upper-upper;

for functions with a finite lower bound,

lower-lower ^ lower double ;
for any functions,

upper double ^ lower-upper,

upper-lower ^ lower double.

The example just given shews that it may happen for functions with an
infinite upper bound, that

upper double > upper-lower ;

and for functions with an infinite lower bound, that

lower-upper > lower double.

Thus for a bounded function,

upper double ^ upper-upper ^ lower-upper,

upper-lower ^ lower-lower ^ lower double,

while for an unbounded function the upper double may be displaced so as
to occupy the second position in its own sequence, but not the third, while
in the other sequence it may be displaced so as to occupy the second place,
between upper-lower and lower-lower, but no further. Similar remarks
apply, of course, to the lower double. Thus in the case of a function
which has infinite upper and lower bounds, the following is a possible
inequality:—

upper-lower > upper double > lower double > lower-upper,

or, more fully,

upper-upper > upper-lower > upper double > lower double

> lower-upper > lower-lower.

One point only rests in doubt, namely, as to the possible relative posi-
tions of the lower-upper and the upper-lower. It is clear that in the case
of an unbounded function they may change positions, that is, we cannot
say, a priori, which of the two is greater. It remains, however, still to
discuss their relative position when the function is bounded. In this case
also either position is possible, as is shewn by Examples 3 and 4.
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8. The following simple example shews that in the case of a bounded
function the following relative position is possible,

upper-lower > lower-upper.

Ex.—Take in the segment (0, 1) of the y-axis a perfect set nowhere
dense of positive content I. For every value of y belonging to this
perfect set, let / f e y) = ^

and elsewhere f(x, y) —• 0,

the region of integration being the unit square.
Then f{x, y) is, for every value of y, a continuous function of x and

therefore integrable, so that

\f{xty)dx = ̂ /{x,y)dx,

and has the value 1 or 0 according as y does or does not belong to the
perfect set. The function of y so denned is therefore non-integrable,
having the upper integral = I, and the lower integral = 0, so that

I = upper-lower > lower-upper = 0.

The following example, on the other hand, shews that in the case of a
bounded function the relative position may be reversed, so that we may
have , . ,

lower-upper > upper-lower.

Ex.—Take in the segment (0, 1) of the z-axis a perfect set nowhere
dense and of positive content I, and on each of the ordinates through its
points place a similar set. We thus get a plane perfect set nowhere dense
of content I*, such as is given in Ex. 5 and Fig. 24 of my Theory of Sets
of Points, pp. 173, 174.

At every point of this plane perfect set let

f(x,y) = 0,

and elsewhere have the value 1.
Then for every value of y belonging to the perfect set of content I on

the y-axis, we have
, y)dx = 1,

but \f(x, y)dx = 1—I,

while for other values of y both the upper and the lower integrals have
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the value 1. Thus the upper integral with respect to x is an integrable
function of y, while the lower integral with respect to x is a non-integrable
function of y, hence

lower-upper = upper-upper > upper-lower.

In fact 1 = J <% \f{x, y) dx > j dy \f(x, y) dx = 1—7.

9. From the above results we can at once deduce the following :—

(1) If an integrable function have a finite upper bound,

upper double = upper-upper = upper-lower = lower double.

(2) If an integrable function have a finite lower bound,

upper double =r lower-upper = lower-lower = lower double.

(3) In the case of an integrable function having an infinite upper and
an infinite lower bound, the method of repeated upper and lower integra-
tion will totally fail in general to give the value of the double integral.

[Added March 14th, 1908.—In the above paper I have deliberately
avoided the use of the concept of Lebesgue integration. I hoped in this
way to appeal to a larger public. I should like to point out, however,
what is indeed obvious to any one acquainted with the Lebesgue theory,
that the reasoning by which the inequalities (III.) and (IV.) were obtained,
really gives us a slightly more extended result, viz.,

(V.) upper double ^ middle-upper,

(VI.) middle-lower ^ lower double,

where the word " middle " is used to denote the generalised, or Lebesgue,
integral, which, as is well known, lies in general between the upper and
lower integrals, and may be equal to either or both. When the function
is lower semi-continuous the Lebesgue integral is equal to the lower
integral, which I write, symbolically,

)dx = ]f{x)dz,

or, perhaps,

~\f{x) dx = \f(x) dx.
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Hence, in § 6, equation (2) may be written, since f <pn(xf y)dx is a lower
semi-continuous function of y,

<f>n(x, y) dxdy — \dy\ <f>n(x, y) dx

= J dy\<f>n{x, y)dx

= | dy | <j>n{x, y) dx

, y) dx.

Hence, for a function unbounded above and below, the most general
inequality will be

upper-upper > upper-lower > upper double > middle-upper

> middle-lower > lower double > lower-upper > lower-lower.]


