Conference paper Open Access
Bakopoulos, Paraskevas; Dris, Stefanos; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Optical Interconnects, sub-carrier modulation, 16-QAM, Nyquist pulse shaping, intra-datacenter connectivity, direct detection, digital equalization</subfield> </datafield> <controlfield tag="005">20200120163742.0</controlfield> <controlfield tag="001">204084</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">March 7, 2016</subfield> <subfield code="a">Proc. SPIE 9775, Next-Generation Optical Networks for Data Centers and Short-Reach Links III, 97750A</subfield> <subfield code="c">San Francisco, California, United States</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">aPhotonics Communications Research Laboratory, National Technical University of Athens</subfield> <subfield code="a">Dris, Stefanos</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">aPhotonics Communications Research Laboratory, National Technical University of Athens</subfield> <subfield code="a">Argyris, Nikolaos</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">aPhotonics Communications Research Laboratory, National Technical University of Athens</subfield> <subfield code="a">Spatharakis, Christos</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">aPhotonics Communications Research Laboratory, National Technical University of Athens</subfield> <subfield code="a">Avramopoulos, Hercules</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">707521</subfield> <subfield code="z">md5:672b5a3afe8da8d880a9b1e72ad9b9cc</subfield> <subfield code="u">https://zenodo.org/record/204084/files/SPIE_sub-cycle_final.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2016-02-13</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-ecfunded</subfield> <subfield code="o">oai:zenodo.org:204084</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">aPhotonics Communications Research Laboratory, National Technical University of Athens</subfield> <subfield code="a">Bakopoulos, Paraskevas</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">112 Gb/s sub-cycle 16-QAM Nyquist-SCM for intra-datacenter connectivity</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-ecfunded</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">645212</subfield> <subfield code="a">eNd to End scalable and dynamically reconfigurable oPtical arcHitecture for application-awarE SDN cLoud datacentErs</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Datacenter traffic is exploding. Ongoing advancements in network infrastructure that ride on Moore’s law are unable to<br> keep up, necessitating the introduction of multiplexing and advanced modulation formats for optical interconnects in order<br> to overcome bandwidth limitations, and scale lane speeds with energy- and cost-efficiency to 100 Gb/s and beyond. While<br> the jury is still out as to how this will be achieved, schemes relying on intensity modulation with direct detection (IM/DD)<br> are regarded as particularly attractive, due to their inherent implementation simplicity. Moreover, the scaling-out of<br> datacenters calls for longer transmission reach exceeding 300 m, requiring single-mode solutions.<br> In this work we advocate using 16-QAM sub-cycle Nyquist-SCM as a simpler alternative to discrete multitone (DMT),<br> but which is still more bandwidth-efficient than PAM-4. The proposed optical interconnect is demonstrated at 112 Gb/s,<br> which, to the best of our knowledge, is the highest rate achieved in a single-polarization implementation of SCM. Off-theshelf<br> components are used: A DFB laser, a 24.3 GHz electro-absorption modulator (EAM) and a limiting photoreceiver,<br> combined with equalization through digital signal processing (DSP) at the receiver. The EAM is driven by a low-swing<br> (&lt;1 V) arbitrary waveform generator (AWG), which produces a 28 Gbaud 16-QAM electrical signal with carrier frequency<br> at ~15 GHz. Tight spectral shaping is leveraged as a means of maintaining signal fidelity when using low-bandwidth<br> electro-optic components; matched root-raised-cosine transmit and receive filters with 0.1 excess bandwidth are thus<br> employed. Performance is assessed through transmission experiments over 1250 m and 2000 m of SMF.</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1117/12.2211639</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
Views | 79 |
Downloads | 229 |
Data volume | 162.0 MB |
Unique views | 76 |
Unique downloads | 226 |