Dataset Open Access

Equation of State Effects on Gravitational Waves from Rotating Core Collapse

Richers, Sherwood; Ott, Christian David; Abdikamalov, Ernazar; O'Connor, Evan; Sullivan, Chris

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">gravitational wave</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">core-collapse supernova</subfield>
  <controlfield tag="005">20200124192438.0</controlfield>
  <controlfield tag="001">201145</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">California Institute of Technology</subfield>
    <subfield code="a">Ott, Christian David</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Nazarbayev University</subfield>
    <subfield code="a">Abdikamalov, Ernazar</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">North Carolina State University</subfield>
    <subfield code="a">O'Connor, Evan</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Michigan State University</subfield>
    <subfield code="a">Sullivan, Chris</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">308066035</subfield>
    <subfield code="z">md5:9551b96145f06a7aef1939f8991a5f15</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-12-15</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-nrgw-opendata</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">California Institute of Technology</subfield>
    <subfield code="a">Richers, Sherwood</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Equation of State Effects on Gravitational Waves from Rotating Core Collapse</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-nrgw-opendata</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Gravitational waveforms from 1824 fiducial and detailed electron capture simulations, sampled at 65535 Hz. The file is in HDF5 format, using the flags {dtype="f4",compression="gzip",shuffle=True,fletcher32=True}. Each group is contained in the "waveforms" top-level group and is named with the "A" and "omega_0" values from Equation 5 and the EOS. In each sub-group is a dataset containing timestamps in seconds (t=0 is core bounce) and a dataset containing the strain multiplied by the distance in centimeters. The values of A in kilometers, omega_0 in radians/s, and the EOS are stored as attributes of each group.&lt;/p&gt;

&lt;p&gt;In addition, the Ye(rho) profiles are stored in the "yeofrho" top-level group. Each sub-group is labeled by the EOS used to generate the profile.&lt;/p&gt;

&lt;p&gt;Finally, select reduced data is stored in the "reduced_data" top-level group. The following quantities are each stored as a 1824-element array, where elements of the same index from different datasets correspond to the same 2D simulation.&lt;/p&gt;

&lt;p&gt;A(km) -- differential rotation parameter in Equation 5&lt;br&gt;
D*bounce_amplitude_1(cm) -- The minimum of the first (negative) GW strain peak, multiplied by distance.&lt;br&gt;
D*bounce_amplitude_2(cm) -- The maximum of the second (positive) GW strain peak, multiplied by distance.&lt;br&gt;
EOS -- the equation of state used in the simulation&lt;br&gt;
MbarICgrav(Msun) -- gravitational mass of the inner core, averaged over time after core bounce&lt;br&gt;
Mgrav1_IC_b(Msun) -- gravitational mass of the inner core at bounce&lt;br&gt;
Mrest_IC_b(Msun) -- rest mass of the inner core at bounce&lt;br&gt;
SNR(aLIGOfrom10kpc) -- signal to noise ratio of the GW signal, assuming a distance of 10kpc and aLIGO sensitivity&lt;br&gt;
T_c_b(MeV) -- central temperature at bounce&lt;br&gt;
Ye_c_b -- central electron fraction at bounce&lt;br&gt;
alpha_c_b -- central lapse at bounce&lt;br&gt;
beta1_IC_b -- ratio of rotational kinetic to gravitational potential energy of the inner core at bounce&lt;br&gt;
fpeak(Hz) -- frequency of the post-bounce GW oscillations&lt;br&gt;
j_IC_b() -- angular momentum of the inner core at bounce&lt;br&gt;
omega_0(rad|s) -- initial (pre-collapse) rotation rate used in Equation 5&lt;br&gt;
omega_max(rad|s) -- maximum rotation rate achieved outside of 5km&lt;br&gt;
rPNSequator_b(km) -- radius of the rho=10^11 g/ccm contour along the equator at bounce&lt;br&gt;
rPNSpole_b(km) -- radius of the rho=10^11 g/ccm contour along the pole at bounce&lt;br&gt;
r_omega_max(km) -- radius where omega_max occurs&lt;br&gt;
rho_c_b(g|ccm) -- central density at bounce (not time averaged)&lt;br&gt;
rhobar_c_postbounce(g|ccm) -- central density time averaged after bounce&lt;br&gt;
s_c_b(kB|baryon) -- central entropy at bounce&lt;br&gt;
t_postbounce_end(s) -- time of the end of the postbounce signal (t=0 is core bounce)&lt;br&gt;
tbounce(s) -- time of core bounce (t=0 is the beginning of the simulation)&lt;br&gt;
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.201145</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
All versions This version
Views 603603
Downloads 182182
Data volume 56.1 GB56.1 GB
Unique views 544544
Unique downloads 169169


Cite as