Dataset Open Access

Equation of State Effects on Gravitational Waves from Rotating Core Collapse

Richers, Sherwood; Ott, Christian David; Abdikamalov, Ernazar; O'Connor, Evan; Sullivan, Chris


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.201145</identifier>
  <creators>
    <creator>
      <creatorName>Richers, Sherwood</creatorName>
      <givenName>Sherwood</givenName>
      <familyName>Richers</familyName>
      <affiliation>California Institute of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Ott, Christian David</creatorName>
      <givenName>Christian David</givenName>
      <familyName>Ott</familyName>
      <affiliation>California Institute of Technology</affiliation>
    </creator>
    <creator>
      <creatorName>Abdikamalov, Ernazar</creatorName>
      <givenName>Ernazar</givenName>
      <familyName>Abdikamalov</familyName>
      <affiliation>Nazarbayev University</affiliation>
    </creator>
    <creator>
      <creatorName>O'Connor, Evan</creatorName>
      <givenName>Evan</givenName>
      <familyName>O'Connor</familyName>
      <affiliation>North Carolina State University</affiliation>
    </creator>
    <creator>
      <creatorName>Sullivan, Chris</creatorName>
      <givenName>Chris</givenName>
      <familyName>Sullivan</familyName>
      <affiliation>Michigan State University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Equation of State Effects on Gravitational Waves from Rotating Core Collapse</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>gravitational wave</subject>
    <subject>core-collapse supernova</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-12-15</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/201145</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/nrgw-opendata</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Gravitational waveforms from 1824 fiducial and detailed electron capture simulations, sampled at 65535 Hz. The file is in HDF5 format, using the flags {dtype="f4",compression="gzip",shuffle=True,fletcher32=True}. Each group is contained in the "waveforms" top-level group and is named with the "A" and "omega_0" values from Equation 5 and the EOS. In each sub-group is a dataset containing timestamps in seconds (t=0 is core bounce) and a dataset containing the strain multiplied by the distance in centimeters. The values of A in kilometers, omega_0 in radians/s, and the EOS are stored as attributes of each group.&lt;/p&gt;

&lt;p&gt;In addition, the Ye(rho) profiles are stored in the "yeofrho" top-level group. Each sub-group is labeled by the EOS used to generate the profile.&lt;/p&gt;

&lt;p&gt;Finally, select reduced data is stored in the "reduced_data" top-level group. The following quantities are each stored as a 1824-element array, where elements of the same index from different datasets correspond to the same 2D simulation.&lt;/p&gt;

&lt;p&gt;A(km) -- differential rotation parameter in Equation 5&lt;br&gt;
D*bounce_amplitude_1(cm) -- The minimum of the first (negative) GW strain peak, multiplied by distance.&lt;br&gt;
D*bounce_amplitude_2(cm) -- The maximum of the second (positive) GW strain peak, multiplied by distance.&lt;br&gt;
EOS -- the equation of state used in the simulation&lt;br&gt;
MbarICgrav(Msun) -- gravitational mass of the inner core, averaged over time after core bounce&lt;br&gt;
Mgrav1_IC_b(Msun) -- gravitational mass of the inner core at bounce&lt;br&gt;
Mrest_IC_b(Msun) -- rest mass of the inner core at bounce&lt;br&gt;
SNR(aLIGOfrom10kpc) -- signal to noise ratio of the GW signal, assuming a distance of 10kpc and aLIGO sensitivity&lt;br&gt;
T_c_b(MeV) -- central temperature at bounce&lt;br&gt;
Ye_c_b -- central electron fraction at bounce&lt;br&gt;
alpha_c_b -- central lapse at bounce&lt;br&gt;
beta1_IC_b -- ratio of rotational kinetic to gravitational potential energy of the inner core at bounce&lt;br&gt;
fpeak(Hz) -- frequency of the post-bounce GW oscillations&lt;br&gt;
j_IC_b() -- angular momentum of the inner core at bounce&lt;br&gt;
omega_0(rad|s) -- initial (pre-collapse) rotation rate used in Equation 5&lt;br&gt;
omega_max(rad|s) -- maximum rotation rate achieved outside of 5km&lt;br&gt;
rPNSequator_b(km) -- radius of the rho=10^11 g/ccm contour along the equator at bounce&lt;br&gt;
rPNSpole_b(km) -- radius of the rho=10^11 g/ccm contour along the pole at bounce&lt;br&gt;
r_omega_max(km) -- radius where omega_max occurs&lt;br&gt;
rho_c_b(g|ccm) -- central density at bounce (not time averaged)&lt;br&gt;
rhobar_c_postbounce(g|ccm) -- central density time averaged after bounce&lt;br&gt;
s_c_b(kB|baryon) -- central entropy at bounce&lt;br&gt;
t_postbounce_end(s) -- time of the end of the postbounce signal (t=0 is core bounce)&lt;br&gt;
tbounce(s) -- time of core bounce (t=0 is the beginning of the simulation)&lt;br&gt;
 &lt;/p&gt;</description>
  </descriptions>
</resource>
603
182
views
downloads
All versions This version
Views 603603
Downloads 182182
Data volume 56.1 GB56.1 GB
Unique views 544544
Unique downloads 169169

Share

Cite as