Software Open Access

Lightning: large-scale linear classification, regression and ranking in Python

Blondel, Mathieu; Pedregosa, Fabian


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-12-13</subfield>
  </datafield>
  <controlfield tag="005">20190410035209.0</controlfield>
  <controlfield tag="001">200504</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o">oai:zenodo.org:200504</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Lightning is a Python library for large-scale machine learning. More specifically, the library focuses on linear models for classification, regression and ranking. Lightning is the first project to integrate scikit-learn-contrib, a repository of high-quality projects that follow the same API conventions as scikit-learn. Compared to scikit-learn, the main advantages of lightning are its scalability and its flexibility. Indeed, lightning implements cutting-edge optimization algorithms that allow to train models with millions of samples within seconds on commodity hardware. Furthermore, lightning can leverage prior knowledge thanks to so-called structured penalties, an area of research that has recently found applications in domains as diverse as biology, neuroimaging, finance or text processing. Lightning is available under the 3-clause BSD license at http://contrib.scikit-learn.org/lightning/.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INRIA</subfield>
    <subfield code="a">Pedregosa, Fabian</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">764644</subfield>
    <subfield code="z">md5:7324683380bb8a5d9257817bd549728d</subfield>
    <subfield code="u">https://zenodo.org/record/200504/files/sklearn-contrib-lightning-0.4.0.tar.gz</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">NTT</subfield>
    <subfield code="a">Blondel, Mathieu</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Python</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">supervised learning</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.200504</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Lightning: large-scale linear classification, regression and ranking in Python</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
254
12
views
downloads
All versions This version
Views 254254
Downloads 1212
Data volume 9.2 MB9.2 MB
Unique views 246246
Unique downloads 1111

Share

Cite as