Software Open Access

Lightning: large-scale linear classification, regression and ranking in Python

Blondel, Mathieu; Pedregosa, Fabian


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.200504</identifier>
  <creators>
    <creator>
      <creatorName>Blondel, Mathieu</creatorName>
      <givenName>Mathieu</givenName>
      <familyName>Blondel</familyName>
      <affiliation>NTT</affiliation>
    </creator>
    <creator>
      <creatorName>Pedregosa, Fabian</creatorName>
      <givenName>Fabian</givenName>
      <familyName>Pedregosa</familyName>
      <affiliation>INRIA</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Lightning: large-scale linear classification, regression and ranking in Python</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>machine learning</subject>
    <subject>Python</subject>
    <subject>supervised learning</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-12-13</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/200504</alternateIdentifier>
  </alternateIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Lightning is a Python library for large-scale machine learning. More specifically, the library focuses on linear models for classification, regression and ranking. Lightning is the first project to integrate scikit-learn-contrib, a repository of high-quality projects that follow the same API conventions as scikit-learn. Compared to scikit-learn, the main advantages of lightning are its scalability and its flexibility. Indeed, lightning implements cutting-edge optimization algorithms that allow to train models with millions of samples within seconds on commodity hardware. Furthermore, lightning can leverage prior knowledge thanks to so-called structured penalties, an area of research that has recently found applications in domains as diverse as biology, neuroimaging, finance or text processing. Lightning is available under the 3-clause BSD license at http://contrib.scikit-learn.org/lightning/.&lt;/p&gt;</description>
  </descriptions>
</resource>
255
12
views
downloads
All versions This version
Views 255255
Downloads 1212
Data volume 9.2 MB9.2 MB
Unique views 247247
Unique downloads 1111

Share

Cite as