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et de la relation entre les discriminants on obtient, & cause de cette

dernidre:  (7) ...... gl [5(12y— A4y +27(4*—144B)].

55
¥=F 5
Enfin de la valeur de L on déduit

510

(8) vvee g1 = — g7, [ 870y +1654y* — 404’ — 4050y + 324°
+2164B~4".37.C].

Au moyen de ces quatre relations on arrive a exprimer les (4), (5) en
fonction de v, A, B, 0. Mais auparavant il importe d’ohserver qu’en
maltipliant les deux derniéres (7), (8) entre elles, on a, i cause des
(6), que le premier membre est une fonction de y et do A ; une trés-
simple calenlation conduit & I'équation :

¥*—10By* — 400" + 5 (5B +4A4C) y— (AL A0+ 4 4B — 216 BU) = 0,

transformée en y de I'équation f(z) = 0.
On trouve pour le covariant (4) :

Q10) ... 2t B _ 934 44, —36D,
f' (=)
et analoguement on aura pour les covariants (5) deux polynomes du
troigiéme et du quatriéme degré en y.

En multipliant y et les trois polynomes en y des degrés 2, 3, 4 par
des indeterminées, et en nommant avec z leur somme, par I'expression
en z, analogne & celle de Tchirnauss, on transformera 'dquation
f (z) = 0 dans une autre, pour laquelle le coefficient du second terme
est égal & zéro ct los cocflicients snivants sevont fonctions de 4, I3, ¢
et des quatre indétermindes.

Je démontrérais dans une prochaiue occasion 'application de la
méthode exposée & la transformation des éqnations dn septieme degré.

On Projective Cyclic Concomitants, or Surface Differentiul
Invariants. By K. B. Bruorr, M.A.
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I

1. In analogy with Professor Sylvester’s nomenclature in con-
nection with Reciprocants, I propose to give the name Projective or
Principiant Cyclicents to those Pure Cyclicants* which areDifferential,
Invariants for all homographic transformations of the three variables
of the second and higher derivatives of one of which with regard to
the other two they are functions, 1.e., to those which have the property
of porsistence in form, but for a factor not involving second and

higher derivatives, when the variables undergo any such transfor-
mation as

& — = Y — 2
o’ +by +e 2 +d, '+ by For+di ayd +byy ey +dy
A2+ DBy’ +Cz'+D

Tt will be remembered that all puro cyclicants persist for the included
most general linear-transformation, in which the 4, B, O of (1)
aro zZorocs.

Projective cyclicants oboy of course all the laws of pure cyclicants
in general; i.e., they are homogeneous, doubly isobaric, and subject to

annihilation by the four operators (see Proceedings, Vol. xviii,
Pp. 142, 164).

0,=3 {(m+1) xn..,,"_.d—:"—m} O ¢}

* @f. Proceedings, Vol. x1x., ppe 377, &c.
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0,= {(n+1)m.._,,....zxi-} VOO ¢ )
hn

Vi=3 {20t tmnn) g0} i (@,

V=3 {E(sw.‘.x,,.-,,,..l-.) —d—} verererenneanenns (8)y

d,,

in which z,, denotes _1_dv'e for all values of m, #, and in
m! n! dy™ds"

which the limits of the summations are adequately expressed by
saying that in every derivative z,, which occurs, whether in a
coefficient or in an operating symbol, p and g must be positive
integers, or a positive integer and a zero, whose sum is not less than 2.
We shall presently sce that the furthcr conditions, neccessary and
sufficient, for a pure cyclicant to be projective are, that it havo the two
additional annihilators

o=3 {(m+n-—2)x,,,,,._| Eg‘} eveeismsnsennnss (6),

0= {(m+n—2)w,,,__l,,. ﬁ-} corveernessnareens (7).

It will be noticed that I am, for subsequent convenience, using a
notation which regards y and z as the independent variables, and =
as the dependent. In passages whero this is not the case, Q,
Vi Vi 0y, w; will still be used to denote the operators (2) to (7) with
the dependent variable, whichever it may be, written in them for 2.

2. The formulw of transformation (1) may be rcplaced by the
succession of the three following substitutions

Oz = (Ca,—c,A) X+ (Cb;—c,B) Y+ (Cdy—c, D) Z+Ce,

Cy = (Cay—c,A) X+ (Cb;—c,B) Y+ (Cdy—c,D) Z+Cc, b ... (B),

(2 = (Cay— ¢y A) X+ (Cby—cy B) Y+ (Cdy—cy D) Z+ Co,
X_Y_Z_1

—f YI 1 _ZT----n"..n.un.....n (9),

V= y RO e ()}
0Z = Ad'+ By + 07 +D

the only case of failure being when 0 =0. In this speccial case 4
and B cannot be both also zero without the transformation (1)
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degenerating into a merely linear one. Suappose then that B, for in-
stance, i8 different from zero. The transformation (1) may now be
cffected by the series of transformations (8), (9), (10), altered only by
the interchange of 0, ¢,, ¢, ¢, wud B, by, b,, by, preceded by the particu-
lar linear substitution of # for y and y for 2, and followed by that of ¥’
for «” anda’for 3", In all cases, therefore, the homographic transforma-
tion (1) may be replaced by a succession of linear transformations
and a transformation like (9).

1L
3. We have, nccordingly, to study the transformation (9), or say

e _y_z _1
e W (11),
with a view to determine differentinl cxpressions which persist in
form after tho transformation, and in particular eyclicants which
have this property of persistence. There nre advantages of simplicity,
as the sequel will mako suft iently clear, in regarding y and z as the
independent variables, so that the relation, of course perfectly un-
restricted in form, which is supposed to connect 2, , #, is regarded as
ouc expressing the first in terms of the sccond and third of these
variables.  Similarly, of o', 3, 2/, the two lust are taken as the
independent variables. In this aud the following nine arvticles, forms
of persistent expressions for the transformation (11) arc investigated
without any special referenco to tho theory of vyclicants.

A reason for the greater simplicity gained by regarding z and «” as
the dependent variables in the two scts is, that the formulwm for the
transformation of the independent variables

y = —;7’ Z= z; ----- D R T T TR R T Y (12),
or =, d=h i (13),
K 2

arc thus quite uncncumbered by auy presence of the dependent.
Thus we obtain from them at once the equivulences of operators

—_ - L = 'i 4
;'l?} = R (ly’ zdy, ......n-.....-..-.-..-.(IL),

d y d d oo d g d
=—2L B D=y = (1
dz 2 dy 2 df dy’ dz s,
from which also —yz—d— 2% = —i(lﬁ)
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The completely reciprocal relations between the accented and un-
ccented letters in (11), and its consequences, are of fundamental
nortance.

It is to be remurked that the operative symbols in (14), (15), (16)
are symbols of total and not partinl differentiation, so that, for in-
stance, if the function operated on involve tho dependent variable »
or 2 explicitly, diystauds for [c%:l +2y, (c—‘l'lv) in which (‘—i—dv) is the
symbol of differentiation with regard to z in so far as it is explicitly
involved, and L;iy] that for all those parts of the operation (-;-"- which
ignore the explicit presence of z. We shall be in little danger of
confusion in this matter, for it is only at the outset that we shall
have occasion to opcrate on functionsin which the dependent variable
explicitly appears.

It is casy from (14)—(16) to obtain two independeunt linear
differcntial operators which _ swsist in form after the transformation.

From (16), by aid of (12),
RPN ¢ ¥ ) B

and by subtraction of (10) from 2* times (15), and use of (12),

dygd o (i) )
ycly+2zdz_ {ydy,+2z 77 R ¢ £-) X

1t is clear, then, that we are to expect two classes of persistent
functions—a class which persist absolutely, and a skew class which
persist but for a change of sign. They may be called persistents of
positive and negative character respectively, and the operators (17)
and (18) may be called, respectively, positively and negatively per-
sisteut operators.

Other persistent operators, equivalent of course in the aggregate
to these two only, may be with ease written down. Thus the sum
and difference of (15) and (16) give us, respectively, the positively
and negatively persistent operators

d_ ﬂ_ -d— —_ I.i /2 __ _‘i
vt E-DE =yt L@ 9)

VAR SN 08 SV -
yzdy+(z+1)dz— K ¢_l-r]'+(z +1)c7a—'} N COF
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and, again, the sum and difference of (16) and s times (15) give us
d d 2§, d , d }
i — 1) =} = —_— -]l)— seesen
Mrgre-gt=alrgre-ng @),
4 2 'a{ x3i ‘_fl_}
and 7 {y a +(z+41) dz} = ‘ry 2y +(z’+1).dz, weene(22).

It should boremarked that in (17), and either (19) or (21), we have
two independent positively persistent operators.

4. The persistent operators arrived at in the last article enable us
at once to write down any number of persistent functions of the
varinbles and derivatives, when -we notice that the formulm® of trans-
formation (11) may themselves be written in persistent form. Thus,
in the independent variable z only, we havo the persistents, not of

course independent,

2+ 1 =z +—1, TN ¢ ) B
z z

e+ l) =7 +H]1) i (24),
2 (z=1) = -2 =)l (28),
logz=—logz = w, 88y ....cocoevrinininennn (26),
&c., &e. The two first of these arc of positive, and the third and
fourth of negative, character.

Again, in both independent variables y and z, we have the persistent
gy =21y = 0,887 .eiririirinnniennnn (87),

and in the dependent and independent variables
e =2 =, 88F wiivvineieniniinnnnn (28),
or, again, y e =91 e (29).

In (26), (27), and (28), we have in persistent form the exact equiva-
lents of (11).

By operation on (28) or (29) with any one of the persistent opera-
tors (17) to (22) we get a linear porsistent function in a, @, 2,, or
some of them, the coefficients involving one or both of y and 2. By a
second operation with the same or another of the operators, we get a
new persistent linear in ®, &y, %y, %, 2, @y, or some of them. In
fact, we get a linear persistent after any number of repetitions of
such operations. Let us choose two independent persistent operators,
(17) and (18) say. By use of them as thus indicated, noticing that
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the effect of the compound operation

(vig+=s) (*5)

is not altered by reversing the order of its component simple opera-
tions, we obtain a perfectly complete system of linear persistent
functions by assigning to m and #, in

(z‘%)m( — +22 )(z"w)
=(— 1)"( 2 “) ( ,+2z -;) (#)......(30),

all zero and positive integral values in succession. The functions are
positively or negatively persistent as = is even or odd.

For the explanation of (30) we have not far to seek. The relation,
whatever it may be, which connects z, 3, 2, may be expressed in terms
of the clementary persistent functions w, v, w, of (28), (27), and (26).
Thus we have

z=e"
Y=0e" 0 i veeren (31),
© = uel”
and the companion formule
z=e"
Y=ve¥ p e (82).
o = e\

Theo first two of each of these groups give us

d ‘w d - ‘l"’ d
dv =¢ dy ¢ dy
d 4 d
3 I—= (i sesetserssesnrerrrsrtestser Py
2 Z E & (33)
__d_... w_‘_l_ 1 lwi—_ -"l_.l. ‘iwi
and w_edz+gve 2y e o7 T ave dy
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Thus the two sides of (30) are merely equivalent expressions for

dmulu
p A TP ¢:1:3
dv™ dw" (35)

and the completeness of the series of linear persistent expressions
given by (30) or (33) lies in the fact that these are constant multi-
ples of the entire system of coefficients in the expansion of an incre-
ment of w or 27¥x in terms of increments of v or 274y and w or log 2.

It is at once clear that a complete system of persistent functions,
with y instead of = taken for dependent vaviable, is afforded in like
manner by the series of derivatives

dmhxv
dwmdun ( )

The case when z is taken as *he dependent variable has less simplicity,
for u, v, and w all involve 2, while only one of them involves z or y.

5. It is not to be assumed that the complete system of linear per- -
sistents for the transformation (11) given by (30) or (35) is the
simplest in form of all complete systems when written explicitly.
This statement may be illustrated by writing down the complete
system for the first two orders.

Operating on (28) with (17) and (18) in turn, we get the comn-
plete system of the first order

du

o= = Eererererserneernreereeinnend (37),

28— o (g 2oy =) = — £ (Y + ) .. (38).

An equivalent pair, obtained by operating on (28) with (21) and
(22), and remembering (24) and (25), is

Yo+ (2—1) 2=z = y'zio+ (—=1) 2y —’ ...ooviene, (39),

Y+ (2+1) vy —x = — {y'm;o-l- E+)ay—2'} .. (40).

Note that the formule giving z,, and ay, in terms of accented letters
are (37), and

4 ’
By = & =Y Bio—ZBY eriirrnienniininnien ., (41),
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The complete set of linear persistents of the second order are

& o,
%E':-: = z‘wm = z.w'm...,,,“, YRR Y Y R ."(42),
B .
d_-—j:w =Ygy + 22, = — (y'zw+ z'.):l'!) ............... (43),
2,
and 223_1::; = 2z‘lyi:o”+ 4”'3/‘”1!+82‘%:-'z"yzm+z"*.u

= + (the same expression in accented letters)...(44).

Now, the last two termsin (44) ave thenselves positively persistent
functions, by (27), (37), and (28). So too is its first term, by (42)
and (27). Thus our simplest complete system of the second order
consists of (42), (43), and the remaining terms of (44), t.e.,

2 (yay +222y) = 2V (yYan+2725) ceeeeiiennn . (45).

- There are advantages, however, as will be seen presently, in not
omitting the first term of (44), but in taking, rather than (45) the
somewhat less simple persistent

a7 (yhagy+2zyy, + 42%0,) = 27V (ywn + 22y + 42"%) ... (46).

Again, note that the formule for wy, a,, @, in terms of accented
letters are
ro =7y
w2y = —2 (Qyay+22)) TN C 1) B

’ " ’ " ’
2y = 2 (Y + 72 + 2 0)

6. In the last article we have found a complete system of three
linear persistents of the second order, which do not involve the
dependent variable a nor the first derivatives x,,, ,. Now the per-
sistent operators (33) and (34) cannot produce functions involving
¥, By, ¥ from functions which are free from them. It follows that,
from the second order onwards, o complete system exists which only
involves the independent variables y, z, and second and higher deriva-
tives. It will now be proved that the type of such a complete
system is

2

E - 2= (e,
Uy = AN BT ) g e (48),
where s+ n €2, and v, 2, denote the operators (6) and (2).

We have already a complete system of the second order which
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accords with the type in (42), (43), (46), 7.e, in

u'm = Biww Y Y R R TN YT -ulu-n(42)|

Uy = 23 +YBy
= -E- H —‘-z—} XEITE R R R PR R T Y NYTRY Y]
RTINS (430),

Uy = 574 {z"’oa +3zyen + %y"”zo}

{148, @ 1 (y Y i}
z{1+2w"dzo,+ 2( 2’°da:")(2zw"dmo,) oy - (460),

1du 1 du
1 & 21 3y’ 1111 dodw’
from by a persistent of the same character. The general law

of which the first two are and the third differs

&‘ d du? 1 dm 1 dln'lu
will be proved to be that u,, and u,, are oyl and T T d’
while, in general, u,, differs from 1-7&—,]‘;-! % by a persistent of the

saume character not involving =,,,.
dmu

In tho first place, that u,, is the persistent 1, T

stantaneously as follows

1 d%w _ 1 ( ) (+1z) = AV g,

ml dv®  ml

is proved in-

— -1 N 40
= ghm=D g*" " (m+yth) oo
5 g eeeerrvenenocssernesosrnarecesrissonannns.sns(49),

‘We proceed to ground a mathematical induction, proving that «,,, is
in all cases a persistent function, upon the actual evaluation of
d

m WUuin
7. The order of the operations of w, and €2, on any function of the
derivatives is immaterial, for it is at once clear that the alternant
identity
0 —=Qu, =0
is satisfied.

Thus (48) may be written

1 (]

- {28 -1 r

= 315207 ’S(M. @) o
2”'7" l 1%4 (Y
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=3 {y'Aem-1--2) (4 4 —0) (mAn—3)...
wo(mAn—r=1)(m+1)(m+2)...(M+8) Bussner-s}

—_ 3,4 (AN +ma)alr-) (m+n—2)! (m+8) l 50
* (‘yz Iorlslml (m+n—r—2) lw"""""-') ++(80),

the summation being with regard to r and s, and comprising all pairs
of values (including zero) of those numbers whose sum does not
exceed n.

It follows that
d _(#d ., @d )
dw unm b dz + ay dy umu

_ s gansmer-ar-zn(MAn—2)! (m48) | (n—7r—s+1)
2 {y z‘ 2'"1‘! 81 m| (m+n_7__2)! mmu,n-r—afl}

e anem-1-2r-29 (22 +m—1—2r—2s) (m+0—2)! (m+5)!
+2 {yz‘ 2+l sl m! (m+n—r—2)!

X ®,, +n-r-s

141, 4(2n em-1-2r-2s) (‘m+n—2)l (m+s+1)' }
+2 {y 4 2”'"17-'18! ,'n! (m+‘n—r—2) !a’mﬂﬁl,nﬂ'-:

0,4 (30 +m -1-2¢ - 2) (m+n—2)1 (m+3s)! } .
+3 {3”’ U (=) T m! (mn—r—2)] mrnmree §

in which the first summation may, by putting r+1 for », be written

3 {y-zmu.m-l-m--w _(m+n—2)! (m+s)! (n—r—5s) o }
2'““(')‘-}-1) sl m! (m+7‘_,’._3)! mes,ner-s (9

and the third, by putting r+1 for  and s—1 for s,

8,404 m-1-2r-2) (m4+n—2)! (m+s)! }
* {y ‘ CFT G (s—1) Tm! (mAbn—r )| e f

In these two summations the valne —1 of » must be regarded as
admissible, and in the latter the value O of s is excluded. Subject to
this remark we obtain, then,

a — o 120 emel-ir-2s) (m+n—2)! (m+s)!
dw u,..,,—E{y g 2 e+ ) stm! (m+n—r—2) {Tmss,nr-e

[(n—r—s)(m+'n—r—2)
+(@n+m—~1-2r—25)(r+1)
+s(m+n=—r—2)

H+1)s 1} oD,
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the value —1 of » being admitted in the first and third products
within the square brackets. It is also clear that the admission of the
same valae into the second and fourth products will introduce only
zero terms to the summation, since 741 is a factor of each of those
terms, and since (r+1) ! in the denominator is taken as unity when
r+1 vanishes. Again, that the value s = 0 is excluded from the third
product inakes no difference, for a like reason.

Now, it is readily seen that the sum of products in the square
brackets is (n+1)(m+n—-1)—(r+1)(r+s)
= (4 1) (mAn—1)—r (r+1) =8 (r+1)mrrnr......(52).
It will be convenient to put 7 for »+ 1, since this may have all values.
Doing so, we find that

—iu,,.,. _ (”+ 1) b} { y;z“mnmol—b‘-h)

dw
(m+n—=1)1 (m+34)! - }
2“.,’.! 8! m! (’m+n-—r—1)! me,nel-yr-g

_ (m+n—1)2£m+n—-2) s {y. A0+ m=1-2r 20

(m4+n'—2)! (m+3s)! }

7 ] T )y Ny =
27 gl m] (m4n'—¢ =) IV

— l (m+ 1)(727:+n—1) z {yl" z{(ﬂn"om”-l-!r"-?o")

24

(" 40" —2) | (m" +5") |
orrve Ty P (mn + nll__ ’I'” _2) 1 T A R (53)7
where

wW=n—=1 ¥=r—2 m'=m+l, n'=n~1, =r-1, f=s—1.
Consequently, by (50),

d 1) 4:-)
— Uy = (1l+1) zi(?mvm l,eL (msy) mm,'nl

dw
_ (m+n—l)(@§+n—?)z‘<z,.- =) e

1
o v, oy

— Yy (mt)(m+n=1) juimiimm-n gt ey 4
z‘ - 22 nfol, n-l

= Uy, uo]_‘:' (7n+"— l) (m+n—2) U, n=t

—=3yzt(m+1) (mAn—=1) %ot o1 ceeeer .. (54).
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It would, at first sight, appear as if the second and third members
of the right-hand side of (54) sre not complete, but need to be re-
inforced by the addition of terms corresponding to the values —2, —1

~for # in the second, and —1 for ¥’ and —1 for &” in the third
member on the right of (53). But this is not the case. Values —2,
—1 of 7 would mean values —1, 0 of  in (51) and (52), for which the
torm 7 (r+1) in (52) vanishes. Again, —1 for “and —1 for s”
would mean 0 for s and —1 for r, respectively, in (51) and (52),
values which make s (r+1) vanish.

A special result of greater simplicity replaces (54) for all cases
when n = 0, the then meaningless symbols u,, ., a0d %, .y, .- having
in such cases to be replaced by zoroes. For, when n = 0, s and rcan
be only zero in (50), and consequently in (52) s can only be zero and
r only zero or —1; so that the first of the three parts of the right-
hand member of (53) or (54) is the only one that exists.

This is easy to see by actual operation on u,,, without introdnction
of tho general notation., Thus
d ( .d 1

d .
(Z‘(;?lnn() = (z E"' Eytj_l-j.) (Y To)

me= -1
- Z“””I) mml +’;— (Tn‘_l) z“' n -"’mo +%yzllm )(1’7' " l) wmtl,o

= A {1+ 212 o + 2”2 Q, } x,,

e T T T T ......,...........(55).

8. The materials for a mathematieal induction proving =, a
pervsistent for the transformation (11), whatever numbers (including
zero) m and u be, provided that . +% € 2, are now ready. By (49)
%, 18 nlways a persistent. By (55) so is w,,,. Now (54) tolls us
that, if w,,, «,, ... and wu,,, ., are persistents, «,, ,,, must be one.
Thus, 8ince w,,y, %o, %, 1,0 are persistents, 8o i8 u,, ,; Sinee w,,,, %, ,
Wy, 1 B8, BO 8 10,45 BINCO U5, U, 4, Uy, A€, SO i8 4, ;, &c. Thus,
finally, u,,, is one for all values of n as well us for ull of .

That the general persistent «,, s linear, is clear from the method
of its formation, w, and 2, being lineo-lincar operators. That all the
linear persistents u,, are independentis also evident, for in the order
TUggy Uy Uggy Yyyy Ugy Uy Uggy Wy Uy, &C., each involves one derivative of o
which does not appear in any of the preceding. That the system is
complete from the second order onwards follows from the fact that up
to any order it has just as many members as there are of second and
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dmtty du

. du
T g O o With «, ) and T’ [see (28),
(37), and (38)], the system is absolutely complete.

higher derivatives

9. The absolutely complete system of linear persistents for the
transformation (11), which is now before us, suffices of course to pro-
duce by combinations of its members every persistent which exists,
non-linear as well as linear. We now enter upon the theory of the
formation of non-linear persistents.

It is well known that, if 3 be any linear differential operator, and
U, V any two functions of the arguments on which it operates, and
if 4 be called 9, when it and its repetitions act on Uonly, and 4, when
upon ¥ only, then

$(UV) = (3, +%)" (UV),
for all positive integral values of #, and consequently
¥ (wv) = M+ P2 ()

=%, eM (uv)

=e'&‘u.e‘3’~u

= u.o corssnerisesarssanannenenes (86).

Now %—(w,-{-yﬂ,) is such an operator 9 upon functions of the
74 . .

second and higher derivatives z,,. It follows, from (56) and (48),
that

.| ’ - o1
Upn Uy = gh(Ansm=D) Gz u ey D) o @’ =) 2= (o, 4y ) F -
‘- -1 .
== AR mem =D gl Nai sy D) (2,1, Lrme)  oreveverenereerrsensaae (D)

The right-hand member of this equality is then a persistent.

The extensions to products of 3, 4, ..., and finally all numbers of
elementary persistents u,,, is cffected in like manner, the general con-
clusion being that, II'? «,,, denoting a product of ¢ factors ..,

N oo-1 .
9 4y, = Atz b v (IO g Y ... (58).

. Consequently, taking any sum of a numbcer of such products of ¢
factors for all of which Zm and 3n are constant numbers, w, and w,

respectively, we deduce that, if H,f,?.,_ () denote a homogeneous (of



1889.] or Surface Differential Invariants. 145

degree ¢) and doubly isobaric (of partial weights w, and w,)
function of the second and higher lincar persistents w,., and if S, (2)
denoto the same function of the corresponding derivatives ,,,, then

HE . (u) = deweo=i g™ e [I0 ()., (59).

The right-hand memnber is then a persistent.  Its sign charactor
will be + or — according us w, is even or odd. Thus the identity
expressive of its persistency is

A=) g™ ey 0y JTO () = (= 1) g Aemen=) 0Ny ) IO (2)
w0, W, ww,

ceerer e e (80).

10. The fundamental linear porsistents wy, w, Uy, .o Yy, ... 220
freo from the dependent variable 2 and the fivst derivatives x,, and wy,.
The same will consequently be the case with the rational integral
persistents of any degree given by (59). On the othor hand, the
independent variables y and z occur iu ull the lincar persistents,
except thut y is absent when = 0. As a rale, thercefore, both y and
z will oceur in all the rational and integral persistents (59).

Now y and z occur in different manners in w,,. This linear per-
sistent containg terms free from y and terms iuvolving y, 9* ... 9"
respectively as factors.  The leading term 2/® Y . iy wmong
those which bave no power of y as a factor.  On the other hand, this
leading term has for a fauctor tho other independent variable z raised
to a power which is ncver zero but always positive. There is in fact
no term in the expression for u,, which has not a positive power of z
for a factor, except when e = 0, in which case a single term has for
its z factor the negative power 274, Moreover, no other torm involves
so high a power of z ag the leading one.

We cannot oxpeet, then, to find rational integral persistents (59)
which do not involve z. Tt is now to bo scen that there are, howover,
a vast, and no doubt infinite, number which only iuvolve a single
power of z as a fuctor throughout, and which do not involve y ab all,
Such will be called rational integral pure persistents. By dividing
onc pure porsistent by a suitable power of any other, the z fuctor may
be made to disappear, thus yiclding us an absolue pure persistent.
Absolute pure persistents ave of necessity fractional.

Now, in (59), the leading term LY, () is the onc on the right
which certainly cannot be made to disappewr; for, if it did, so would
HE) ., (), and (59) would bo a more identity of zoroes.  We seek then,
in order to muke II a purc persistent, nccessary and suflicient

YOL. XX.~No. 352, L
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conditions that all the other terms disappear. These conditions are
at once seen to be

w HY) . (2) =0, and Q, HY),, (¢) =0............ (61).

The two are necessary, for the coefficients of the various powers and
products of powers of the independent quantities z and y must vanish
separately, and consequently, in particular, the coefficients of
Pearn-i=D gnd yA®ese ==Y nugt vanish. They are also sullicient,

for, if w, I =0, and Q1 =0,
it will be a consequence that
wII=0, Q=0 and R =0 ......... (62),

for all positive integral values of » and s.

Space will not now permit o systematic classification of the puro
persistents for the transformation (11) to which we thus obtain the
clue, nor a development of their interesting properties. It will bo
romembered that we have been only secking them in order to discuss
the selection from them of those which are also cyclicants, <.e.,
porsistents, but for a first derivative factor, for linear transformations
of the variables. In the rest of this paper they will then be dealt
with only in their bearing on the theory of cyclicants and kindred
functions.

11. It is worth while to remark that I fivst arvived ab the necessary
and sufficient conditions (61), that a pure function II be, but for a
power of z as factor, a persistent for thoe transformation (11), in a
somewhat different mannor, by proving that, since

¥ =z,

a_,d
dy ~ " dy'
d_ 4 _,d
and & T e

( - 1)" m:uu = gt e(l{:)(u,oyn,) wmnw seesiriinataaas (63),

¢ Comparison of (63) with (48) gives us the following rule for deducing r,,,, or
rathor (—1)» obGnsm=),, . from tho valuo of 25, in terms of variables and un-
accented dorivatives:—¢* Divide by tho square root of tho multiplior of x,,, and in
tho guotient replaco z by 2:.7
For the deduction of z;,, from t,, the rulo is—
¢ Multiply by (—1)* and by (4z)4#**"-1 and then replace z by §s."”
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and consequently that
(—1)"‘ H-(:.)w, (m') = W rwy=i e(ll-)(-.wﬂ‘) H‘(:.)w. (x) crenrnnne (64)

The method is on the whole easier than that above detailed, for, in the
work corresponding to that of Art. 7 above, no residual terms such
as the (r+1)(r+s) of (52) occur. The advantage of the method
which I have here followed lies in its incidental investigation of
complete systems of linear and rational integral persistents which
are not pure or free from .

Combination of the two results (60) and (64) leads to an interesting
conclusion which might undoubtedly bo proved independently and
made the basis of a third method. By operating on cach side of (64)
with e~/ (=*v@) gand multiplying by 21@**-9 we get

(=1)*ezA tessin=b) My [y & (&) = Ao e 0, ¥, ().
Bat, by (60), the right-hand member of this identity is also equal to
(—=1)%s 309 e“’""“’" +y'0)) 11'(:3 w (@)

We have then the identity of operators

el=12 ey ) — JUBN=0 D) L, (65),

the function operated on upon the left being any function of the
second and higher derivatives of # with regard to y and z, or, more
gonerally, of any function of those dervivatives and of y and 2, but
not also of @, #,, #;. The transform of such a function is necessarily
free from a’, xj,, a,.

12. The results as to the transformation (11) with y instoad of z
taken as dependent variablo are, from the complote symmetry of the
formulw of transformation in 2 and y, at once seen to be deduced
from those already obtained by mere interchange of the lettcers @ and
y and of first and sccond suffixes throughout.

For the purposes of the rest of this paper, it is best to state the
equivalent of this fact in a somewhat different way. Companion to
the transformation (11), v.c.,
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For this trausformation as for the other there is & complete system of
linenr persistents of which the type, for values of m and n whose sum
exceeds unity, is

ghmen=D gm el g (67),
and a complete system of rational integral persistents
gt 0 N s B FO () i . (68),

in which w,, Q, sre the operators (7) and (3), obtained by inter-
changing first and sccond suflixes in w, and &, respectively. The
necessary and suflicient conditions that the homogeneons and doubly
isobaric function JI be a pure persistent for the transformation (66)

are then I =00and QH=0 .c..c..ovvvvvrinnnnn (69).

IIL.

13. We now procced to the considerntion of homogeneous and
doubly isobaric functions of the sccond and higher derivatives, which,
ag well as being annihilated by one or both of the operators wy, w,, and
one or both of @, ©,, have the further property of being annihilated
by one or both of the operators V, V,. Three classes of these func-
tions will occupy our attention. The most restricted class is men-
tionod first.

A. Projective or Principiant Uyclicunts, as defined in Art. 1. Itis
now scen that the necessary and sufficient conditions which they
sntisfy are that they hiave all six annihilators o, wy, Q,, @, V, V. 1In
the next article but one, it will be made clear that their annihilation
by w, and V; is a mere conseqnence of their annililation by the other
four.

B. Projective Semicyclicants.—'T'hese possess the three annihilators
wy, 2, V. Their property is that they persist in form, but for a
factor involving the variables and first derivatives, after any trans-
formation which can be prodnced by a snccession of transformations
like (11), and special linear transformations like

z=IX+mY+nZ+p
y=TX+m'Y+a'Z +9 § i (70),
z= n"Z+p”

i.e., after any special homographic transformation, such as

o - y =2 _=_L1_ .
ar+by'+cd+d  dT+by +cF+d T +d G+ D
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C. Principiant Semicyclicants, the specially interesting class of pro-
jective semicyclicants which have the fourth annihilator w, as well
a8 the three v, Q,, V..

Some projective and principiant semicyclicants ave annihilated by
V, as well as by the operators, annihilation by which defines them,
and have in consequence additional properties. It is probably
unwise, however, to burden the subject with further nomenclature.

14. The following important alternant identities are casily veri-

fied :— o wg—0yw, = O (72),
0, —Qw,=0....cciiiiinniiinineen . (73),
wQQﬂ_ngg= 0---......... ................. .(74‘),
O Q=0 =Wy . (79),
T A O A N (76),

d
@ d—y =0, . . ..(77),
d
1 -—(—l;wg_.ﬂe . ...(78),
d ! .
w,d—'z—(;—zw,=w,+2w,—1. cerenrnneennnnn(79),
w,—;l- — -;—l- wy = 2w, +w,—1 ... (80),
dy dy

o Vi=Vw, =0 i (81),
0 Vi=Vuw, =0 i (82),

o V;—Vyw, = 3 {2 (r+s—=1a,2n_pn-4) E;L-}

= 0y V= Vitg v vvrevreiseeesereeeeer e (83),

the function operated on being one of sccond and higher devivatives
of z with regard to the independent variables y and z, and in the case
of (79) and (80), one which is homogeneons and doubly isobaric. 1n
case of all but the fonr (77) to (80), the function may involve also
the variables.

A close analogy between the propertics of w,, w; and V,, ¥, will be
observed on compuaring many of the above identitics with corves-
ponding ones obtained in my previons papers in Vols. xvir, xviir,
xi1x. of the Proceedings. It may be well to rewrite these lhere,
especially as where they were obtained it was convenient to usc
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and y as the independent variablesinstead of y and 2 as at present, and
ag it is now desirable, in order to use the two sets of results in connec-
tion, to have them, too, in the present notation before us. They are

OV =V =0 ccvvvrrnrenir e e (84),

QY= V=0, (85),
OV=V. =V, i, vereene (86),
Q,V,— VI Qi = Vn (87):

from Vol. xix., p. 9, and
d_d

d_/ dJ = Qg (T4 10,) F 2, Dy cevvevvanennn (88),
n% V 2y D+ 82 (F4wg) oo, (89),
1%-£K=%aﬂm+%mpwmmwww
,é—rv_%mﬁ%@ﬁm ............... (o1),
l%—%m=0”WWWMMWWWW4W;
,%-%m=o.mmmmwmwmm4%L
Q 'Z in =§1—/ et nnavererene (99),

d _dg_4d .

Q’dy dyﬂ’ PRI PRI (1) B

from Vol. xix., p. 380. To these add
00, -0, = W= Waeervveviniirinninninnnn, (96)

and ViVe=V, V=0 ciiiiiiiiiiiiinnic i, 97),

of which last, as it is far from obvious, a proof is appended. The
symbolical notation of my paper in the Proceedings, Vol. xviir, pp.

142, &c.,is used, so that #* in an expanded result means - ‘E—

dw,,

Let c,,, denote the coefficient of 5"¢" in

(E XN — T z)ﬂ = {E (mmué'""") } ,,'
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wi1ich, for shortness, call u’. Then
V= —~—(/4’) and Vy=1} . 4 5 (),
therefore 4V,V, = {2[(r+1)c,,,,.n ]} {EI[(n-{-l)c,,.,,.,,n"'Z"]}.
Therefore co. a™¢" in 4(V,V,—V,V))

= {(n+1) 2 [(T+1) crﬂ,awm-r,nol-l]
—(m+1) b [(3+1) Cra41 mmtl-r.n-u] }

. d . d
— 1 ™ n+l Bl 2 — X m+lrn 3
(n+1)co.n™{"*' in d"(p)p (m+1)co.n"*'§ m_dn (W) p

= myn d 2 d d 9 d }
co. 17 “‘{dz( n )-3 (" a )
myn o d," d# Y d’[l d/-l (l[.l ' d?u
= co. 2 3 &2 Phadlodt
oo 10 i (23 S+ w0 g )
= 0, for all values of m and n.

Hence (97) follows. We have thus cvaluated all the alternants of

,"]%’ wy, wy, Q, Q,, V,, V,, the only one not written down

above being the clementary identity

d d_d 4 —0
dyfdz dz’ dy ’

. 1
s of -,
poirs .

15. A few only of the many conclusions which are involved in the
alternant identitics before us will be added to those detailed in my
former papers.

(i.) If a function P 1is annililated by w,, so are Q, P, V, P, and w, P.
(ii.) If a function P is annihilated by w,, so are Q P, V, P, and o, P,
(iii.) If a function P is annihilated by both w, and wy, so are both

QP and Q,F.

(iv.) If a function P is annihilated by V,, so are Q P, w, P, and V, P

(v.) If a function P is annihilated by V,, so are &, P, w,P,and V, P.
(vi.) If a function P is annihilated by both V, and V, so are both

QP and Q,P.
This last is stated as the companion of (iii.), but I have given and
applied it in an earlier paper.
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(vii.) If a function P is annihilated by Q,, 0 are V, P, d;‘; P, and w, P.

(viii.) If a function P is annihilated by Qy, so are V, P, %P, and w, P.
(ix.) If w, and Q; annikilate a funclion, so does w,.
(x.) If w, and Q, annihilate a function, so does w,,
(xi.) If w, V), Q,, Q, annikilate a function, so do wy and V,,

The last fact tells us, as was stated in Article 12, that annihilation by
ay, Vi, 8, Q, is enough to certify a projective eyclicant.

16. Glencration of seminvariants from other seminvariants and in-
variants.

From (vii.) above we learn that, operating on any seminvariant
or invariant of the forms

(zio’ 21 ZmD (“, 'U),
(zm, Zq1y 219y Zoy) (u, 'v)a ceerrenersenanennninnse (98),
&e. &e.

w, generates another seminvariant of the system. That the operators

¥, and %E have the same property, I have mentioned in carlier papers.
«y

It is to be noticed that the three generators produce from any given
seminvariant other seminvariants of quite different types. Thns,

(a) V, generates from a given seminvariant another of higher
degrec, the same weight (seccond partial weight), and eventually
(after a succession of operations) one of n diminished number of the
forms.

®B) ‘-% , ¥ being the first of the two independent variables, generates

one of the same degree, of the same weight (sccond partial weight),
and of an increased number of forms.

(v) o, generates one of the same degree, diminished weight (second
partial weight), and eventually (upon repeated application) one of a
diminished number of forms.

T hope on some future occasion to deal with these and other
simple generators of seminvariants, e.g., separate parts of the above
generators, at greater length.
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17. Qeneration of pure persistents for the transformation (11) from
others.

If w, and Q, annihilate a pure function P, then I is a pure persis-
tent. Now, by (77) and (92), w, and Q, under these circnmstances

annihilate also ilz, and, by (72) and (76), they also annihilate w,P.
dy

Consequently ‘;—l and w, .6, w; and
Y

S
—- = 1) par,u5— vl (99),
(l1l 2 { (”Z+ ) q ]‘ ’lm”lll ( )
are generntors of pure persistents for the transformation (11) from
other such persistents.

18. Generators of projective semicyclicants from other projective semi-
cyclicants or cyclicants.

If w, Q, and V; annihilate a pure function P, it is a projective
semicyclicant ; or a projective cyclicant if it is also annthilated by 0,
i.e., if its two partial weights are c~ual.

Now (77) and (92) tell us, asin the last article, that «, and 2, must
also annihilate Ii) ; and (88) tells us that, if only i+w, = 0, V will
«y

;—y, applied to a

projective semicyclicant or cyclicant the sum of whose degree and
first partial weight vanishes, generates another projective semi-
cyclicant. That from any semicyclicant it generates a semicyclicant
I have previously shown (Proceedings, Vol. xix., p. 382).

also annihilate %2 Consequently, the operator
dy :

Now, P (3, w,, w,) being any projective cyclicant or semicyclicant
of type 1, w,, w,, since 2y, is another, it follows that

P (2, w, w,)

3 (5+w0)
{Um *

is one whose degree and first partial weight have a vanishing sum.
It follows that
4 P (3, wy, wy)

i ... (100)

is another projective semicyclicant, which when multiplied by
af{i**2*! produces one that is integral, its type being (i +1, w, +3, w,).
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But
1 (P (3, w, 1 d , .
a‘:'_l { (:;A ('li‘i]w‘;lu‘l) } — m“"wl)’l {Q”@ ‘—-} ('L+’w‘) 3%,} P (i, Wy w.)
20 20

—_ 1 d
—mgo(iow,)ol {“’202 [(m-}-l) Bne1,n %-]

mn

— S [(m+1) o dzm] }P G )

= g 3 () @, —2umn) 2 P Gy 0, )

T i)+l
w‘)é W Cin

Thus the quadro-linear operator.

6 = 3{ (m+1) (@ner, = 2uan) 7o § wvvereers(101)
is a generator of projective semicyclicants from other pronctive semi-
cyclicants and cyclicants. That it gencrates semicyclicants from
semicyclicants, is practically shown in the passage above cited of my
paper in Vol. xix.

Two classes of projective semicyclicants have simpler generators .
from other semicyclicants of the same classes. These follow.

19. Generator of projective semicyclicants having the additional pro-
perty of being annihilated by V, from other semicyclicants of the same
kind.

fo,P=0,QP=0 VP =0, V; P=0, it follows from (76) that
Q,.w, P =0, from (72) that w,.w, P = 0, from (83) that V,.w,P=0,
and from (82) that V,.w,P =0. Thus v, is a generator of semi-
cyclicants of the kind described in the heading from other semi-
cyclicants of the same kind.

If P be of type (I, w,, wy), w, P is of type (4, w,—1, w,). Thus, in
particular, if w, excecds w, by unity, we may expect a projective
cyclicant to be generated.

20. Generator of principiant semicyclicants from principiant semsi-
cyclicants or from cyclicants.

Principiant semicyclicants have been defined as those projective
semicyclicants which w,, as well as w,, 2,, V,, annihilates.

V, is a gencrator of such from such or from projective cyclicants;
for, as in the last article, we see, by means of (82), (86), (83), and
(97), that if w,, w,, Q,, ¥, all annihilate o pure function P, they all
annihilate V, P.

If P is of type (3, w,, w,), V, P is of type (1+1, w,, wy+1).
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21. Projective and principiant cocyclicants.
A cocyclicant is, it will be remembered, & covariant of the oyclico-
genitive forms

B, = (zaov % zm§ (—zou zw)'
B, = (zw’ Z3n %1 2055 ("’zou z\o). veerenineineens(102),

s
E, = (zdo’ Z1 %99y 2130 2045 ("zov zlo)

&ec. &o.

whose leading coefficient is a semicyclicant; and it has been shown
(Vol. xix., pp. 379 and 20) that, (S, S,,... Su)(—2q, %)™ being a
cocyclicant,

Sl' ) m Sm ] (A2 "
S0(042) = (—1ym En B = (1)t (S, 8y B (=0 50

n’\)l 10

cervereennnnnnn(103),

S, (z, y2) being the corresponding semicyclicant (in x dependent).

A projective cocyclicant is now defined as one whose leading co-
efficient is a projective semicyclicant, and in particular a principiant
cocyclicant as one whose leading coefficient is a principiant semi-
oyclicant.

In proving that overy projective, or in particular principiant,
semicyclicant in ¢ persists, but for a factor involving first derivatives
and variables only, after the special homographic transformation (71),
we havo, in virtne of (103), proved the same property of persistence
to belong to all projective, and in particular principiant, cocyclicants
in 2.

22. Some instances of projective cyclicants, semicyclicants, &c.

It is & prior? clear, and has been noticed by Halphen, that in the
criteria of developable and ruled surfaces we must have two projec-
tive or principiant pure cyclicants, persisting for all homographic
transformations,

The two are Tg@og—F3 o cvvinnnnniinn 0 (104),

and Typy  Tyry Tyyy Ty TR ¢ (1) B
Ly gy Byg, Ty
gy Ty T
Tegy Ty Ty

Ly Zip Ty
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Both have been seen in earlier papers to be annihilated by 0, Q,
Vi, V,. Tho further conditions, that w, and (therefore also) w,
annihilate them, are easily verified. w, for instance, produces the
fourth row of (105) from the first, and the fifth from the second.

The operator G, (101), annihilates (104). By repeated operation
on (105), it will however produce a succession of projective semi-
cyclicants.

23. The simplest of all semicyclicants is @, This is annihilated
by w,, v, and V,. It is, then, a principiant semicyclicant having the
additional property of being annihilated by V,. Consequently, the
quadratic cyclicogenitive form

(2> 2s 20) (=2 210)" = — £2 woviveerrrene (106)

T
is a principiant cocyclicant with the additional V, property.
The other cyclicogenitive forms are not cocyclicants at all.

The generators -Q, w;, V; produce nothing from the principiant
semicyclicant z,,.

24. Of the other simple semicyclicants and cocyclicants given in
my last paper (Vol. xix., pp. 392—398), most are projective and
indeed principiant. This is not the case with 3wy a,, —2w52,, which
w, does not annihilate. It is easily verified, however, that the semi.
cyclicant of Vol. xix., p. 395 (59), viz., G (g2, —2x,2y), or

Q= 2m20D Ty, ‘......u-....-----.-.--.(107),

Bty @y, Ty

| 4:21“), Ty 21130
is annihilated by both w, and w,. This, then, is a principiant semi.
cyclicant, and the corresponding covariant in z of the cyclicogenitive
forms, viz.,

1 1l 1
(Qa 'é‘QzQ’ ﬁQiQ’ aee

F719Q) (=70 70)" ... (108),
is a principiant cocyclicant.

a, @, G, ..., operating on (107), produce other projective (not
necessarily principiant) semicyclicants of higher degreo and first
partial weight. Again, V,, V., V,, ... operating upon it produce a
limited number of other principiant semicyclicants.

The family of surfaces whose criterion is @, or the left-hand mem-
ber of (108), has been alluded to in Vol. xix., pp. 395, 396. It is now
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seen that the family includes more than has been there stated, viz.,
in fact, surfaces which cut planes parallel to z =0 in curves in per-
spective, and not merely in homothetic curves.

25. The semicyclicant Ty Do cerieereesenienenesensss (109),

Tgy Ty Ty
Ty, Xpgy Tny

of Vol. xix., p. 397, §18, or p. 13 (10), lis annihilated by w, and w, a8
well as Q,, ¥, and V,. It is then a principiant semicyclicant having
the extra property of being annihilated by V,, and its corresponding
cocyclicant in z,

" (110),

Z30y %0y Zrg | ereeerereeiiiiiiee
3 2
Zyy Zin Fay O%)%y

32,02

Zin %oy Py D%0%0
3

Zy3y 2y %01

is u principiant cocyclicant whose leading coefficient is annihilated
by V,.

Operation on (109) with G, G* G%, ... produces other projective,
not shown to be principiant, semicyclicants. The other geuerators
w,, V, are here annihilators.

26. Of the somicyclicants and cocyclicants discussed in Vol. xix,,
pp. 398—405, which are of second partinl weight zero, and one of
which is obtained from every Sylvesterian pure reciprocant, all are
projective, being annihilated by w,, and not werely those which are
obtaincd from projective or principiant reciprocants. Theso last have
the property of being also annihilated by w,. It is this fact which
has led me to distinguish between two classes of projective semi-
cyclicants, and call the more restricted class which w, annihilates by
Professor Sylvester’s second name principiant.

The present conclusion may be stated concisely by saying that
homogeneous and isobaric functions of the cyclicogenitive forms
E,, B, E,, ..., which have the annihilator

k; d

424117

+5L, By L 46 (B, B+ bED) -

¢ 7 @,B+E,1) L

: dl’ dE, dL'

are prujective coeyclicants; and that principiunt cocyclicants which
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are functions of E,, E,, E,, ... have also the annihilator

d d d |
——— — —_— ’ DL TR IR Y ] 1 .
B +om L vam (108)

27. Formation of projective or principiunt cyclicants.

It will now be proved that—ZIBvery wnvariant of a principiant co-
cyclicant whose semicyclicant source s also annthilated by V;, considered
as @ quantic 1n —zy, 2y, 18 « projective cyclicant.

If S be the semicyclicant source of such a cocyclicant, it is
annihilated by w,, wy, &, ¥, ¥, 2,8 has then the annihilators w,,
wy, Vi, Vi, by (75), (74), (87), (85). €3S has the same annihilators
by the same identities, and so on. Thus all the coeflicients of the
cocyclicant have the annihilators w, wy, V), ¥, and consequently any
function of them has the same. Now, an invariant of the cocyclicant,
being an invariant of the cyclicogenitivo forms of which that co-
cyclicant is a covariant, is annihilated by €, and &,. The invariant
has then all the annihilators wy, w,, V,, V), &,, Q,, and is consequently
a projective cyclicant—a pevsistent «  differential invariant for the
goneral homographic transformation. ’

It may happen that a seminvariant of the cocyclicant occurs which
is annihilated by €, through breaking up into factors, one of which
is a function of second partial weight zero, and the other an invariant
of the cyclicogenitive forms. Such seminvariants, with the first
factor rejected, also give projective cyclicauts.

We have examples of cocyclicants which yield principiant cyclicants
in this manner in the quadratis zyclicogenitive form and in (110).
For their discusgsion, see Vol. xix., p. 16.

Other principiant eyclicants with the property in question are to
be cxpected to be produced from any homogeneous and doubly isobaric
forms of which w, w;, ¥, V; are annihilators, as in Vol. xix., p. 14.

1 aw not suro that this method will be very productive.

28. The following two propositions afford other methods for the
production of projective cyclicants.

(v) If S be a projective semicyclicant of type 1, w,, w,, which is anni-
hilated by V, as well as by w,, ©, V,, then w=*:8 is a projective
cyclicant.

(b) If 8 be a principiunt semicyclicant, v.c., one annihiluted by w, as

well us by w,, Q, V,, of type i, w0, w,y, then V," 8" is a projective
cyclicant.
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By Art. 19, if w,, @, V), V, annihilate S, they also annihilate w,8,
w: S, w’; 8, &c., &c. Now, since the operation w, diminishes w,, by unity
and leaves w; unaltered, the two partial weights of w;* ™S are equal.
Consequently, by (96), Q, annihilates w;* S ; and hence also, by (75),
80 does wy. w,'~ S is then a projective cyclicant.

Again, if v, w, Q,, V) annihilate ', they annihilate V,8’, by
Art. 20. In like manner they annihilate V: S, V;’S’ , &c.,-&e. Now,
V, increases w; by unity, and does not alter w,. Thus the two partial
weights of V,"~**& are equal; so that, by (96), O, annihilates 7, ",
and consequently so does V,, by (87). Thus ¥;*™§ is a projective
cyclicant.

The only possibility which may interfere with the success of these
methods is that ;' ™ and V,*"* be annihilators under the circum-
stances considered. I cannot see, however, that the complete system
of alternant identities (72)—(96) gives us any reason for fearing this
to be generally the case.*

29. One more method for the systr-natic calculation of projective
semicyclicants and cyclicants will be exhibited. . It has been shown
(Vol. x1x., pp. 22, 28) how to obtain all the linearly independent
pure cyclicants of a given type ('i, % ) %) ; and the method has
been extended (Vol. Xix., p. 379) to the obtaining of all the linearly
independent semicyclicants of a given type (z, w;, wy). It has been
proved, also, that a superior limit to the, and it may be the exact,
number of these pure cyclicants or semicyclicants is the excess of the
number of seminvariants of type (¢, w,, w;) of the cyclicogenitive
forms over the number of type (4+1, w,+1, w,).

Now, let 8,, S, Sy, ... .be a complete system of semicyclicants, or
pure cyclicants of the type (7, w, w,;) thus determined, and let
81, 8, 8;, ... be a complete system of type (<, wy, w;—1). By (73)
and (84), the operation of w, on a semicyclicant generates another
semicyclicant. Thus we must have

0y (@, 81+ a3 S+ a3 S5+ .. )i cieenn 10 (109),

* Bhould it be the case, we are none the less helped in our search for projective
cyclicants. Suppose, for instance, that wy'§ = 0 or ¥,"S” = 0, m being not greater.
than w; —w;. Then o}’ ~'§ or 7;"~'8’, as the case may be, is annihilated by w;, ws,
V1. V4 Q) in virtue of Art. 18 or19. Consequently w;"'."s, or 771§, as the case

may be, is the leading coefficient of such a cocyclicant as has, by Art. 26, the pro-
perty that any one of its invariants is a projective cyclicant.
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equal to such an expression as
(la,+ma,+nay+...) S+ (o, +mag +n'as+...) S;
+ e+ miag+n"ay+...) Si+ ...

For w, to be an annihilator of the sum on which it operates in (109),
we must have simultaneously

lo, + mag + nay +... =0,
la, +m'ag + n'ay+ ... = 0,
Va,+m’ay+n"ag+... = 0, &e. &e.,

a number of equations for the determination of a,, ay, ay, ... less than
the number of those coefficients by the excess of the number of
S,, S,, ... over the number of S|, S, ....

By this means are found all the functions of the type (3, w,, w;)
which w, as well as &, and V, annihilate, .e., all the projective semi-
cyclicants of the type. If w, = w,, then, by (96), @, is also an

annihilator, and the functions are projective cyclicants.

If N (4, w,, w;) denote the number of linearly independent semin-
variants of type (¢, w,, w;) of the cyclicogenitive forms, it is thus
seen that the number of linearly independent projective semicyclicants
of the type, or cyclicants if w, = w,, i8 likely, though not certain, to
prove to be

N (4, wy, w)—N (3+1, w, + 1, wg) — N (4, wy, wy—1)
+NGE+Lw+1, ws—1) ceivennirnere e e (110),

30. The resemblance of the operators w,, wg, O, Q; to Mr. Forsyth's
A,, 8,, A, A, which, annihilate functions of the derivatives that are
invariantic for homographic transformations of the independent
variables only, is striking, but must not mislead. The distinction be-
tween w,, w, and 4, &,, though at first sight slight, is essential. It is
a remarkable conclusion from one of Mr. Forsyth’s theorems that
none of his invariants can be pure cyclicants, for all of them involve
first derivatives. Theimportant memoir here referred to is published
in the Phil. Trans., Vol. cLxxx., pp. 71—118.





