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Prof. Sylvester then gave an explanation of some of the processes
employed in his paper on " Reducible Cyclodes."

The following present was made to the Society :—
"Crelle, 70 Band, Zweites Heft."

The following paper, an account of which was given by the author
on April 8th, could not be inserted in the account of the Proceedings of
that day:—

On the Focal Properties of Homographic Figures. By HENRY J .
STEPHEN SMITH, F.R.S., Savilian Professor of Geometry in the
University of Oxford.

A.—FOCAL PROPERTIES OF TWO HOMOGRAPHIC PLANE FIGURES.

(1.) Two Plane Figures in Perspective.
W E consider two plane figures O and w in perspective with one

another; we denote the centre of the perspective by S, and the axis of
the perspective (or the line of intersection of the two planes) by fi^i;
we exclude the cases in which the straight lines at an infinite distance
in the two planes are corresponding lines; i. c, we suppose that the
centre of perspective is not at an infinite distance, aud that the planes
are not parallel. Let OY, o'y be the vanishing lines of the planes 12
and w, or the straight lines which in the planes 12 and to correspond
to the straight lines at an infinite distance in the planes w and 12; tho
plane fl is divided by OY into two regions (13j) and (122) j similarly,
o'y divides w into two corresponding regions (oil) and (u>>). Let (12^
be that region of £2 in which Cllo}l is situated ; then 12,CI>I is also
situated in (w,) ; and it will be seen that if P, p are corresponding
points in the regions (I2i), (fc )̂, the radii vectores SP, Sp are of the
same sign ; but if P, j) are corresponding points in (17;,), (<''2), the radii
vectores SP, Sp are of opposite signs; or, in the language of some
writers on perspective, (12,) and (G>I) arc projections of one another, but
(122) and (w2) are transprojections of one another.

(2.) 'The Correspondence of Pircdions.
If the positive and negative directions on any straight lino in either

of the pianos 12 and w are regarded as determined, the corresponding
directions on the corresponding line are also determined; viz., if a
point move in the positive direction on a straight line in either plane,
its image in the other plane moves in the positive direction on the cor-
responding straight line. Hence, if P,Q are two points in the same
region of 12, andjJ, q their images, which arc of course in tho corres-
ponding region of u>, the direction from P to Q along the finite segment
PQ is of the same sign as the direction from p to q along the finite
segment pn; but if P, Q are in opposite regions of 12, so that the
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finite segment PQ is divided internally by OY in the point A, the
direction p co q will correspond to the direction PAQ, and the directions
of the finite segments PQ, pq will be of opposite signs. We may add
that if A is any point whatever on OY, to the directions PA, QA
there will correspond similar or dissimilar directions on the parallel
straight lines which are the images of the lines PA, QA, according as
P and Q are in the same region, or in different regions of il. And in
particular, if in the plane S2 there be drawn any parallel to the vanish-
ing lines, the corresponding line in the plane w will also be parallel to
the vanishing lines, but the corresponding directions on the two
parallels will be similar or dissimilar, according as they lie in the
regions (J^), (uij), or in the regions (O2), (

wa)'
Again, if in the plane £1 we consider one of the tw<a directions of ro-

tation round any point as positive, (say, ft. r example, that direction of
rotation which viewed from S appears right-handed,) the signs of the
directions of rotation will thereby be fixed for each point of the plane w;
but for all points in the region (o»i) that direction of rotation, which
viewed from S is right-handed, will be positive, whereas for all points
of the region (w2) the same direction of rotation must be considered ne-
gative; it being inconsistent with- the perspective" relation "to regard
one and the same direction of rotation as being positive for all points of
the one plane, and also to regard one and the same direction of rotation
as being positive for all points of the other plane.

(3.) The Equiangular Points, or Foci.
Through S draw two lines perpendicular to the planes which bisect

the dihedral angle formed by the intersecting planes O and w. Let
these perpendiculars meet the plane O in F,, F2, and the plane w in
fu fi\ let also S F ^ be perpendicular to that bisecting plane which
lies in the same angle with S; then SF1} S/i are of the same sign> and
F,, / , lie in the regions (fii), (wO respectively; but SF2, S/2 are of op-
posite signs, and F2,/2 lie respectively in the regions (O2), (w2).

Since each of the lines F]/b F ^ , is at right angles to the line of in-
tersection of Of and w, and is besides equally inclined to those two
planes, any dihedral angle of which the axis is either Fi/i, or FJ/J,, is in-
tersected in two equal rectilineal angles by the planes O and w. We
thus obtain the theorem:

" Angles in the plane £1 at the points F b F2, are projected into equal
angles in the plane w at the points fu /2."

Or, more precisely,
" The angle contained by given directions on two straight lines lying

in the plane Q, and intersecting at Fj or F2, is equal to the angle formed
in the plane w by the corresponding directions on the corresponding
straight lines, which intersect at/i or/2."
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For brevity, we shall call F1} F2, / i , / 2 , the foci of the perspective in
the planes Q and to respectively. And since the directions of rotation,
as viewed from S, are the same round F! and fu but are opposite round
F2 andf2) we shall call Fbi/i the similar foci, and F2,/2 tho dissimilar
foci.

In the annexed diagram the plane of the paper is the plane of sym-

metry; i.e., it is the plane passing through S, and cutting O, w at
right angles; 012!, o'wi are the traces of the given planes O and w,
Ku K2 are the traces of the bisecting planes; FiF2, /,/2 are the foci,
which lie of course in the plane of symmetry ; the axis of the perspective
fi[W! is perpendicular to the plane of the paper at Qx or tolt and the van-
ishing lines OY, o'y are perpendicular to the same plane at the points
O, o\ which we shall term the centres of the two planes. If Y, y are
the points at infinity on the vanishing lines, Y and y are corresponding
points ; but it will be observed that the vanishing lines are not corres-
ponding lines, nor the centres corresponding points. "We may term
the lines FjOF2, fio%, which are corresponding lines at right angles to
the vanishing lines, the focal axes of the two planes; so that the centre
of each piano corresponds to the point at an infinite distance on the
focal axis of the other. Since SO, So' are parallel to the traces of tho
planes ft, w, and SF,/1} SFn/2 to the traces of the bisecting planes, tho
figure SOfV is a parallelogram, the triangles SOF,, SOF2, So'/,, So%,
are isosceles, FiF2 and / j / 2 are bisected at the centres 0 and o', SO is
equal to OFi or 0F2, So' to o'fi or o%; whence we find

These equations, as all others in this paper, are to be interpreted, with
regard to sign as well as magnitude; we shall avoid the use of tho
sign = , when we have to speak of equality irrespective of sign.

(4.) The J3qid-Segmented Axes, or Cyclic Lines.

Any point of the line ftiWj, in which the planes O and w intersect,
considered as a point in either plane, has itself for its corresponding
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point in'the other plane. If we do not attend to the coincidence of the
corresponding points, we may express this by saying that Slltou is an
equi-scgmental line in either plane ; i.e., that to any segment of £2iWi, con-
sidered as a line in either plane, an equal segment corresponds in the
other plane. But besides this coincident pair of equi-scgmental lines,
there is another pair of corresponding equi-segmental lines which are
not coincident. Through S extend a plane parallel to the plane con-
taining the vanishing lines, and let it meet the focal axes of the two
planes in £l2 and w2. The lines O2Y, w2 y, parallel to the vanishing
lines, arc equi-segmental lines. For if P, p are corresponding points
on thoso lines, the radii vectores SP, Sp, S£i2, Sw2, are respectively
equal and of opposite signs, and the angles &2i SP, w{ Sp, are equal; so
that V,p He at equal distances from the plane of symmetry, but on
opposite sides of that plane ; i.e., the axes £22Y, <o2y are equi-segmental.
We may term the coincident axes fii ij\, wi y, the similar axes, and tho
axes O2Y> u2y the dissimilar axes. Since £liCl2 is double of ^0, i. e. of
o'S, or of\, and similarly WiW2 is double of wxo, i.e. of OS or OFb wo
see that in either plane the equi-scgmental axes are situated sym-
metrically with respect to the centre of that plane, and that the semi-
distance between the foci is equal to the semi-distance between the
equi-segmental axes in the other plane. The semi-distance between
the foci in either plane may conveniently be called the parameter of
that plane. Designating the parameters of the planes O and w by C
and c, we shall find, if C=c, that the foci of each plane lie on its eqni-
segmcntal lines, and that the centre of perspective lies on one of the
two bisecting planes. But if C and c are unequal, if for example C < c,
the foci lie between the equi-segmental lines in O, and outside them
in o), and the distances c-fC and c—C, between a focus and the nearer
and further equi-segmental line, are the same for both planes.

If we cause one of the two planes, for example the plane w, to revolve
round the axis of intersection of the two planes, the two figures, as is
well known, will continue in perspective ; and the locus of the centre
of perspective will bo a circle, lying in the plane of symmetry, and
described on F,F2 as diameter. At one of the coincidences .of the two
planes which take place during a complete revolution, the similar foci
come to coincide with one another and with the centre of perspective ;
and, in like manner, at tho other coincidence, the dissimilar foci coin-
cide with one another and with the centre of perspective ; the similar
foci continuing similar, and the dissimilar foci continuing dissimilar
during the whole revolution. If, however, we bring together cor-
responding points in the dissimilar axes (which we may conceive done
by causing either plane to rotate through an angle of 180° round an
axis perpendicular to the plane SljOM at S), the two figures will again be
in perspective, but the foci, which were before similar, will become dis-
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similar, and vice versa. Thus the two foci, and the two equi-segmental
axes, in either plane, are not absolutely distinguished as similar to, or
dissimilar from, their corresponding foci or axes ; these denominations
being, in fact, relative to one or other of the two ways in which the
planes can be placed in perspective with one another, and changing
when we pass from one of those ways to the other. In every case, if
a focus or axis be regarded as similar, the nearer axis or focus is also
to be regarded as similar.

The equi-scgmental lines may, perhaps, be called the cyclic lines.
This denomination is suggested by an analogy which will come before
us presently.

(5.) Any two HomogrtvpMc Plane Figures.
Since any two homographic plane figures, such that the lines at an

infinite distance in the two figures are not corresponding lines, (this
limitation is to be always understood in what follows when we speak
of two homographic plane figures,) can bo placed in perspective
with one another, it appears that in any two such homographic systems
there exist two pair of corresponding foci, and two pair of equi-seg-
mental axes. This we shall now show independently of all considera-
tions of perspective. Let P b P2, qu q2 be the imaginary circular points at
an infinite distance in the planes ft and to respectively; and to P|P2,
qxq2, let jhPt, Q1Q2 correspond in the planes w and fi respectively. The
lines PiP2, ihih ; Q1Q2J Sfi&j will be pairs of corresponding lines; PiP2,
qxq2 being the lines at an infinite distance in the two planes, and p\pi,
Q1Q2 the vanishing lines. Further, the three diagonal points of the
quadrangle PIPJQJQ* (which are all real) will correspond to the three
diagonal points of the quadrangle pip2q\q2; of these three pairs of cor-
responding points, one pair are the points Y, y at an infinite distance
on the vanishing lines ; the two other pairs are the two pairs of foci.
For if F , /a re corresponding diagonal points (other than Y, y) of the
two imaginary quadrangles, the homographic pencils at F , / are equi-
angular, because the imaginary circular asymptotes FP1} FPa correspond
in the pencil at F to the imaginary lines fpx, fp2, or fqu -fq2y i.e. to the
imaginary circular asymptotes in the pencil at / . To determine tho
two pair of foci in two given homographic planes fl and w, we con-
sider a pair of rectangular points at an infinite distance in each plane;
let AiA2, &i&, be these pairs of points; ofa, B,!^ the pairs of points
corresponding to them. The lines BiB2, a^ are the vanishing lines of
the two planes; the centre of either plane is the point corresponding
to the point at an infinite distance in the direction perpendicular to
that of the vanishing line in the other plane; the focal axes are the
Hues perpendicular to the vanishing lines of the two planes at their
respective centres ; lastly, the foci are the points of intersection of the



Focal Properties of Homographic Figures. 201

focal axes by the circles described on BiB2, eijOj as diameters, and are
situated in each plane symmetrically with regard to its vanishing line.
If, assuming that we view each plane from a determinate region in
space, we regard the rotations round F1? / , as similar, it is evident that
the rotations round F2,/2 must be dissimilar, and vice versa; otherwise
the two homographic figures would be similar, and the lines at an in-
finite distance would be corresponding lines, contrary to the hypothesis.
We might prove the same thing, by imagining the planes of the two
figures to coincide. The circular asymptotes at F b fu and again at F2, ft
will then be corresponding lines. But the correspondence in one case
will be direct, and in the other inverse (i. e., in the one case, thoso
asymptotes which run to the same imaginary circular point at an in-
finite distance will be corresponding lines, in the other case asymptotes
running to opposite circular points will correspond). And, since the
locus of the intersections of corresponding rays in two equiangular
pencils is a circle, or an equilateral hyperbola, according as the rota-
tions of the two pencils are in the same or in opposite directions, we
infer that two equiangular pencils in the same plane have the same
direction of rotation, or opposite directions, according as the circular
asymptotes of the two pencils correspond directly or inversely.

As we have obtained the foci in each plane by a quadratic construc-
tion (which seems inevitable) we have still to determine their corre-
spondence, and the corresponding directions of rotation round each.
To do this, we have only to observe that each plane is divided by its
focal and vanishing axes into four regions, which correspond to one
another in a manner which is readily ascertained, because when we pass
in eitlicr plane from one region A into another region B across one of
their common boundaries, we must simultaneously pass in the other
plane from the region corresponding to A into the region corresponding
to B, and must traverse the corresponding boundary; (the line at an
infinite distance is a common boundary, it will be observed, of two dia-
metrically opposite regions). Thus we have only to ascertain in either
plane the region which corresponds to a given region in the other; the
correspondence of the remaining regions is then known, and with it the
correspondence of the foci. Lastly, if 0', o be the points at an infinite
distance on the focal axes of the two planes, the direction of rotation
from FO' to FY corresponds to the direction of rotation from fo to fy,
the rotating radii vectores being supposed to move in corresponding
regions in the two planes.

If A, a are corresponding points in the regions (^)> (°>2) respectively,
the angles F2F,A,/2/,a,, are both acute ; they are, therefore, equal to one
another, since, by virtue of the equiangularity of the pencils at Fi,/i, they
must be either supplementary or equal. Observing that the directions
F,F2, F,A arc opposite in sign to the directions fifi,J\a> we see that
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angles between corresponding directions on corresponding radii vectores
are equal, in which form we have already stated the equiangular pro-
perty of the foci.

The determination of the foci requires (as we have seen) the con-
struction of three points in each plane corresponding to three points at
an infinite distance in the other plane. And thus the actual determina-
tion of the foci, though very elementary in theory, is in actual practice
somewhat troublesome. But when the foci have once been determined,
the homographic representation of either plane upon the other can be
carried out very rapidly; since, if A be any given point of ft, Ft the
further, and F2 the nearer focus, we have only to make the angle fif\ii
equal to the angle F2Fj A, and the angle f\f-M supplementary to the
angle FtF2A; the directions in which these angles are to bo measured
being at once indicated by the correspondence of the regions in which
A and a are situated.

The anhannonic equation (0, X, F1} co ) = (co, x, fu o'), or OX . o'x
= — C . c, in which X, x denote corresponding points on the focal axes,
suffices to prove that the parallels to the vanishing lines at fil5 w,; C2,
ta2) are corresponding lines. And that these lines are equi-scgmental,
will then follow from the equiangular property of the foci, since F ^
= /1(<>i, F]Q2

 = —/iw2- The image in either plane of any given inde-
finite line in the other is most easily found by making the intercepts on
the equi-sogmental lines in the first plane equal in sign and in mag-
nitude to the corresponding intercepts in tho second plane; so that, if
the two intercepts are drawn in the same direction from the focal axis
in one plane, they are drawn in opposite directions in tho other plane.

(6.) Homographic Vlane Figures placed Uomologically.

It will be observed that any two homographic plane figures can be
made homological, or put in plane perspective with one another, in four
different ways. For we can take either pair of equi-segniental axes for
the axis of homology, and either pair of foci for the centre of homo-
logy. And it is sometimes of importance, in the theory of homological
figures, to consider the non-coincident foci and equi-segmental axes, as
well as the two foci which are united in the centre of homology, and the
two equi-segmental lines which are united in the axis of homology.

For example, if we regard a conic section as homological with itself,
any point in the plane of the conic being the centre of homology, and
its polar the axis of homology, the foot of the perpendicular let fall
from the pole upon the polar will represent tho second pair of foci (which
in this case are coincident because the parametei's are equal) ; and in
like manner the second pair of equi-segmental lines will lie represented by
the parallel to the polar through the pole. Thus we have the elemen-
tary properties of a conic section, " angles subtended at the foot of tho
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perpendicular by chords passing through the pole are bisected by the
polar; " " the pole is the point of bisection of intercepts on the parallel
to the polar made by tangents at the extremities of chords passing
through the pole," &c.

Again, if we regard two conies as homological, a point of intersection
of their common tangents being the centre of homology, and the axis of
homology being either of the two common chords which pass through
the intersection of the polars of the centre of homology with regard
to the two conies; it will be found that there is a second pair of foci,
situated on the perpendicular let fall from the centre of homology upon
the axis of homology, and that corresponding points of the two conies
subtend equiangular pencils (with opposite rotations) at these two
points. And, in like manner, corresponding lines in the two figures
determine equal intercepts (but measured in opposite directions) upon
two axes situated at the same distances from the second pair of foci,
that the axis of homology is from the centre of homology.

(7.) Homographic Plane Figures placed Symmetrically.

The equality of the parameters of two plane homographic figures is
the necessary and sufficient condition that they should be capable of
being so placed in the same plane that each point shall have but one
corresponding point. For if the two figures can be so placed as to have
this symmetrical relation to one another, the imaginary points corre-
sponding to the imaginary circular points at an infinite distance must
coincide; and hence the imaginary chords QiQ2, P\P>, and with them the
real parameters, must be equal. Conversely, we can always render the
two figures capable of a symmetric position by altering the linear dimen-
sions of either of them in the ratio of its parameter to the parameter
of the other; since after this alteration the imaginary chords QiQ2,
pi jp2, will be equal, and can be made to coincide. There are then two
positions of symmetry—viz., the two positions of homology in which
the vanishing lines coincide. It is sometimes convenient to imagine
the scale of one of the figures altered in the parametric ratio; we shall
express this by saying that the figures are reduced to the same scale.

(8.) Metrical Properties of the Focal Radii Vectorcs.

The following elementary properties of the foci of two homographic
plane figures are frequently useful:—

(a.) The focal radii vectores of two corresponding points P and p

satisfy the equation I\P fiP __ A
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The truth of this equation, so far as absolute magnitude is concerned,
appears immediately from a comparison of the triangles FJPFJ, fxpfi;
the two ratios are of opposite signs, because the radii vectores drawn
from the nearer foci are of the same sign, and the radii vectores drawn
from the further foci are of opposite signs.

(/3.) The rectangle contained by the sum of the radii vectores of P, and
the difference of the radii vectores of p, is equal to the rectangle con-
tained by the difference of the radii vectores of P and the sum of the
radii vectores of p; and either of these rectangles is equal to four times
the rectangle of the parameters. This relation is expressed by the
single equation

(F,P+F,P) (Ap+f,p) = FA./,/,,
if we observe that in it the signs of F,P and P2P are arbitrary, and
that the signs of fxp and f2p depend on the signs of FtP and F2P re-
spectively. The truth of the equation may be inferred immediately
from tlie elementary theorem, that if a straight line bisecting the angle
of a triangle either internally or externally be produced to meet the
base, the square of the bisecting line is equal to the rectangle contained
by the sum of either side and the segment of the base adjacent to it,
and by the difference of the other side and the segment adjacent to it.

(y.) Let N, n be the feet of the perpendiculars let fall from P andp upon
the vanishing lines. The distances NP, np are of opposite sign, and
their rectangle (see Art. 5) is equal to the rectangle of the parameters.
We then have the relations

NP ~~ o'fi* NP ~ o'f%* np ~ OF,' np ~ OP3'

any one of which, combined with the equation NP. np = OF,. o'fu and
with the equation (a), gives the other three. To prove them, we have
only to observe that the quadrilaterals N P F ^ , o'fxpn are not only equi-
angular, but also similar, because NP. np = OF!. o%.

If, in the construction of the point p, corresponding to a given point
P, we wish to avoid the use of points lying on the further side of the
vanishing line, we may either determine the ratio of fxp to F,P by one
of the formulae (y) ; or, preferably, we may make the angle fxo'p equal
to the angle OF,N; the point p is then the intersection of dp and fxp.

(5.) If the two planes are in perspective, we have

— = — for the similar foci,

F P SP
and —— = for the dissimilar foci.

J\p Sp
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(9.) Circles changed into Circles.

The circles of the system of which F^ Fa are the limiting points, and
the vanishing line the radical axis, are transformed into circles of the
system of which /, , f2 are the limiting points, and the vanishing line the
radical axis; and these are the only circles in either figure which are
changed into circles in the other figure. For it is evident that to the
conies (Pu P2, Q b Qa) there will correspond the conies (pu p2, qu q2) ;
or again, if the locus of A be a circle of the system of which F b Fa are

the limiting points, the ratio —*— is constant; therefore the ratio ^
a 2A. j2 ct

is also constant, (Art. 8, a) ; i. e., the locus of a is a circle of the
system of which / i , / 2 are the limiting points. We shall, for brevity, call
these two systems of circles the focal circles of the two planes.

It will be found that the radii of corresponding circles are to one
another as the parameters; and that, if the figures be reduced to the
same scale, and superposed so that their foci coincide, the correspond-
ing circles will coincide (but not in respect of their corresponding
points).

(10.) The Homographic Modulus of Corresponding Pencils.

In any two homographic pencils (A) and (a) there exists a pair of
corresponding right angles (Steiner, " Systematische Entwickelung,"
p. 31) ; and if the pencils are not equiangular, there is only one such
pair. We shall term these corresponding right-angles the right-angles
of the pencils (A) and (a). Let A and a be any two corresponding
points in the planes O and w; the lines bisecting the angles F,AF2,
fiafi, internally and externally, are the lines containing the right
angles of the pencils at A and a. For the double rays of the pencil
A. [PiP2, QiQi> F,F2], (which is a pencil in involution, because PiP2,
QiQi> FjF2 are the vertices of a quadrangle,) correspond to the double
rays of the corresponding pencil a. [piPn QiQ^ fift]- ^ e might prove
the same thing, without using imaginary points, by considering the
corresponding cii'cles which pass through A and a. And since the
rectangle of the central abscissas of corresponding points is equal to
the rectangle of the parameters, we see that the external bisector at
either of the two points A or a answers to the internal bisector at the
other.

If, in any two homogi'aphic pencils, <& and <f> are corresponding
angles, measured from either pair of the corresponding rectangular
lines, the ratio tan * : tan <(> is constant. This constant ratio we may
term the homographic modulus of the two pencils. We observe (1)
that the definition is applicable to homographic pencils in involution;
(2) that the homographic modulus is positive or negative according as
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corresponding directions of rotation in the two pencils are regarded as
having the same sign or opposite signs; (3) that the homographic
modulus of two equiangular pencils is + 1 o r — 1 ; (4) that the- defi-
nition is relative to a given pair of the corresponding rectangular lines,
and that if for this pair we substitute the other pair, the homographic
modulus changes into its reciprocal.

The homographic modulus of the pencils at A and a, taken relatively
to the external bisector at A and the internal bisector at a, is evidently

cot A A cot i a = tan •»- (F, + F2) tan A (/, +/a)

= tan A (F,+F2) : tan i (F,-F2) = R2 + Ri: Ra-R, = r 2 - r , : r% + ru

the letters A, F,, F2, a, /,, /2 denoting the internal angles of the tri-
angles F,AF:>, fidfi, and R,, R_>, ru r2 representing the absolute values
of the focal radii vectores of A and a. We have supposed that F, is
the nearer, F2 the further focus, so that F2 =/ 2 , F1+/1 = ir.

(11.) Angles changed into Equal or Supplementary Angles.

In any two homographic pencils (A) and (a) there exists an
infinite number of equal corresponding angles, and again an infinite
number of supplementary corresponding angles (M. Chasles, " Geo-
metrie Superieure," Art. 147). "We may add, that the angles in either
pencil A, which are equal to their corresponding angles in the other
pencil, form a pencil in involution, of which the right-angle is the right-
angle of the pencil A, and of which the modulus is the homographic
modulus of the two pencils taken positively; and, similarly, the angles
in the pencil A which are supplementary to their corresponding angles
form a pencil in involution which has the same right-angle as the pencil
(A), and the same modulus, only taken negatively. The former invo-
lution always has real double lines, the latter never.

To find the involutions of equal angles at the corresponding points A
and a; let F,,,/, be the nearer foci, let any circle passing through A and
F cut the vanishing line in Mi, M2, and let inu m2 be the corresponding
points at an infinite distance in the plane w. The angle M,AM2 will be
transformed into an equal angle m^anu; for the angles MJAMJ,
LI1F1M2 are equal (not supplementary, since the chords MjMo, AFi do
not intersect) ; i. e., the angles M,AM2 and ^i\fim2, or finally Mi AM,
and niiamz, are equal. It will be observed that the directions AM,,
oiij; A Mo, am, are corresponding directions.

To find the involutions of supplementary angles at the points A and a
we have only, in the preceding construction, to substitute the further
focus F2 for the nearer focus F,. The angles MiAM2, M,KM2 will bo
supplementary (and not equal); so that M,AM2 will be transformed
into a supplementary angle m,a)/%.
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(12.) Segments changed into Equal Segments.

If H and It are the centres of two liomograpliically divided lines,
(i. e. the points which on each line correspond to the points at an
infinite distance upon the other line,) and if A, a are any two corre-
sponding points on tho two lines, the rectangle H A x h' a (which we
may term the rectangle of the homography) is constant.

In any two homographically divided lines there is an infinite number
of segments equal to their corresponding segments and having tho same
sign, and again an infinite number of segments equal in absolute mag-
nitude to their corresponding segments, but having opposite signs.
Upon either line eitlier set of segments form, an involution of "\vliicli
the centre is the homographic centre of the line, and of which tho
rectangle is the rectangle of the homography, taken positively or nega-
tively, according as the segments considered are equal to their corre-
sponding segments with the same sign, or with opposite signs.

Thus, if 2D, 2tZ are the intercepts made by the cyclic axes on any
two corresponding lines meeting the vanishing lines in H and h', the
segments X! X2 of the involution determined by the equation HXj X.
HX2 = D X d are equal to the corresponding segments Xi x.2 of the in-
volution h'xi X h'x2 = D X d; and, again, the corresponding segments
of tho involutions IIX, X HX2 = — D X d, h% X h' xx = — D X d aro
equal, but have opposite signs.

And, in general, the segments of the involution HXj X HX2 =
fiD X d, where fi is any multiplier, aro /t times tho corresponding seg-
ments of the involution fi x It a?x X lix.^ = D x d. The segments of tho
two involutions are divided externally or internally by the vanishing
lines, according as ft is positive or negative.

It thus appears that there aro an infinite number of triangles in either
plane, similar to their corresponding triangles, and having a given ratio
to them. For take any point A in the piano O, any straight line pass-
ing through it, and any positive ratio; there is always one trianglo
(and only one, if A is not a focus, and the given line not a cyclic axis),
having a vertex at A, and a side in the given straight line, which is
transformed into an equiangular triangle of which the sides are to tho
sides of the triangle in the given positive ratio. The two correspond-
ing triangles are not intersected by the vanishing lines, so that points
interior to either trianglo correspond to points interior to the other.
If wo do not attend to the sign of tho given ratio, there aro in all four
triangles, each having a vertex at the point A, and a side upon the
given line, which are equiangular to their corresponding triangles, and
which have the given ratio for their ratio of similai'ity. For, if we do
not attend to signs, there arc two segments of the given line having a
common extremity at A, which are in the given ratio to their corn;-
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sponding segments, and there are two lines passing through A which
make angles with the given line equal to the corresponding angles. Of
these triangles, that just considered is one; the other three are all in-
tersected by the vanishing line; so that two of the sides of any one of
them are to their corresponding lines in a.negative ratio.

(13.) The Confocal Conies.

Eveiy conic which has a focus at F, or F2 is transformed into a conio
having a focus at/ a or/j. For right-angles at F ai'e transformed into
right-angles at / , so that if the involution determined by the given
conic at the point F be rectangular, the involution determined by the
corresponding conic at the point / is also rectangular. And conversely,
if a point in either figure, and its imago in the other, be both foci of
corresponding conies, the point and its image are corresponding foci in
the two figures.

Two cases of this property are of special interest.
(i.) A circle having its centre at F is transformed into a conic, of

which F is the focus, and the vanishing line the directrix. This fol-
lows, independently of the general property, from the equations (y),
which also show that the eccentricity of the conic is equal to the radius
of the circle divided by the parameter; it thus varies directly as the
radius of the circle.

(ii.) Conies in the plane O, of which F b F2 are the foci, are trans-
formed into conies of which fu / , ai-e the foci, the ellipses into hypei*-
bolas, and tho hyperbolas into ollipses. We shall term these conies the
confocal conies of the two homographic figures. An independent
proof of tho theorem is supplied by tho formula (/3) ; and conversely,
the theorem may be used to establish that formula, since tho rectangle
contained by tho major semi-axes of two corresponding confocal conies
is evidently equal to the rectangle of the parameters.

The eccentricity of any confocal in cither figure is the reciprocal of
the eccentricity of the corresponding confocal, the asymptotes of the
hyperbola containing the same angle as tho focal radii vectores of tho
extremities of the minor axis of the ellipse. If the figures be induced
to the same scale, and tho foci be superposed, corresponding confocals
will intersect on the cyclic axes, and will thus have the same latus
rectum.

If 2 and a are any two corresponding confocals, the normals of S and
the normals of a arc corresponding lines (Art. 10). Hence also the centre
of curvature at any point of 2 corresponds to tho centre of curvature
at the corresponding point of IT; and the evolute of cither is trans-
formed into the evolute of the other. Again, any two similar airs of
2 (/. c. ares of which the difference is geometrically rcctifiablo) have
for their corresponding nri'S two similar arcs of a; and the rectifying
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tangents in either figure (L e., the tangents of which the difference is
equal to the difference of the arcs) are images of the rectifying tan-
gents in the other figure. In the same way, the polygon of a given
number of sides, and of minimum perimeter, inscribed in any arc of a
confocal conic of either figure, corresponds to the polygon of the same
number of sides, and of minimum perimeter, inscribed in ttie cor-
responding confocal arc. It is hardly necessary to observe, that the
elliptic integrals which express the lengths of corresponding arcs of
corresponding confocal curves are not themselves equal to one another,
and are not transformed into one another by tho homographic trans-
formation.

(14.) The Indicatrix, or Strain Ellipse.
The indicatrix at any point A of the plane O is the evanescent ellipso

which is the image of an evanescent circle, having its centre at tho
corresponding point a. The indicatrix is, in fact, the " strain ellipse," if
we regard any part of the plane O as a deformation of the corresponding
part of the plane w, produced by a mechanical strain. It is readily
seen that, if we consider the radius of tho evanescent circle at a as an
infinitesimal of the first order, the distance of the centre of the strain
ellipse from A will be an infinitesimal of the second oi'der. For the
determination in species of tho strain ellipse at the point A, we have
the theorem: " The strain ellipse is similar and similarly situated to
the ellipses of which the principal axes are normal, at the point A,
to the confocal ellipse and hyperbola intersecting at that point, and aro
respectively equal to the major axes of those curves."

This auxiliary ellipse is no other than tho ellipse employed by M.
Chasles, in his solution of the problem, " To determine the principal
axes of an ellipse, of which one pair of conjugate diameters are given
in magnitude and position" (Apercu historique des Mothodes en
Geometric, Note 25). M. Chasles has shown that a reciprocal relation
subsists between the auxiliaiy ellipse and the ellipse of the confocal
system which passes through its centre. Thus the centre of cither
ellipse lies on the circumference of the other ; the major axis of either
is normal to the other; the asymptotes of either pass through the
imaginary foci of the other; the major and minor axis of either are
respectively equal to the sum and difference of the focal radii vectoros
of its centre considered as a point on the circumference of the other;
lastly, the distance between the real foci of either is equal to that
diameter of the other which is conjugate ' to tho diameter passing
through the two centres.

To prove that the strain ellipse is similar and similarly situated to tho
auxiliary ellipse, it is sufficient to observe, that the asymptotes of the
evanescent circle at a are aqu aq>; and Hint, consequently, the strain

i ;



210 Prof. H. J . Stephen Smith on the

ellipse touches the imaginary lines AQ,, AQ2 at the points Qu Q,. But
the strain ellipse is infinitesimal; the imaginary lines AQ], AQ2 are
therefore its asymptotes, i.e., it is similar and similarly situated to the
auxiliary ellipse.

To determine, then, the strain ellipse in species, we have only to draw
the focal radii vectores of the point A, and to bisect the angle con-
tained by them intei'nally and externally ; the major and minor axes of
the strain ellipse are respectively in the directions of the bisecting
lines, and are proportional to the sum and difference of the radii vectores.
It will be seen that the confocal hyperbolas are lines of greatest elonga-
tion (or least compression), and that the confocal ellipses are lines of
least elongation (or greatest compression). The focal circles are lines
of similar distortion, because for all points on any one of them the
ratio of the two radii vectores is constant, and therefore the ratio of
their sum and difference; i. e., all points on the same focal circle have
similar indicatrices.

It remains to find the absolute dimensions of the indicatrix. Let
d2u rfSj represent the elements of the arcs of the confocal hyperbola
and ellipse which intersect at A; let d<ru da2 represent the correspond-
ing elements in the plane w ; and let A,, A,, Xb X2 be the semiaxes
major of the curves 2!,, 2j, <TU <r2; so that, supposing F] the nearer
focus, wo havo A2 = -J (IL + R,), X2 = i 0f2—?'i)> Ax =- ' - (RJ—RJ) ,
X, = 1 (7'2-j_}-1)) A,Xj = A2X2 = Cc. Considering two points on 2j and
S3 indefinitely near to A, and denoting, as in Art. 10, the angles I\AF2,
/i afi by A and a, we find

d\2 d\2

aS dax =aSt = - , dax = : ,
cos \ A sin \ a

7V _ llA* dX*
lisa,, A cos I a

<ZA, «7A, dA, d\2But - - + - — = 0, — + - - = 0;
A , A, i\ 2 A2

sin \a 1
so that dzn = — • — • A2 d<ru

cos ^ A X2

cosjrt 1 7

"Sa = "—TT * T" " A l d<Tl-sm i A X,

Again, substituting for \a its value i(F!—F2), we find, from the
triangles FiAF2, /,a/2,

sin \a A, cos \ a A2

c o s T A = C " ' sin .5 A = "C"'

whence, if i be the radius of the evanoscunt circle at a, the major and
minor semi-axes of the strain ellipse at A are respectively

A 1 A 2 A2 . A 1 A 2 A l .
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From these expressions it follows that, given in magnitude the para-
meters of the two planes, and given in position a single pair of corre-
sponding points A and a; given also in position and magnitude the
indicatrix at one of these points, for example at A; the homography of
the two planes is determined. For the coefficients,

AJAIJ A2 A,A2 Aj

~c~ x c~' ~c7 x c"'
being given, the values of A, and A2 may be found (by tho extraction
of a cube root) : thus the auxiliary ellipse at A is completely deter-
mined. Tho vanishing line of the plane O is ono of the four tangents
of the auxiliary cllipso which are parallel to a diameter equal to 2C,
and the homographic centre is the point of contact. Similarly may tho
vanishing line and centre be determined in the plane w ; since tho indi-
catrix at a can be found when that at A is given.

(15.) The Canonical and Elliptic Equations of a Plane
Homography.

If X, Y, x, y are the coordinates of two corresponding points, the
focal axis and vanishing line in each plane being taken as the axes of
coordinates, we have Xa: = Cc,

_ Y _ _y_
X + C x + c

the former equation being equivalent to the anharmonic equation of
Art. 5, the latter expressing the property of tho corresponding foci of
which tho abscisste are — C and —c. These equations, written in
either of the forms fXx = Cc~]

(B) J Y a 5 = = CZ/-l
< Xx = Cc

may be termed the canonical equations of the homography (M. Chasles,
" Geometrie Superieure," Art. 533), and may be employed to verify ana-
lytically the preceding results. It will be remembered that the axes of
y and Y are not corresponding lines, neither are the origins correspond-
ing points. Thus tho abscisses of corresponding points are not corre-
sponding lines, and indeed are not measured in corresponding direc-
tions ; but the ordinates of corresponding points (considered as lines
drawn from the extremities of the abscissa) parallel to the vanishing
lines) are corresponding lines.

The elliptic coordinates Ab A2; X,, XB of two corresponding points
(i. e., the major semi-axes of tho confocal conies passing through tho
points) are, as we have seen, connected by the relations

(B') AlX1 = A2\2 = Cc.
R 2
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Thus every homographic transformation of a plane figure, in which the
line at an infinite distance is transformed into a line at a finite distance,
is equivalent to an inverse transformation of the elliptic coordinates of
the points of the plane. In this way the expressions already given for
the semi-axes of the indicatrix may be immediately deduced from the
elementary elliptic formulae

combined with the corresponding formulae for the plane o>. Again,
using the formulae AjA2 = CX, Xi\2 = ex, we may write those expi*es-
sions in either of the forms

m X . X . A2 . A, .
A2 A, xx

Thus the ratio of corresponding elementary areas at A and a is that

of X2 to AJXJ, or of A,A2 to as8, or of CaX* to c*x*; i. e., it varies in tho
sesquiplicate ratio of the distances of the two areas from the vanishing
lines. The lines X3 = ± Cca, x3 == ± C2c, (of which two in each plane
are real, and four imaginary,) are lines at which corresponding elemen-
tary areas are equal. More generally, the lines JcK= dbKC, Ka?= =k/t-c
are the real lines, in the planes O and w, at which corresponding eva-
nescent areas are to one another in the ratio of K3C2 to &V.

(16.) Theorems relating to Curvature.

Since evanescent segments, at the same point, and upon the same
straight line, are altered in one and the same ratio in any homographic
transformation, the curvatui'e of all curves which touch one another at
a given point is altered in one and tho same ratio. Thus, if a curve
touch a focal circle of the plane O, its radius of curvature at the point
of contact is altered in the transformation in the ratio of C to c. Again,
it will bo found that the radius of curvature of a curve at a point at
which its tangent is parallel to the vanishing line is altered in the same
parametric ratio. Hence if we consider in the plane O any conic which
passes through the imaginary points Qi, Q2 (and which, consequently,
is transformed into a circle), it has the same curvature at the two points
where it is touched by focal circles, and at the two points where it is
touched by parallels to the vanishing line; for the radius of curvature
at any one of these four points is to the radius of the corresponding
circle in the ratio of the pai'amcters. We thus obtain incidentally a
solution of the problem, " Given a system of circles, and a conic, having
the same radical axis, to determine the two circles of the system which
touch the conic;" for the points of contact are at the extremities of the
diameter equal to the diameter conjugate to the radical axis. In pai*-
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ticular, the radius of curvature of the indicatrix at the points where its
tangent is parallel to the vanishing line, or to the tangent of the focal
circle passing through its centre, is to the radius of the corresponding
evanescent circle in the ratio of the parameters: thus, if R is the radius
of curvature of the auxiliary ellipse at the point 0, At, Bi the principal
semi-axes of the indicatrix, we have the equations

A*,, C . Bi' C .
— R = — %, — R = — i,

C3

which are in accordance with the equations (A), since R = •
A,A3

More generally, if Di is any semi-diameter of the indicatrix at the point
A, the radius of curvature of any curve touching that semi-diameter at

D3 ..
the point A is altered in the ratio of D3 to AB (since — i is the radius

Aii

of curvature of the indicatrix at the extremities of the diameter con-
jugate to Di). It will be seen, that of all curves passing through the
point A, those which touch the confocal hyperbola at A experience iu
the transformation the greatest augmentation (or the least diminution)
of curvature, and those which touch the confocal ellipse experience the
greatest diminution (or the least augmentation) of curvature ; so that
the confocal conies may be said to be loci of greatest and least augmen-
tation (or diminution) of curvature. The ratio of the radius of curva-
ture of any curve passing through the point A to the radius of curva-
ture of the corresponding curve is thus intermediate between the ratios
A3

2 : C
2e and A\ : C2c. Let K3: C2c be any ratio intermediate between

these two; there are evidently two equal, semi-diameters of the indica-
trix at the point A such that the radii of curvature of curves touching
either of them are altered in the ratio K3 : C2c. If O be the angle
made by either of these semi-diameters with the major axis of the indi-

c t K3

catrix, the equation — = —- i becomes, on substituting for A and B
their values given by the equations (A),

.pv cos2 * sin2 4> _ 1
A2 Ax K

or (C) X 'cos^ + X i s i n ' O z z : ^ .

From the first of these equations we learn that the two semi-dia-
meters coincide in direction with those semi-diameters of the auxiliary
ellipse which are equal to K; the second implies that the angles made
by the two semi-diameters with the axis major of the indicatrix at A
are equal to the angles made in the plane w with the major axis of the
indicatrix at a by the tangents drawn from the point a to that confocal
conic which, in the plane w, corresponds to the confocal conic of semi-
axis major K in the plane II.
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(17.) Curves of Constant Alteration of Curvature.

We may also regard the equation (C) as equivalent to the differential
equation of a system of curves such that at any point on any one of
them its radius of curvature is altered in the constant ratio of K3 to
C2c. Substituting for tan2 <fr its value,

A * - C 2 ' dA]'
we find for this differential equation the expression

Tho integral of this equation is easily obtained in a finite form; it
seems, however, too cumbrous for discussion. It contains an alge-

braical function raised to tho power —, but no other transcendental
C

XT

function. If, therefore, — be rational, i. e., if the given ratio K3: C2c
C

is a multiple of the parametric ratio by the cube of a rational number,
tho curves of constant alteration of curvature are algebraic and of finite
dimensions; in every other case they are transcendental. They lio
entirely outside the confocal conic (K), and seem to meet it in cusps of
which the tangents arc normal to it. If K = C, i. e., if tho ratio is tho
parametric ratio, tho curves of constant alteration of curvature are
given by the equations

dA2 eZA|
or — = constant, AjA2 = constant;

A2

they are thus the focal circles and the parallels to the vanishing line,
as wo have already seen.

The orthogonal trajectories of the curves of constant alteration of
curvature are always algebraic; they have for their differential equation

- (?) (Aj - K2) v/(C2-A2)(KJ-A2)

(18.) Curves of Constant Elongation.

Let 0C : c represent any given ratio ; there are in general two equal
semi-diameters of the indicatrix at any point A which are in that ratio
to the radius i of the corresponding evanescent circle. If, however,

Q
6 — i be greater than the major axis, or less than the minor axis of the

c
indicatrix, the two diameters are imaginary. The equations
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represent two loci, which separate the parts of the plane 12, in which
the two diameters are real, from those parts in which they are imaginary;
at points on the locus (a) the two diameters coincido with the axis
major of the indicatrix; at points on the locus (/3) they coincide with
its axis minor. The two loci are included in the same Cartesian equa-
tion of the sixth order

02c2x2r = (xa-e2c2) (x2-ec2) (X2+0C2),
which represents a curve symmetrical with respect to the vanishing
line and focal axis, and having a quadruple point at Y (the point at an
infinite distance on the vanishing line). The two branches, one on
each side of the vanishing axis, which touch it and one another at the
point Y, form the locus (a); the locus (/3) consists of the two branches
which have the line at an infinite distance for their common tangent at
the point Y. In the space included between the two branches of the

C .
locus (a), the semi-axis major of the indicatrix is less than 0 — i; in

c
the spaces intermediate between the loci (a) and (/3) the two diameters
are real, and they are again imaginary in the spaces interior to the
locus (/3). To determine the angle *, which either of the two dia-
meters makes with the axis major of the indicatrix, we observe that
these lines coincide in direction with the two diameters of the auxiliary

C3

ellipse which are equal to 20 ; we thus obtain the equation
AA

which implies that the two diameters coincide in direction with the
tangents drawn from the point A to the confocal conic of which the

X2

semi-axis major is — • Substituting for tan2 * its value, we find
0C

A* A2, - 02C° clA] _ A\ A2
2 - 82Ce dA\

A* - C2 ' A\~ A\ - C2 ' "AJ '

which is the differential equation of the curves of constant elongation,
and seems not to admit of integration in any finite form. Its equi-
valent in Cartesian coordinates is

_ dx2 + dy2

It will be observed that A ^ = 0C2, or X = flC, is a particular integral
of tho equation.
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The following is an important property of the curves of constant
elongation:—

" The intercept in the plane O on any tangent to one of these curves
between the point of contact and the vanishing line is in the given
ratio to the similarly defined segment on the corresponding tangent in
the plane w."

To establish this property, we have only to observe that the point of
contact is one of the double points of that involution upon the tangent
of which the segments are to their corresponding segments in the given
ratio. Or we may infer it from the equation (D), with tho help of tho
easily demonstrated theorem—

" If ¥ and I/' are the angles made with the vanishing line by any
two corresponding tangents to the confocals (I1) and (y), the ratio
s i n P̂ . A . j I I T c > ,

- — is constant and equal to — or -.
smi|/ C y

(19.) Curves of Equal Tangential Deflexion.
Through any point A of the plane Q there pass two curves, such that

the angle between any two tangents to either of them is equal to the
angle between the two corresponding tangents of the corresponding
curve. We may term these curves the curves of equal tangential de-
flexion. If Dt be the length of the semi-diameter of the indicatrix, which
touches one of these curves at the point A, and if dQ = dO be the angle
contained between this semi-diameter and a consecutive tangent to the
curve, we find, since all areas at the point A are altered in the same
ratio,

D V d e : t'dfl :: AB? : ?, or simply Da = AB.
Denoting by * the angle made by the semi-diameter Di with the major
axis of the indicatrix, and substituting for A, B, and D, their values, we
have for the differential equation of the curves of equal tangential de-
flexion

xp,s cosa * s i n 2 $

(ZAi dA2

or — = ± —

a C
These curves are always algebraic; for, putting Aj = Cut, Aa = _̂

du dtc2. dux
wo have — = =fc

y ( i ! )
of which the integral is algebraic.

The equation (E) may be also obtained by observing that the curves
of equal tangential deflexion which pass through the point A, must
touch at that point the double lines of the pencil in involution, which
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is equiangular to the corresponding pencil, and that the equation (E)
is the equation determining these double lines (see Arts. 10 and 11).
It appears from this that the angle at which the two curves intersect
is always supplementary to the corresponding angle.

(20.) Curves similar and similarly situated to their images.

As an additional example of the use of the formulre (B), let us pro-
pose to determine the conic sections, which in either figure are trans-
foi'med into conies similar and similarly situated with regard to the
vanishing line and focal axis of the other figure. If

aX2+a'T2+a"C2 + 2&C Y + 2Z/CX + 26"XY = 0
be the equation of any conic in the plane O, the equation of the cor-
responding conic is

aV+dtf+ac3 + 2b"cy + 2b'cx + 2bxy = 0.
And if these two conies are similar and similarly situated, we must
have a = a", b = ±&"; i. e., every conic for which one of the two foci
is the pole of the line parallel to the vanishing axis, and passing through
the other focus, (or, which is the same thing, any conic for which one of
the pairs of lines joining its points at an infinite distance to its points
on the vanishing axis, intersect at a focus,) is transformed into a
similar and similarly situated conic, the ratio of similarity being that
of the parameters. There are thus two sets of conies (each forming a
triply indeterminate linear system) which satisfy the conditions of the
problem; but the conies of only one set at a time can be regarded
as similarly situated to the corresponding conies, because in deter-
mining the two sets different directions on the vanishing lines are taken
to determine the similarity of position.

Again, tha corresponding conies will have their areas in the ratio
of the squares of the parameters, if (aa'—ft"2)3 = (a'a'—b2)3; i. e., the
areas of all conies with regard to which the lines parallel to the
vanishing line and passing through the foci are self-conjugate lines are
to the areas of their corresponding conies in the duplicate ratio of the
parameters. The only real conies of which the area is changed in this
ratio are those defined by this geometrical condition; they form a
quadruply indeterminate linear tangential system. But the analytical
condition is also satisfied by the imaginary conies in the plane O,
with regard to which the imaginary lines X = ±pC, or X = =fcp*C,
are harmonically conjugate, p denoting an imaginary cube root of
unity. More generally, it will be found that the conies of which the
area is changed in any given ratio are those which have for a pair of
conjugate lines the two straight lines at which elementary areas are
changed in the given ratio (Art. 15). If the corresponding conies are
hyperbolas, we may substitute for the area in this result the triangle
contained by the asymptotes and any tangent.
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Lastly, the geometrical condition that a conic in either plane should
be similar to its corresponding conic is that the pairs of points in
which it intersects the vanishing line and the line at an infinite dis-
tance should subtend equal angles at a focus. But the quadruply in-
determinate system determined by this condition is not a linear one.

Theorems of a similar kind to the preceding, but relating to curves
of a higher order, may be obtained by observing that symmetrical
functions of X, z; Y, y; or again of Ab \ i ; A2, \2 are unchanged by the
transformation. Thus any curve represented by

, / Co Cc\ n

or again by / 1 A,+ —, A2+ — J = 0,
is transformed into a curve similar and similarly situated with regard
to the focal axis.

B.—FOCAL PROPERTIES OF TWO HOMOGRAPHIC POINT-FIGURES.

(21.) The Imaginary Cones corresponding lo Evanescent Spheres*

By a point-figure we shall here understand a system of straight lines
and planes passing through a point which is termed the centre of the
point-figure. Let S, s be the centres of two point-figures, homogra-
phically related to one another; and let P, q represent the evanescent
spheres (here to be regarded as imaginary cones), which have their
centres at S, s. Excluding altogether from consideration the very par-
ticular case in which these two imaginary cones correspond to one an-
other homographically, and in which, consequently, the two figures
admit of exact coincidence with one another, let us represent by p, Q
the imaginary cones, which in the figures s, S correspond to the cones
P, q. We observe that if either p or Q is a cone of revolution, the
other is so too; for if the cones P, Q have double contact, so also
have the corresponding cones p, q. We shall hereafter (Art. 38) re-
turn for a moment to this particular case, but for the present wo
shall suppose that neither p nor Q is a cone of revolution.

(22.) The Principal Axes.
On this supposition there exists in each pencil one, and only one, sys-

tem of straight lines at right angles to one another, such that their
corresponding lines are also at right angles to one another. These
lines are the principal axes of the cones Q and p. For the principal
axes of Q are the system of self-conjugate axes common to the cones P
and Q; these principal axes, therefore, correspond to the system of
axes self-conjugate with regard to p and q; i. e. to the principal axes

* Seo Note at end of Paper, p. 248.
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of p. We Bhall call these two seta of rectangular axes the principal
axes of the two figures, and we shall distinguish them as the axes of
XYZ, xyz.

(23.) The Focal Lines and Cyclic Planes.

To the four imaginary lines of intersection of P and Q, and to the
four imaginary tangent planes common to those two cones, there cor-
respond the four lines of intersection, and the four common tangent
planes, of p and q. Hence to 0x and C2, the two real cyclic planes of
Q, and to F b F2, the two real focal lines of Q, there correspond C\, c2, the
cyclic planes, and /i,/2, the focal lines of p. It will be observed that
the real focal lines of an imaginary cone (differing in this respect from
the focal lines of a real cone) lie in that principal plane of the cone to
which the cyclic planes are perpendicular. We shall call the axis, in
which the cyclic planes intersect, and which is perpendicular to the focal
plane (i. e. to the plane containing the focal lines), the mean axis; of
the two axes in the focal plane, we shall term that the major axis
which makes with either cyclic plane, and with either focal line, acute
angles together less than a right angle.

(24.) The Reciprocity of the Imaginary Cones.

The imaginary cones Q and p are reciprocal. Let Y, y be their mean
axes; XZ, xz, their focal planes; PiP2, QiQ«> and pip^, q\q2, the imaginary
lines in which these planes meet the cones P, Q and p, q respectively.
From the anharmonic equation

(1) [Pi, P8. Qi, Q2> X, Z] = [pup3, quq2, x, z]
we infer the equation

[Pi, P*» Qi. QJ] = [ji, 23) PuPd*
which implies that the imaginary angles QiSQ2, pisp% are equal, because
Pi, Pa and qu q2 are pairs of lines representing evanescent circles.
Again, X, Z and x, z are harmonic conjugates of the pairs PiP2, Q1Q2,
and pip2t qi<lz respectively. Hence we must have either the equation

[Pi, P2, Qb Q2, X, Z] = [ji, q», pup2, x, «],
or else the equation

[Pi, P9, Qb Q2, X, Z] = \_qx, qit pupi, z,z].
But the former equation is inadmissible; for, on combining it with
(1), we obtain

Ob 2b 35,2,] = [giij»l, <M]>
which is untrue, since p2t and not qu is the harmonic conjugate of px
with regard to xz. It is, therefore, the latter equation which subsists;
it implies that Qt or Q2 makes the same angles with X, that px or pt

makes with z; i. e., that the angle QiSX is the complement of pisx.
Similarly, the angle which the axis of X makes with either of the lines
of Q which lie in the plane XY, is the complement of the correspond-
ing angle in the plane xy \ that is to say, the two cones are reciprocal.
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It is evident that the mean axis of Q corresponds to the mean axis of
p. Let C, c be the acute angles FjSX, ftsx; then the acute angle con-
tained by YX and either cyclic plane of Q is the complement of c, and
the acute angle contained by yx and either cyclic plane of p is the com-
plement of C. Hence X is the major or minor axis of Q, according as
C < c, or 0 > c; and to the major axis of Q the minor axis of p cor-
responds, and vice versa. Neither of the angles C, c can be zero, nor a
right angle, nor can they be equal to one another.

The reciprocity of the cones Q and p gives rise to a reciprocal rela-
tion between the two homographic figures, which may be thus stated.
Conceive the two figures placed with their corresponding principal axes
coincident. Let A, a be any two corresponding planes in the figures
S and s; let b be the normal to A at the common centre of the
figures ; and B the normal to a at the same point; then B and b are
corresponding lines in the figures S and $. If, therefore, we consider
any two corresponding systems of planes and lines in S and s, the
reciprocal systems of lines and planes will also be corresponding sys-
tems in s and S. Thus all the properties (metrical as well as descrip-
tive) of two homographic point-figures are double, and we have an
uniform method for passing from any property to its correlative.

(25.) The Correspondence of Directions.
The angles contained by planes intersecting in a focal line of S are

equal to the corresponding angles contained by planes intersecting in a
focal line of s; and, correlatively, the angles contained by lines inter-
secting at S in one of the cyclic planes of S, are equal to the corre-
sponding angles in a cyclic plane of s. These theorems are evident, be-
cause the imaginary tangent planes of P, which intersect in F,, cor-
respond to the imaginary tangent planes of q, which intersect in fx;
and similarly, the lines in which P is intersected by either cyclic plane
of Q, correspond to the lines in which q is intersected by either cyclic
plane of p.

To fix the correspondence of the directions of rotation round either
pair of corresponding focal lines, or in either pair of corresponding
cyclic planes, we consider the intersections of the planes and lines of S
and 8 by the surfaces of two spheres of radius unity having their
centres at S and s. Let A, B, C be three points on the sphere S, forming
a spherical triangle; it will be remembered that three points, not in
the same great circle, always form one, and only one, spherical triangle,
if by a spherical triangle we understand (as is usually done), a triangle
formed by arcs of great circles, each of which is less than two right
angles. As corresponding point to any point A on the sphere S, we might
take either of two diametrically opposite points a, a' on the sphere s. But
for one of these points (for example «) the corresponding directions of
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rotation round A and a are similar (i. e., both right handed or both left
handed, when viewed from the centres of the spheres) ; while for the
other point a the corresponding directions of rotation are dissimilar.
Let then a, b, c be the three points which on the sphere s correspond
with similar rotations to the points A, B, C. These three points are thus
determined without any ambiguity, and we shall now show that to
points in the interior of the triangle ABC there correspond, with
similar rotations, points in the interior of abc. The proof of this
important theorem depends on the two principles: (i.)> that if a point
move continuously on either sphere, and traverse any curve on that
sphere, its corresponding point on the other sphere simultaneously tra-
verses the corresponding curve ; (ii.), that if A and a are corresponding
points with similar rotations, and if, while A moves continuously to B,
a moves continuously to 6, then a and b are also corresponding points
with similar rotations. The first of these principles may be considered
as evident; to establish the second, it will suffice to consider A and B as
consecutive positions of A, so that while A describes the element AB,
a describes the element ab. Let E be any great circle not intersecting
AB, then the corresponding great circle e does not intersect ab, and if
these two great circles be described by corresponding points V and v,
the vector arcs AV, av will by hypothesis revolve in similar directions.
But the arcs AV, BV evidently revolve in similar directions, and so do
the arcs av, bv; i. e., the corresponding rotations round B and b are
similar. Let us now suppose that a point sets out from B, and describes
the side BC of the triangle ABO; the corresponding point will at the
same time describe the side be of the triangle abc; for as it must not
traverse either of the great circles ab, ac, it cannot describe an arc
greater than a semicircle. Thus, to the points of any side of ABC
there correspond, with similar rotations, the points of the corresponding
side of abc. Let V be any point internal to ABC, let AV cut BC
in Ab and let at on he correspond to Ai on BC; then AAjB, aaxc are
corresponding Bpherical triangles, with similar rotations at their corre-
sponding points; therefore the points of aax correspond, with similar
rotations, to the points of AAt; i. e., the point v, which corresponds with
similar rotation to V, lies on aax in the interior of the triangle abc.

The great circles which form the triangles ABC, abc, divide the
spheres S and s each into eight spherical triangles, which correspond
to one another one by one, with similar rotations at their correspond-
ing vertices, just as the triangles ABC, abc. Thus each sphere is di-
vided into eight regions, corresponding to the eight regions of the other
sphere, in such a manner, that, if any point be taken on either sphere,
the point which corresponds to it with similar rotation lies in the cor-
responding region of the other sphere.

We shall now take for ABC one of the eight octantal triangles XYZ,
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and for abc the corresponding octant xyz; we shall denote by J?ufi; YO,,
yo)u the foci and cyclic arcs which lie in the octants XYZ, xyz; and by F2,
f2; Yfl2, y(i)2; the foci and cyclic arcs which lie in the octants XYZ,
xys; so that the directions of rotation round the corresponding foci
F^/i and F2,/2, will be similar, and the directions YO,, ywx\ YO2, T/W2,
will be corresponding directions on the cyclic arcs. It will be con-
venient to consider only the hemispheres of which the points X, x are
the spheric centres, and the planes YZ, yz the bases. Thus, to any
given point on the hemisphere S (not lying on the base circle itself),
there corresponds one point, and only one, on the hemisphere s; and
again any two great circles upon either hemisphere (neither of which
is the base circle) intersect one another only in one point. To find
the point a of the hemisphere s, which corresponds to a given point A
of the hemisphere S, we draw the vector arcs I\A, F2A, and make the
angles/2/ia,/i/2a equal in sign and magnitude to the angles F ^ A ,
F ^ A ; the point of intei'section of the arcs f^a, f2a is the point a
required. Similarly, to find the great circle a of the hemisphere s,
which corresponds to a given great circle A of the hemisphere S, wo
find the points Di} D2, in which A intersects the cyclic arcs of S, and we
make the arcs w^, w2d2, equal in sign and magnitude to the arcs fiiDi,
fy,D2; the arc dyd^ is the arc required.

(26.) The Confocal Spherical Conies.
The spherical conies of which F b F2 are the foci are transformed into

the spherical conies of which/i,/2 are the foci. This is evident from the
equiangular property of the foci; or, again, if Rl9 R2, ru ra are the
focal radii vectores of the corresponding points A and $, the spherical
triangles FiAF2, f^ft give the equations

tan I (Rt + R2) _ tan | (Eg—B2) _ tan C
tan i (ri + r2) tan £ (ri~ r2) ~ tan c '

which imply that if Ri ± R2 is constant, rj ± r2 is also constant. Thus
the ellipses are transformed into ellipses, and the hyperbolas into hyper-
bolas, these denominations being relative to the two foci lying on each
of the hemispheres S and s. If A = i (Rt-f R2), or = i (Rj—Rj), is
the focal semi-axis of one of the confocal conies of S, the quotient

-̂ , which is one of the spherical eccentricities of the conic, remains
tan C
unchanged in the transformation; for, if \ be the semi-axis of the
corresponding conic, we have the equation

tan A tan C
tan \ tan c '

which results from the homography of corresponding points of the
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great circles XZ, xz. It is also evident that if we consider any two cor-
responding conies of the two confocal systems, there "will correspond to
one another in the two figures—the normal arcs of the two curves, their
spherical centres of curvature, their evolutes, their similar arcs, as also
the spherical polygons of minimum perimeter circumscribing corre-
sponding arcs, and the spherical polygons of maximum perimeter in-
scribed in corresponding arcs.

(27.) The Coney die Spherical Conies.

Correlatively, the system of concyclic conies of which Y€lu YCl2 are
the cyclic arcs are transformed into concyclic conies of which j/w,, yu>2

are the cyclic arcs, the ellipses into ellipses, and the conies of the third
species into conies of the third species ; these denominations being
again relative to the hemispheres which we are considering. (See
M. Chasles " Sur les proprietes generates des coniques spheriques,"
art. 1—4). If DtD2> dtd2 are corresponding arcs, cutting the cyclic arcs
in Db D2, dh d2, the spherical triangles D^Dg, d$d2i in which DXY =dYy,
D2Y = d2y, supply the equations

tan ± (Dt + D2) _ tan \ (Dx-Dz) _ tan c
tan i (di + d2) ~~ tan i (c^ — d2) ~ tan C"

Let E, e be the areas of the spherical quadrilaterals S^DiD^j ^id^w^
we find E = IT—DI—D2> e = ir—dv—d2, whence

tan | E _ tan C
tan \e tan c'

a formula which expresses a remarkable property of the cyclic arcs.
To chords of any conic ($) of the concyclic system of S, which cut off

equal spherical areas from that conic, there will correspond chords
cutting, off from the corresponding conic (<p) areas equal to one another.
To a spherical polygon of maximum area inscribed in any arc of (<&), or
to a polygon of minimum area circumscribing any arc of ($), there will
correspond polygons possessing a similar maximum or minimum pro-
perty with regard to the corresponding arc of (̂ >). These results follow
from the known properties of concyclic spherical conies ; or they may
be deduced by reciprocation from the properties of the confocal conies
of the two homographic systems.

(28.) Arcs and Angles changed into equal Arcs and Angles,

On any great circle A of S there are two points at right angles to
one another, such that their corresponding points, on the corresponding
great circle a, are also at right angles. These points are the ex-
ternal and internal points of bisection of the intercept made on
the great circles by the cyclic arcs; they are also the points at which
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the great circles are touched by conies of the concyclic systems. Let
2D, 2d be the intercepts; the homographic modulus of the two great

circles (relative to the internal points of bisection) is ; the arcs
tan a

of the involution
tan Hi tan H2 =

tan a
are equal to the corresponding arcs of the involution

• 7 , 7 tan d
tan hi tan li2 = — ;

tanJJ
and the arcs of the involution

j. TT J. TT tan D
tan Jn.! tan H2 = =•

tan a

are equal to the supplements of the corresponding arcs of the involution

, 7 , 7 tan d
t a n /ti t a n /i? = r-••

tan D
The determination of the angles which at any point A are trans-

formed into equal or supplementary angles at the point h is correlative
to the preceding. The external and internal bisectors of the angles
between the radii vectores at A and S are the right angles of the homo-
graphic pencils at A and a, and if FXAF2 = 2A, /i £/2 = 2£, the homo-
graphic modulus of the pencils, relative to the internal bisectors, is

s-. The equiangular and supplementary involutions are respec-
tan 6
tively

x TT x TT tan A , , tan S
tan Hi tan H2 = «-, tan hi tan h? = —— ,

tan o tan A
and tan H. tan H2 = . , tan 7̂  tan Zi2 = — , - - .

tan o tan A
Combining the results relating to equal arcs and to equal angles, wo

see that, given any arc of a great circle in either figure, and a point
upon it, there is always a spherical triangle having a vertex at the
given point, and a second vertex upon the given arc, which is trans-
formed into an equal and superposable spherical triangle.

The homographic modulus of the pencils at A and 8 may be also
expressed in terms of the radii vectores of the points A and 8, since
from the triangles F^Fo, f^f2 we find

tan A sin i (Rj —R2) # sin \ (rx—r2)
tan h ~~ sin \ (Rj + Ra) ' sin \ (ri + r2)

— c o s j ( B i —fit) . cos \{rx—r2)
cos i (R1 + R2) ' cos
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(20.) The liquations of the Itomograpliy in Spherical Coordinates.

The equation of the cone Q, referred to its principal axes, is

Bin' c cos c
the equations of its cyclic planes, and of its focal lines, are respectively

Z3-X2cot2c = 0,
X2+Y2sin2c = 0;

and Y2 + Z2cos2C=0, X = 0,
Z 2 -X 2 tan 2 C=0, Y = 0,

Xa+Y2cosec*C=0, Z = 0.

The equations of the cone p, and of its cyclic planes and focal lines, aro
obtained by interchanging C and o.

Let A, 5 be corresponding points on the two spheres, and let the arcs
XA, YA, ZA, xB, yS, zh meet the arcs YZ, ZX, XY, yz, zx, xy in the
points A, B, C, a, b, c respectively. If we take the ratios of the cosines

X = cos AX, Y = cos AY, Z = cos AZ,
'x = cos Sat, y = cos Sy, z = cos Sz,

as the spherical coordinates of the points O and w respectively, the
homographic relation of the two figures is expressed by the equations

sin C cos X _ cos Y _ cos C cos Z
sin c cos x cos y cos o cos z

Or again, if we take one of the following systems of tangents as the
coordinates of the points A and £,

(1) Y = tanXB, Z = tanXC; yz=
(2) Z = tanYC, X = tanYA; z =
(3) X = tan ZA, Y = tan ZB ; x = tan za, y = tan zb ;

the homographic relation is expressed by the equations
tanC sinC

(1) Y = « , Z = z — ;
tan c Bin c

/o\ rj s i n c
 v

 C 0 8 C

(2) Z = 2 -—-, X = a? - ;
v ' sinC cosC

cosC tanc
Y

(3) X = x
v cos c J tan C

(30.) The Parameters of the Oonfocal and Coney die Cones.

Instead of the equation (Q), it will bo convenient to employ the
X2 Y2 ZJ

equation — + — + — = 0
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to represent the cone Q; so that
i_ „ sin c _ cos c

A : B : r :: - — : 1: — - ,
sin C cos 0

» A ^ A
t C

We suppnso A, B, F all positive, and A > B > F , i.e., c>C Tho
fignre S is then transfoi'mcd into s by the equations

(1) X = Aa>, Y=BIJ, Z = l \

or, writing o = —, /3 = —, y = —, by the equations
A x5 A

A — - , I — - , L = —
a /3 y

We shall tenn the quantities ¥ and * tho jtmramc/ers of the confocal
cone

( 2 ) . X ' | Y 2 | Zi - 0

and of the concyclic cone

respectively. These quantities are of frequent use in the theory, as
will appear from the following observations :—

(a.) If \p and f are the parameters of the cones corresponding to (¥)

and <I>, we have \p = —, <}> = —; for the cones (2) and (3) are trans-

formed by the equations (1) into the cones
x2 if z2

j ji j — o

of which the parameters are respectively \p a n ^ <{>•
(/>.) If we imagine the principal axes of the two pencils coincident,

the cone reciprocal to that confocal cone in S of which the parameter

is •*• is the concyclic cone in s of which the parameter is —.

(y.) If yYu
 XY.Z are the parameters of the two confocal spherical conies

which pass through a given point, the parameter of the concyclic conic
ABF

passing through that point is ; and, reciprocally, if <&,, 4>2 are tho

parameters of the concyclic conies touching a given arc, the parameter

of the confocal conic touching that arc is .
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(£.) Let A, X represent the focal semi-axes of the corresponding con-
focal conies (¥) and ($) ; we have

vjrj p i ^» yffi >jri pa

sin8 A = — — , cos2 A = -^Y* t a n ' A = A * ^ '

with similar values for sin* X, cos8 X, tana X; and hence
4* ¥ r

sin A = — sin X, cos A = — cos X, tan A = — tan X.
A 1 A

(e.) Thus, for the homographic modulus of the pencils at tho cor-
responding points A, S, we have the expression (see Art. 28)

tan A sin Aa sin Ax ¥ ,
tan $ *"" sin Xa ' sin Xj ""* ¥i*

the angles being measured from the tangents to tho confocals (¥2), (»M-
And correlatively for the modulus of the homography on any corre-

, . TV J T. tan D $ a

spondinff arcs JJ, a, we have - = -—=-,
tan d *i

the arcs D, d being measured from the points of contact of the concyclic
conies (<&.,j) and (<j>2).

(£,) Lastly, if (*i), (¥2) are the two confocals intersecting at A,
(<&) the concyclic conic passing through A, we have

sin(A1 + A2) _ ST,^ sin R| _ sin R2 _ B
sin (X, + X2) ~ AF ' sin r, "~ sin ra ~~ * '

an equation which corresponds to the equations (y) of Art. 8.

(31.) The Indicatrix on the Sphere.

Let dSj, fZS2, dvu der2 be corresponding elements of the spherical
ellipses and spherical hyperbolas which pass through tho corresponding
points A and S; let also the arcs A,, A2, X,, Xa be the focal semi-diameters
of these conies; and let 2A = F,AF2, 25 =/ ,5/ a . Considering two
consecutive coi'responding points on the two ellipses, and again on the
two hyperbolas, we find

4sin A cos A
7 tZX, , c/Xi
d^ - —* da., = — '

sin d cos 0
But, differentiating the equations

tan At _ tan A.x _ tan C
tan X, ~~ tan X2 tan c '

, rZA, d\, f/A2 JX2

we have •— = —, — = — ;
sin 2A, sin 2A, sin 2A2 sin 2X2

s 2
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and from the triangles F,PF2,

sin A _ cos C cos c _ sin C # sin c
sin B cos Ax ' cos A, sin A, ' sin A,

cos A _ cos C # cos c _ sin C sin c
cos ^ cos A2 ' cos A2 sin A2 ' sin A2

, rZS. sin c sin A, sin 2A»
whence —i = — - x — —1 x —777-,

rfffx sin O sm At sin 2A2

d22 sin c sin A., sin 2A,
d<r2 sin C sin A2 sin 2A,

or, substituting from the equations (5) and (y), Art. 30,

fZ(r2 ^ ABr ~ * '

If in these formuloa we put ô-j = rZo-2= *, the corresponding values of
d2, and dS2 are the principal semi-axes of the evanescent ellipse corre-
sponding to the circle of which the centre is S, and i the infinitesimal
radius.

(32.) Curves of Equal Tangential Deflexion and of Constant
Elongation.

Since </Si is the circular measure of the infinitesimal angle contained
between the two lines in which (¥,) is cut by (^2) and (*24-rf^),

w e l i a v c J S l = ( A - - * ! ) ( B > - * ; ) ( * ! - r )

2
 (A* - ^'i) (*J - B-) (*'; - r2;'

which may also be deduced from tlio ordinary formula) of elliptic co-
ordinates in space. We may use these expressions to obtain the differ-
ential equations of certain loci analogous to those considered in Arts.
17, 18, and 19. Thus, observing that the homographic modulus of the

pencil at A is —, wo have for the curves of equal tangential deflexion

the differential equation
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The curves of " constant elongation" are defined by the equation

= K2 {da\ + do\

o r

in which the variables are not separated. If, however, We attend only
to the curves of no elongation, and consider any tangent to one of them
as determined by the parameters $1 and <&2 of the two concyclic conies
which it touches, its differential equation, in this system of tangential
coordinates, is obtained by writing #, and $2 for ¥x and ¥2 in the

equation (4). For, substituting -, -, \ —, — for A, B, T, *tu M ,̂
a 0 7 ^ ^2

in that equation, we have an equation between \pi and «/>a of the same
form as (4), which represents a curve of no elongation on the hemisphere
s ; \/>i and i£2 being the parameters of the concyclic conies which touch
any tangent of that curve.

It is evident that an infinitesimal spherical area at any point of the
concyclic conic («&) is altered in the ratio of ABT : <I>3; and, in par-
ticular, that this is the ratio of the area contained between (*) and
(<I> -+• d*) on S, to the area contained between the corresponding curves
(̂ >) and (0 + c£(i>) on s. The concyclic conies, as curves of constant
alteration of adjacent infinitesimal areas, resemble the parallels to the
vanishing line in the theory of two homographic plane figures.

(33.) Circles of which a Focus is the Centre.

Since, in general, spherical conies, of which Fj or F2 is a focus, are
transformed into spherical conies of which fx or /2 is a focus, and the
director arcs of the corresponding curves are corresponding arcs, it
follows that circles of which F2 is the spherical centre, are transformed
into conies of which /2 is a focus, and of which the director arc is an
arc yd perpendicular to xz at a distance 6 from x defined by the equation

tan c
tan 6 = -—TTV

tan2C

If R is the spherical radius of one of the given circles, and if r and $
denote the spherical distances from the focus and from the director arc
of any point on the corresponding conic, we shall have the equation

sin r _ sin c tan R
sin B sin 0 tan C"

Similarly, spherical conies, of which Y ^ or Yfi2 is a cyclic arc, ai*o
transformed into spherical conies of which T/W, or yw2 is a cyclic arc; and
the cyclic poles of corresponding curves are corresponding points. In
particular, circles parallel to Yl22 are transformed into conies of which



230 Prof. H. J . Stephen Smith on the

yu>2 is a cyclic arc, and of which the cyclic pole is a point (^) on xz at a
distance <j> from x defined by the equation

, _ tan2 o
tanO

If R is the radius of a circle parallel to Yfij, p the spherical perpen-
dicular let fall from the cyclic pole on any tangent arc to the corres-
ponding conic, p the angle contained between the tangent arc and the
cyclic arc, we shall have the equation

sin p _ sin <J> tan R
sinp ~~ cosC tan c

The two arcs yd may be termed the director arcs, and the two points (<p)
the cyclic poles, of the figure s. It is evident that we shall have the

relation tan 0 tan <6 s= tan <f> tan 0 = 1, or * + 0 = \ir = <f> + 0.

(34.) Circles changed into Circles.

To determine the small circles of the sphere S which are trans-
formed into small circles of the sphere s, we make use of the principle
that a small circle of a sphere is a spherical conic having double
contact with the imaginary asymptotic circle; the chord (or arc)
of contact being the parallel great circle. Hence, the circles required
are the spherical conies which have double contact with both P and Q.
Of these circles there are three series corresponding to the three pairs,
of chords of intersection of P and Q. For the chords of contact of any
one of the circles with P and Q are a pair of harmonic coujugates of
one of tho pah's of chords of intersection of P and Q ; and, conversely,
any such pair of harmonic conjugates may be taken for tho chords of
contact of a circle with P and Q, or again with Q and P. But the
circles of only one of these series are real; their chords of contact being
harmonic conjugates of the cyclic arcs, and their centres being on the
great circle of the foci. Let R be the radius of one of these circles, * tho
distance of its centre (*) from X. The harmonic conjugate of the gi-eat
circle, of which (<&) is the spherical pole, with regard to the cyclic arcs,

. must have the same pole with regard to the imaginary conic Q and
with regard to the circle. This condition supplies the equation

tan1 R = _ sin(<fr-C)Bin(<l> + C)
s in (* -c ) s i n ' " ' x '

which determines the radius of the circle when the position of its centre
is given; and SIIOAVS that the circle is real only when <t» is intermediate
between C and c.

If r be the radius of the corresponding circle, and <j> tho distance of
its centre from ;»:, wo shall have tho equations
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tan R _ sin 20

tan r sin 2c

tan * tan ^ '= tan C tan c.

The corresponding formulro for the circles of the imaginary systems
whose centres lie on XY, zy are

, , -r, tan2 C + sec2 C tan2 *
t an 2 R= - • —— ,

t a n ' c + s e c c t a i r <P

t a n <& t a n 0 ' = — sin C sin c,

tan2 R cos2 c tan2 C

tan 2 r cos2 C tan 2 c
where <& and <f> a rc t h e dis tances of t he centres of t he cor responding
circles from X and x. Changing in these formuloo c and C into their
complements, we have the formulro for the corresponding imaginary
circles of which the centres lie on ZY, zy.

(35.) Theorems relating to Curvature.

If two curves on either sphere touch ono another at any point, the
ratio of the tangents of their spherical radii of curvature remains
unchanged in the transformation. This is evident from the cor-
responding theorem relating to plane homographical figures, because
the two planes touching the spheres at two corresponding points are
homographic. Thus the ellipses and hyperbolas on either sphere aro
lines of greatest or least alteration of curvature, as well as lines of
greatest or least elongation or contraction. Tho circles which are
transformed into circles are of course loci of points at which the
tangent of the radius of curvature is altered in a constant ratio.

(36.) Connexion with the Plane Theory.

If we suppose the arcs C and c to become infinitely small, retaining
a finite ratio to ono another, the parts of the two spherical
figures which lie infinitely near to X and x will ultimately become two
plane similar figures. But we can also regard two dissimilar homo-
graphic plane figures as a limiting case of two homographic figures
upon a sphere. Tho points of the two hemispheres, which we have
hitherto considered, correspond to one another throughout the whole
of each sui'face with similar directions of rotation. But if, in the
hemisphere S, we substitute for the quadrant containing F, the
opposite quadrant, so as to consider the hemisphere of which Z is
the spheric centre, and the great circle XY the base, we shall obtain
a figure of which one quadrant (F2) answers with similar rotation to
the corresponding quadrant (/'2)> <llld the other quadrant (Fi) answers
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with dissimilar rotation to the corresponding quadrant (f\). If, for
example, in the formulae of Arts. 26—28, we change C, D, -^D,, or %D2,
Hi, H2, A, iR,, or ^Rj, into their complements, we shall have the
equations which express the metrical relations of the two figures,
considered in this particular manner. In these new formulae, 2c and
2C are the angles contained between the foci, and between the cyclic
planes of *; or, again, they are the angles contained between the
cyclic planes and the foci of S. The new arcs D, H b H2, are
not measured from the points corresponding to the original points
of arcs dt hu h2, but from points distant by a quadrant from
the points corresponding to* those original points ; they are also
measured backward — i.e., in the direction opposite to that which
corresponds to the direction in which the arcs d, hlt It? are
measured. And a correlative statement is true for the angles
A, Hlt H2. It will be observed that Rt or Rj is changed into
its supplement according as the points considered lie in the regions
of similar or dissimilar rotation. Again, it is immaterial whether we
change D2 or D, into its supplement; in the former case, we consider
(in the figure S) the triangle D^D^, in the latter the triangle
D,YD3.

If we now suppose the arcs c and C to become evanescent, the parts
of the two figures adjacent to x and Z respectively will become two dis-
similar homographic plane figures, and we may pass from the spherical
formulre to the corresponding formulae of the plane theory.

(37.) Point-Figures in Perspective.
When two homographic point-figures are in a perspective posi-

tion, (i.e., when the corresponding planes and lines of the two figures
intersect upon the same plane,) one of the focal lines of each pencil is,
evidently, the line joining the centres S and s of the two pencils. To
find the other focal lines, let S* meet the plane of intersection in O(,
let 0 be the point harmonically conjugate to Ob with regard to S*,
and Oa the orthogonal projection of 0 on the plane of intersection;
SO2, and sO2, are the focal lines required.

To place two given homographic point-figures in a perspective
position, we first of all place a pair of corresponding focal lines in the
siime straight line, the vertices of the two pencils not coinciding, but
corresponding vectorial planes coinciding. Let O2 be the point of
intersection of the two remaining focal lines ; let Vi and V2 be the planes
which bisect the angle SO2$ externally and internally. According
as the corresponding directions of rotation round SOa and so2 are
similar or dissimilar, V, or V2 is the plane of intersection of the two
homographic figures. It is evident that the two figures continue in
perspective if their centres be moved nearer to or further from one
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another in the coincident focal lines ; or, again, if either of them be
rotated through an angle of 180° round these coincident lines. Of the
cyclic planes, one pair are parallel to the plane of intersection, the
other pair intersect in that plane, and in the plane bisecting Ss at right-
angles.

(38.) Case when Hie Homography is Spheroidal.
The theory of the particular case in which the transformation ia

spheroidal—i.e., in which the imaginary cones Q andp, corresponding
to the evanescent sphere-cones q and P, are cones of revolution—pre-
sents no difficulty whatever. If X and x are the centres of the
imaginary small circles Q and p, the azimuths of any two corre-
sponding points A and a are equal, and their zenith-distances are con-

nected by the relation -^-^— = constant,
tan oca

This constant ratio we may term the modulus of the transformation.

C.—FOCAL PROPERTIES OP TWO HOMOGRAPHIC SPACES.

(39.) The Imaginary Conies, and the Parameters.

We proceed, in the last place, to consider two spaces S and s,
homographically related to one another. Let O and a be the imaginary
circles at an infinite distance in which all spheres in the two spaces
intersect one another; w and 2 the imaginary conies corresponding to
them. As we shall suppose that the planes at an infinite distance in
the two spaces are not corresponding planes, the imaginary conies O
and S, w and <r, are certainly different. If either w or S is an imagi-
nary circle, the other is so too; for if O and 2 have a common chord,
to and <r must also have a common chord, and vice versa. We shall,
however, for the present, exclude this important particular case, and
shall suppose that neither w nor 2 is an imaginary circle. Let 0, o' bo
the centres of 2 and i» respectively (these conies have no real tangents,
and therefore are not parabolas) ; X, Y, #', y the points at an infinite
distance on their principal axes; Z, z the points at an infinite distance
on the normals to their planes; 2j, 22, to,, <o2 the asymptotic points of
2, ««>, lying on the lines XY, x'y\ which are the lines at an infinite
distance in the planes of the two conies, and which we shall suppose to
meet the imaginary circles O and a in the points Oi(22 and axav The
lines XY, x'y are evidently corresponding lines; and because the poles
of XY, with regard to fi and 2, correspond to the poles of x'y with
regard to w and o-, the points Z, d and the points 0, z are correspond-
ing points. The anharmonic equation [2,, 2.,, fi,, fl2] = [aru <T2, W,, W2],
which is implied by the homographic relation of the figures, may also
bo written [fib fl2, 2,, 22] = [T,, <T2, WU W2], and expi-esses, in this
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form, that the imaginary angles 2jO22, w,</wa are superposable ; i. e.,
that the imaginary conies 2 and w are similar. Again, because X, Y
are harmonic conjugates of £l,€la and 2j22, while x, y are harmonic con-
jugates of w ^ and o-!̂ , x, y correspond to X, T ; and we may suppose
the correspondence fixed by the equation

[O,, S22, 2 b 22, X, Y] = [wb w2, <rb <r2, K, y].

This equation implies one or other of the equations

[O,, fi2, 2,, 22, X, Y] = [<rb <r2, w,, w2, a;, y],
or [O,, Oj, S,, 22, X, Y] = |>i, <r2, wb w2, y, a?].

Of these, the former is inadmissible, as it would imply that [<rb wb x, y~\
= [wb o-b x, y], which is impossible, since w2, and not <rb is the har-
monic conjugate of W| with regard to xy. We infer, therefore, that the
point at infinity on the major axis of 2 corresponds to the point at in-
finity on the minor axis of w, and vice versa. Let A </(—1), B«/(—1),
«A/(—1), &\/(—1) be the principal semi-axes of 2 and w; A, B are
the parameters of S, and a, b of s ; they are connected by the equation
Aa = B6, which results from the similarity of 2 and w.

(40.) The Correspondence of Directions—the Principal Axes.
From the homographic relation of the two figures, it follows that to

each direction on any straight line in either figure there corresponds a
definite direction on the corresponding line. And again, to each direc-
tion of rotation round any line there corresponds a definite direction of
rotation round the corresponding line. It is easily shown (by con-
sidering in each figure two infinitesimally near positions of a straight
line in relation to a line at a finite distance) that the two figures are
either similar in respect of all rotations, or dissimilar in respect of all
rotations; i. e., that corresponding rotations round corresponding direc-
tions are either always similar, or else always dissimilar. For clearness
we may suppose that corresponding rotations in the two figures are
similar. We shall call the lines OX, OY, OZ, ox, o'y, o'z the prin-
cipal axes of the two figures ; and the planes OYZ, OXZ, OXY, o'yz,
o'xz, o'xy the principal planes ; the axes OZ, o'z, which alone are cor-
responding lines, we shall call the focal axes; and the planes of XY, xy
the vanishing planes.

Each space is divided by its three principal planes into eight octants,
corresponding respectively to the eight octants of the other space.
Considering these octants as tctrahedra, of which the plane at an in-
finite distance is one boundary, and observing that in either space tho
plane at an infinite distance corresponds to the vanishing plane of tho
other space, we find that to adjacent octants on the same side of the
vanishing plane in cither space there correspond in the other space
adjacent octants on the same side of the vanishing plane, but that udja-
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cent octants on opposite sides of the vanishing plane in either space corre-
spond to octants diametrically opposite in the other space; so that if the
correspondence of two octants is given, that of the remaining octants is
immediately ascertained. Again, if P, Q are any two points on the
same side of the vanishing plane of S, and if p, q are the points corre-
sponding to P, Q, the directions PQ, pq are corresponding directions
in the two spaces; and similarly the corresponding directions of rota-
tion round any two corresponding lines may be ascertained. We may
add that if V is any closed figure in S, which lies wholly on one
side of the vanishing plane, points in the interior of V will corre-
spond to points in the interior of a closed figure v corresponding in the
space 8 to V.

(41.) Determination of the Principal Axes and Parameters.
The geometrical construction for the determination of the principal

axes in each figure, and of the parameters A, B, a, 6, is as follows. We
first obtain the vanishing plane of each figure ; i. e., we determine in
each figure three points corresponding to three points at an infinite
distance in the other figure; the points at an infinite distance in the
directions normal to the vanishing planes are the points Z and z, and
the points corresponding to these are the centres o and 0 of the
imaginary conies to and 22; thus the focal axes OZ, and o'z are known.
At the point 0, in the vanishing plane of S, take two pairs of lines cor-
responding to two pairs of rectangular lines intersecting at z in the
plane at an infinite distance in s. The axes OX and OY are the pair
of lines at right angles to one another in the involution determined by
the two pairs so constructed; x and y, which determine ox and o'y, are
the points corresponding to X and Y. Lastly, to find the parameters,
we observe that if in any two corresponding planes the chords inter-
cepted by S and cu are 2Dy( —1), and 2d,y{—1) respectively, the para-
meters of the two homographic plane figures are D and d\ their homo-
graphic centres are the points of bisection of the chords, and their
focal axes are tlm perpendiculars to the chords at their points of
bisection. Hence we obtain the four parameters A, B, a, b by con-
structing the homographic foci of the principal planes XZ, YZ, xz, yz.

(42.) The Gonfocal Quadrics.
The imaginary conic 2, in which we may suppose A>B, determines

a system of confocal quadrics, of which it is the imaginary focal conic.
The two real focal conies are an ellipse in the plane of YZ, of which
the foci (in the axis of Z) ai*e the homographic foci of the plane YZ, and
of which the vertices, in the same axis, are the homographic foci of the
plane XZ. Tho focal hyperbola lies in the plane of XZ, and has of course
the vertices of the ellipse for foci, and its foci for vertices. Tho system
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of confocal quadrics of which w is the imaginary focal conic, cor-
respond homographically to the confocal quadrica of the system S. For
sinco the conies a and w correspond to the conies 2 and Q, the imaginary
developable circumscribing the two former conies corresponds to the
imaginary developable circumscribing the two latter conies, and there-
fore the quadrics inscribed in these corresponding developables are
themselves corresponding surfaces. In particular, to the focal ellipse
of S there corresponds the focal hyperbola of s, and vice versa;
the extremities of the focal axes of the ellipses being transformed into
the extoemities of the focal axes of the hyperbolas, and the extremities
of the minor axes of the ellipses into the asymptotic points of the
hyperbolas. Again, the ellipsoids of either confocal system are
changed into the hyperboloids of two sheets of the other system; and
the hyperboloids of one sheet into the hyperboloids of one sheet. And
by considering the two pairs of homographic planes XZ, xz, YZ, yz, we
see immediately that the eccentricities of the sections of corresponding
confocals made by corresponding principal planes are reciprocal, and that
the rectangle of their major semi-axes is equal to the rectangle of the para-
meters A X a or B X 6. Again, to the normals of any confocal there corre-
spond the normals of the corresponding confocal; the lines of curvature of
the two surfaces, their umbilics, the two systems of orthogonal develop-
ables formed by the normals of each of them, their centres of curvature,
and the surfaces which are the loci of those centres, all correspond
homographically; the cuspidal lines of the normal developables are
corresponding geodesic lines upon the surfaces of centres, and the lines
of contact of two corresponding developables with those sheets of the
surfaces of centres upon which their cuspidal lines do not lie, are in
like manner corresponding lines. Further, since the normals of cor-
responding confocals are corresponding lines, the geodesies of either
surface correspond to the geodesies of the other; and the confocals en-
veloped by the developables of two corresponding geodesies are cor-
responding confocals, and the lines of contact are corresponding lines.
To the various modes of description of the lines of curvature of either
system of confocals by means of a thread stretched upon surfaces of
the system, there will correspond similar modes of description of the
lines of curvature of the other system of confocals. For an example,
we may take the general theorem of M. Chasles,

" If an inextensible thread, of which the extremities are fastened to
two fixed points upon one of two confocal surfaces of different kinds,
is strained by the point of a pencil which moves upon the second
surface, so that the thread consists (in general) of six portions, two
of which are geodesies of the first surface, two are geodesies of the
second surface, while the other two are the portions of common tan-
gents to the two surfaces included between the points of contact, the
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point of the pencil will describe a line of curvaturo of the second
surface."

While an inextensible thread moves in either space in the manner
described in this enunciation, an inextensible thread will move in
the same manner in the other space ; and the six portions of the first
thread will correspond homographically-to the six portions of the
second. But it is to be observed that the constant lengths of the
two threads will be related transcendentally to one another; as also
will the lengths of the corresponding curvilinear portions of the two
threads.

We may add that to two geodesic arcs of which the difference is
rectifiable, there will correspond two geodesic arcs of which the differ-
ence is rectifiable. And when the difference of two arcs of a line of
curvature can be expressed by geodesic lines in either figure, the cor-
responding difference can be similarly expressed in the other figure.

(43.) The Point-Figures at Corresponding Points—their Focal Lines.
We shall next consider any two corresponding points P and p in the

two spaces. At these two points we have two homographic point-
figures, of which the relations to one another are readily ascertained.
To the cones which from P envelope the conies O and 2, thei'e will
correspond the cones which from p envelope w and a. Thus the prin-
cipal axes of the point-figures at P andp are the normals to the surfaces
of the confocal system which pass through P and p; and the focal
lines of the figures are the generators of the hyperboloids of a single
sheet which pass through P and p. We thus have the theorem :

" Any two corresponding generators of two hyperboloids of the two
confocal systems are the axes of pencils of planes of which the corre-
spondence is equiangular."

If the points P and p be taken on coiTesponding focal conies, tho
two generators coincide. Thus, "the focal conies are the loci of
points at which the correspondence of the homographic point-figures is
spheroidal."

It is evident that, given in one of the two spaces a point and three
generators (of the same or different hyperboloids), and the corresponding
things in the other space, we can immediately, by means of the equi-
angular pencils of planes, determine the point p in either space which
corresponds to a given point P in the other. We might take for the
three generators in each space any three tangents to a focal conic ;
the simplest construction being perhaps that in which the tangents
at the vertices of the focal conies are employed as the axes of equi-
angular pencils.

We thus obtain the following rule, which is well adapted to the
methods of descriptive geometry: — " Project the given point P
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orthogonally on the planes of XZ, YZ, and using the focal radii
vectores of the projections, as in Art. 5, determine the points corre-
sponding to them in the planes of xz and yz: these points are tho
orthogonal projections of the pointy."

(44.) The Strain Ellipsoid—its Cyclic Planes and Focal Asymptotes.
The position of the cyclic planes of the homographic figure at P

may be ascertained by means of the focal lines of the figure at p. But
these cyclic planes are also the cyclic planes of the " strain ellipsoid "
at P ; i.e., of the evanescent ellipsoid which has its centre at P, and
corresponds to an evanescent sphere having its centre at p. Tor this
evanescent ellipsoid has for its asymptotic cone the imaginary cone
which from P envelopes 2, and is thus concentric, similar, and similarly
situated with the auxiliary ellipsoid of M. Chasles, i.e., with the
ellipsoid of which the principal axes are equal to the axes major of
the three confocal surfaces passing through P, and are normal to those
three surfaces respectively (Apercu historique des Me'thodes en
Geometrie, Note 25). It appears at the same time that the asymptotes
of the focal conic of the auxiliary ellipsoid) or of the strain ellipsoid,
coincide with the focal lines of the point P.

The cyclic planes at P andp are the "planes of no distortion" at
those corresponding points ; i.e. (1) evanescent lines passing through
P and lying in either cyclic plane, are altered in a constant ratio; (2)
angles in a cyclic plane at P are transformed into equal angles in the
corresponding cyclic plane ; so that P, p are homographic foci of either
pair of cyclic planes. The second property is analogous to the
property that the focal lines are the axes of equal homographic pencils
of planes. If we observe that the focal asymptotes of a quadric are
the axes of its circumscribing right cylinders, we may enunciate a
property of the focal lines analogous to the first property of the cyclic
planes:—

" Planes parallel to either focal line, and infinitely near to P, are
transformed into planes, which may ultimately be regarded as parallel
to the corresponding focal line, and of which the distances frovap are
in a constant ratio to the distances of the first planes from P."

We. may express this by saying that a generating line of a confocal
hyperboloid is, at any point of it, a line of equal transverse elongation.
And since the right cylinder, of which the focal line at P is the axis,
and which circumscribes the strain ellipsoid at P, is transformed into a
right cone of which the vertex lies on the vanishing plane of s, we see
that if the point P vary its position on a given hyperbolic generator,
the ratio of transverse elongation varies inversely as the distance of p
from the vanishing plane of s, or directly as the distance of P from
the vanishing plane of S.
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(45.) The Canonical and Elliptic Equations.
If we represent by X, Y, Z, #, y, z, the coordinates of corresponding

points in the two spaces referred to their principal axes, the canonical
equations of the homography will be

Xz = Aafl XTA = aX~| .(A).

If, again, we denote the elliptic coordinates of corresponding points
in either space (referred to the corresponding confocal systems) by
A,, A3, A3) X1} X2, X3, the hornographic equations are

AiX, = A2X2 = A8X3 = Aa = Bb (B) ;

so that every general homographic transformation may be represented
as a transformation of the elliptic coordinates of a point into their
reciprocals.

(46.) Determination of the Strain Ellipsoid.

Either of these sets of formulae will serve to determine the ratios of
the axes of the strain ellipsoid at P to the radius of the evanescent
spliero at p. The rectangular formulce show that the ratio of an eva- -
nescent volume at P to the corresponding volume at p is that of Z4 to
Art x ab; whence, if 0Ab 0A2, 0A3 are the semi-axes of the strain
ellipsoid at P , and i the radius of the evanescent sphere at p,

e 3 A , A 2 A 3 = Z4

i3 Aa X aC

or, since A1A2A3 = ABZ, and Zz = Aa, 0 = -.

Or again, transforming by the equations (B) the elliptic formula

„ , , A a x A B (Z2L

we nnd dax = - -,
AiA2A3 A,

cZS, d<Ti
Aj ~~ z

which agrees with the preceding determination of 0, the symbols d2,
and dax representing coi'responding elementary arcs, normal to (A,)
and (X,).

Our limits pi'event us from applying these formula) to the determina-
tion of the loci corresponding to those considered in Arts. 17—19. For
the same reason, we omit the elementary theorems relating to the cur-
vature and torsion of curve lines, and the curvature of curve surfaces.
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(47.) The Parameters of the Cnnfucnl and Concyclic Cones,
at any Point.

The equation of the imaginary cone which from the point P en-
velopes 2 is

X2 Y2 Z3
 A

|_ L — 0
A, A2 A3

and the cone which from the same point envelopes the confocal surface,
of which ¥ is the semi-axis major, is

Z2

— v»,

so that the coefficients (designated by A, B, T, a, /3, y in Art. 30),
which determine the homography of the point-figures at P and p,
are, in fact, the elliptic coordinates of those points; and the para-
meters of the confocal cones of the point-figures are the same as the
parameters of the confocal quadrics which they envelope. Thus, the
formulae of Arts. 30, 31 are immediately applicable to the figures at P
and p. And, if * is the parameter of a concyclic cone at P, so that

* = ' • -•* -3, where ¥ „ ¥2 are the parameters of two confocal quadrics

touching any line of (#), the elongation at P in the direction of any
line of ($) is given by any one of the formulae

I _ A»A*As & _ A, A' A; 1 __ Z* _ B _Z3_ _ $
7 ~~ Aa X AB ~~ Aax AB V^ ~Aa~ a Wi% ~ ~z

T and r representing corresponding elements at P and p. It will be
observed that, at equal distances from the vanishing plane, the elon-
gation is the same on all lines touching the same two confocal
quadrics.

(48.) Lines Tangent to two Confocal Quadrics.

Let hi and L3 be two straight lines in the space S, each of which
touches the two confocals (" î) and (¥j) ; let also Z,, l2, (i//i), (J/»2) be the
corresponding lines and confocal quadrics in the space s. The tan-
gent planes Li^b LjY2 (i. e., the tangent planes to (¥i), (¥2)> at their
points of contact with L^ ai*e at right-angles to one another, and are
transformed into two planes which are at right-angles to one another.
Again, the paii* of planes, tangent to any third confocal surface (¥3),
which intersect in L1} make the same angles with the bisecting planes

^a that the pair of planes, tangent to the same confocal surface
, and intersecting in L,, make with the bisecting planes lVP,, L2^a.

For the involutions of pairs of planes determined by the confocal
system at the lines Li and L2 are necessarily equiangular in respect of
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all their corresponding pairs, because they are equiangular in respect of
the coincident pairs of planes determined by (¥{) and (¥2), and of the
imaginary pair of cyclic planes determined by the imaginary circle at
an infinite distance. From this theorem (of which M. Chasles has
given a different demonstration; see Liouville, Vol. XL, First Series,
p. 109) we infer that equal dihedral angles, similarly placed in the
pencils of planes at Lv and L2, are transformed into dihedral angles
equal to one another, and placed similarly to one another, in the pencils
of planes at lx and l2. Or again, if 1 and i are the angles made with
I^Y, and l\i>x by corresponding planes passing through L, and lu and
if we denote the major semi-axes of the surfaces (^1), (^i), (^OJ ('/'a)
by ¥1, ^ i//!, \p2, we shall have the equation

tan I ^1 _ i//2
tan i ¥"2 ^1

which results immediately from a formula given by M. Chasles (loc. cit.
p. 106), combined with the equations of transformation (B) ; and which
shows, in conformity with our theorem, that the ratio of tan I to tan I
is the same, whatever common tangent of (^1) and (^2) we consider.
We have, in fact, the still more general theorem:

"All pencils of planes, of which the axes are touched by two con-
focals having their major semi-axes in a given ratio, have that ratio for
their modulus of transformation; and in all such pencils, the involu-
tions which are transformed into equiangular involutions, are equi-
angular with one another," which is an immediate consequence from
Art. 47, and 30, e.

Since a generating line of a confocal hyperboloid may be regarded as
a line of which the two tangent confocals coincide, this enunciation in-
cludes, as a particular case, the equiangular property of the generating
lines.

We have seen that the focal conies are the loci of points at which the
transformation is spheroidal. We may now add, that at any one of these

Q
points the modulus of transformation (Art. 38) is —, if Q is the semi-axis
major (A or B) of the focal conic on which the point is taken, and P is
the semi-axis major of the confocal quadric which passes through the
point.

(49.) Ivory's Theorem.

If on two confocal surfaces of the same kind in the space S we con-
sider two points which correspond to one another in the sense in which
that term is employed in Ivory's theorem, these two points will be
transformed into two others in the space s, which will also correspond
to one another in the same sense. This principle, which is immediately
verified by means of the equations (A), may serve to transform some

T
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geometrical, and even physical, propositions. For example, we see
that to every focal generation of a quadric according to Jacobi's
method, there corresponds homographically a similar focal generation
of another quadric.

(50.) Equi-Segmental Axes and Planes.

The eqiii-segmental axes of all planes in the space S, which cut the
vanishing plane in straight lines parallel to a given straight line, (or,
which is the same thing, of all planes which pass through a given
point at an infinite distance on the vanishing plane,) lie on two planes
at equal distances from the vanishing plane and parallel to it.

For, in the first place, parallel planes in the space S have their equi-
segmental axes at one and the same distance from the vanishing plane,
since to parallel planes in the space S there correspond planes in the
space s, which intersect the vanishing plane of that space in the same
straight line, and of which the foci are consequently at a constant dis-
tance from one another; this constant distance being equal to the dis-
tance of the equi-segmental axes of the planes in the space S. Again,
planes in the space S, which intersect the vanishing plane in the same
straight line, have their equal axes situated at equal distances from the
central plane. For to these planes correspond parallel planes in the
space s ; and, by what has just been proved, the equi-segmental axes of
these planes lie in two planes parallel to the vanishing plane; therefore
the equi-segmental axes of the planes in S lie in two corresponding
planes, i. e. in two planes parallel to the vanishing plane. The theorem
itself results from the combination of these two particular cases of it.

It may be worth while to verify the theorem analytically. If
X Y Z ,
- + - + - = 1
p q r

is the equation of any plane of S, the equation of the corresponding
plane of s is

Ax By Aa

— + — + — = 1,
pz qz rz

which meets the vanishing plane of s in the line

p q r

x v
or 2 = 0, — + — = - 1 .

The square of the semichord determined on this line by the imaginary

conic «, or _+|.+i = o,



Focal Properties of Homographic Figures. 2 i3

and this square, multiplied by the square of the sine of the angle bu-
tween the given plane and the vanishing plane of S, becomes

ay
an expression of which the value depends only on the ratio of p to q.

It follows from this theorem, that to ascertain the position in the space
S of the equi-segmental axes of any plane whatever, it will suffice to
attend to the principal equi-segmental axes, i.e. to the equi-segmental
axes of planes which pass through the focal axis. Let P be such a
plane, and letDv^C—1) be the semi-diameter of the imaginary focal
conic lying in that plane, d\/(—1) the semi-diameter of the imaginary
focal of s, determined by the corresponding plane. It will be found
that DcZ=Aa; so that we have for the semi-distance d of the equi-

segmental axes of the plane P, the expression d = — . Thus all the

planes, loci of real equi-segmental lines, or, as we shall term them, all the
equi-segmental planes of S, are comprised between two planes, at dis-
tances a and b on the positive side of the vanishing plane, and between
two planes symmetrically situated on the negative side of the same
plane. Again, since the semi-diameters of S, which are equally inclined
to its principal axes, are equal to one another, each equi-segmental
plane contains two distinct series of equi-segmental parallels, the two
series botpg equally inclined to the plane of ZX, or ZY; in the two
extreme pairs of equi-segmental planes these two series coincide with
one another, and their common direction is that of one of the principal
axes OX or OY.

If we consider two planes intersecting in the axis of Z, and inclined
at an angle I to the plane of ZX, we have for the square of the semi-
distance of their equi-segmental lines the expression,

d* = a2 cos21 + V sin21.
The corresponding inclination i is given by the equation

tan I = — tan i = - tan t,
A o

and tho corresponding value of D2 is
D3 = A2 cos2 i + B2 sin2t.

These equations show that if we imagine the spaces S and .s so placed
that their focal axes coincide, while the axes of X and Y lie in the
axes of y and x respectively, tho principal equi-scgmcntal axes of either
space will be those generating lines of hyperboloids of tho other space,
which lie in pianos parallel to the central plane.
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The homographic relation of any two corresponding equi-segmental
planes is very simple. If we conceive of the points of each plane as
referred to its principal equi-segmental axes, the corresponding co-
ordinates of corresponding points will be equal, and only the angle
between the axes will be different in each plane. These angles are never
equal to one another (except in the excluded case A=B, a=b) ; they
are, however, supplementaiy to one another in tho principal equi-seg-
mental planes, i.e. in the planes defined by the equations Z =: ± >/(afr)}

z = =fc y/ (AB), since in these planes we have

tan2I = —, tana i' = -, tan I tan % = 1.
A a

To obtain the straight line in 5, which corresponds to any given
straight line in S, we may either determine its projections on the two
focal planes, by means of the equi-segmental axes in those planes ; or
we may, instead, consider the intersections of the given straight line
with any pair of equi-segmental planes of S, and obtain the corre-
sponding points in the corresponding equi-segmontal planes of s. We
have, however, in every case to measure tho equal corresponding
segments in corresponding directions ; and these can always be ascer-
tained by inspection, if we have first fixed the correspondence of the
eight octants of each space to the eight octants of the other.

(51.) Properties of the Hyperbolic Generators.

The generating lines of the confocal hyperboloids possess a metrical
property with regard to the equi-segmental planes, which may- be very
variously expressed, according to the equi-segmental planes considered.
Thus:

" The intercept made in the space S upon any generator of a confocal
hyperboloid by tho tangent planes to that hyperboloid, which are
parallel to the vanishing plane, is to the corresponding intercept in
the space s in the constant ratio of v'(AB) to */(iib)."

Or, again:
" The intercept made on any hyperbolic generator of S by the two

rqui-segmental planes Z = =fc \/(a&), is to the corresponding intercept in
tho space s in the inverse ratio of the major-axes of the hyperboloida
to which tho two generators belong1."

In connexion with this property we may mention the following;
which, however, does not depend on the gcnei'al homographic trans-
formation we arc considering:—

"If one of two confocal hyperboloids be transfomicd into the othor
by the transformation of Ivory, segments on any generator of the one
are transformed into equal segments on the generator of tho other."
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(52.) Homographic Spaces placed Symmetrically.
It is in general impossible to place two homographic spaces S and

8 in the same space, so that any given point of that space shall have
the same corresponding point, to whichever of the two spaces it is
considered to belong. The conditions that this reciprocal relation of tho
two spaces should be possible are, that corresponding rotations in the
two figures should be similar, and that

(C) A = 6, B = fl,
either of these equations, of course, implying the other. For, if these
equations be satisfied, and if corresponding rotations be similar, we
may place the axes of OZ, OX, OY upon the axes of oz, ±o?/, zkzox,
inasmuch as the positive directions of OZ and oz are not corresponding
directions. Writing, as we may then do, ± X for Y and ± Y for X
in the equations (A), we find

z7i = ab, zX = ± by, zY = ± ax,
and these equations are not altered by interchanging simultaneously
X, a; Y, y; Z, z. The points which coincide with their conjugates
are the points of the lines

i.e., the principal equi-segmental planes of S coincide with their corres-
ponding planes, and in each of these planes the points of one of the
principal equi-segmental axes coincide with their corresponding points.
Every plane which passes, through either of these lines, corresponds
to itself, and so does every line which meets both of them. Again,
we may also place the axes of OZ, OX, OY upon the axes of — oz} ±oy,
=F ox ; in this case, the equations (A) become

zTt = — ab, zX = =p%, zY = ±ax,
which are still symmetrical, but which give imaginary loci of coincident
points. Either the upper signs, or else the lower signs, may bo taken
in each case; so that the two spaces admit of four different symme-
trical positions.

We may arrive at the preceding results without using the equations
(A) ; for it is readily seen that the necessary and suflicient conditions
for the reciprocity of the two homographic systems are that the imaginary
conies S and w should coincide, and that those points on the two conies
should be coincident, which correspond to the same points of tho
imaginary circle at an infinite distance. The equations (C) arc the
conditions that the two conies should bo equal in all respects; if these
equations are satisfied, tho two conies can be brought into coincidence
in four different ways, and in each of these four ways the points which
ought to coincide will coincide, if corresponding rotations in the two
spaces are similar.
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(53.) CUM of a Spheroidal Ilomogmphj.

It is hardly necessary to do more than mention the case of a
spheroidal honiography, in which A=B, a=b. All meridian planes of
the space S havo the same foci at a distance ± A from tho equatoiial
(or vanishing plane), and their equi-segmental axes lie in the same two
parallel planes at a distance =fca from the equatorial plane.

The angle contained by any two meridian planes is unchanged in
the transformation; and the homographic relation is the same for all
pairs of corresponding meridian planes. Thus, all angles between
planes and lines intersecting at either focus remain unchanged in
the transformation, and the pencils in space at corresponding foci are
superposable. Similarly, each equi-segmental plane is superposablo
upon tho plane corresponding to it. The two spaces may, in fact, be
conceived as generated by the equiangular rotation of two homo-
graphic planes round their focal axes. The condition that they should
be capable of occupying a reciprocal position, is that the distances
between the foci in each space should be equal.

(54.) Historical Note.
The existence of two pairs of parallel equi-segmental axes in any two

homographic plane figures was established by M. Moebius in 1827.
(" Barycentrische Calcul," p. 320, sect, 230.) M. Moebius also
showed that, if the corresponding points of two corresponding equi-
segmental axes coincide in the line of intersection of two homographic
planes, the two planes are in perspective. Magnus (" Sammlung von
Aufgaben und Lehrsiitzen aus der Analytischen Geometrie," Berlin,
1833, p. 41, sect. 12) proved that in two homographic plane figures
there exists a pair of corresponding points at which the corresponding
pencils are equiangular; and that, if the figures be placed in tho
same plane with these " centres of collineation " coincident, and either
of them rotate in its own plane round tho centre of collineation, it will
become homological with the other in two diametrically opposite posi-
tions, in one of which positions one pair of equi-segmental axes will
coincide, while the othor pair will coincide in the other position.
Magnus expressly says that " of two collinearly-related systems " [i.e.,
two homographic piano figures in which the i straight lines at an
infinite distance are not corresponding lines] " each has, in general,
only ono centre of eulliueation." As Magnus tacitly supposes that the
figures are not in any position whatever with regard to one another, but
arc already placed in the same plane, this statement is not untrue; but
it is only part of tlio truth, and the analysis by which Magnus obtains
(inu cuntro of collineation in each figure, Avill also supply a second pair,
if wo change the sign of the constant j ; in the equations (1) of p. 42
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he. cit. It is of course quite true that if the two figures are once placed
in the same plane, there is only one point in each which can be regarded
as a centre of collineation ; and this, which Magnus has proved ana-
lytically, Dr. Salmon has also shown geometrically ("Higher Plane
Curves," Art. 230, p. 246). But it is to be remembered that two
planes can be made to coincide in two different ways according as they
are placed face to face, or both facing the same way, and, in one of
these positions of coincidence, one of the pairs of foci are the centres of
collineation, and the other pair in the other position. It is worth while
to add that though, as Dr. Salmon has observed, the position of the
imaginary circular points at an infinite distance is unaffected by any
motion of translation or rotation of a plane figure in its own plane,
those two imaginary points are interchanged with one another if the
figure be rotated, through an angle of 180°, round any axis in its own
plane. And the change of the centre of collineation, which takes place
when one of two homographic figures, of which the planes are coinci-
dent, is thus rotated, is a necessary consequence of the interchange of
the imaginary cyclic points in the rotated figure.

In the " Traite de Geometrie Superieure," only one pair of equi-
segmental axes and one pair of foci are expressly mentioned. But the
omission is only accidental, as the methods by which one pair of foci
and one pair of equi-segmental axes are obtained would equally supply
the other pair. The theorem, that "if two planes are in perspective, tho
foci are the points in which they are intersected by the perpendiculars
let fall from the centre of perspective on the planes bisecting the angles
contained by the two planes," is an immediate inference from a prin-
ciple, first given by M. Chasles (" Apercu de l'Histoire des MethodeS
en Geometrie," note iv.), and subsequently employqd by Mr. Mulcahy
("Principles of Modern Geometry," cap. VIII., art. 115).

Subsequently to the communication of this memoir to the London
Mathematical Society, but (it is unnecessary to say) quite indepen-
dently of it, three papers have appeared, relating in part to the same
subject. (1) In the May number of the "Nouvelles Annales de Mathema-
tiques," M. Abel Transon obtains the theorem of the two pair of foci
by the application of a very general analytical method ; he accurately
describes the similarity and dissimilarity of the foci, and speaks of the
theorem itself as " une propriete de l'homographie qui n'avait peut-'
ctre pas encore ete remarquee." (2) M. Richelot, of Konigsberg, in a
paper dated Oct. 29, 1868, and published in the second part of the
70th volume of Crelle's Journal, has considered the analytical theory
of homographic figures in space, and has been led to the consideration
of their focal properties. It would seem, however, that M. Richelot
supposes the tangents of the focal conies to be the only axes of
equiangular pencils of planes ; whereas, as we have shown, this pro-
perty is possessed by every generating line of any confoeal liyperboloid.
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The cause of the oversight (if it is one) appears in the words : " Es
muss, in der That, eine Axe im obigen Sinne [i.e., if we understand
M. Richelot correctly, a line which is the axis of a pencil of planes
equiangular with its corresponding pencil] die Eigenschaft besitzen,
dass unter den unendlich vielen auf ihr senkreohten Ebenen eine ex-
istirt, deren entsprechende Ebene auf der der Axe entsprechenden Gerade
senkrecht steht " (p. 141). This property, however, is not possessed
by every axis of a pencil of planes equiangular with its corresponding
pencil, but only by those which lie in one of the principal planes. M.
Richelot speaks of a forthcoming work of a pupil ofhis own, M. Maegis,
as intended to contain a complete analytical theory of homography in
space. (3) In the November number of the Nouvelles Annales de Ma-
thematiques, M. Housel enuntiates the theorem : " En deplacant sans
deformation deux figures homographiques dans l'espace, on peut les
rendre homologiques." This theorem is not in accordance with Art. 50
of the present Paper, because in that article we have in effect shown
that corresponding equi-segmental planes are never superposable except
in the case of a spheroidal homography. But the analysis of M. Housel
Beems insufficient to establish his conclusion, since it is not shown that
the values ultimately obtained of the ten unknown quantities of Art.
XIII. of M. Housel's Memoir actually satisfy the twelve equations of
that article. [The values of the unknown quantities are not obtained in
an explicit form, and there are only ten of them, and not eleven, because
p depends on X, Y, Z.] And, considered in itself, the conclusion is
inadmissible; for any homological transformation of space must
change the imaginary circle, in which all spheres intersect, into a circle,
•whereas in general that circle is changed into an imaginary ellipse by

a homographic transformation. Again, the homographic relation de-
pends on fifteen constants, the homological relation on seven, and the
six constants of displacement can only reduce the fifteen constants to
nine. Thus it. would seem a priori that two conditions must be
satisfied in order that two homographic spaces should be capable of a
homological position. And the equation A = B (or «=Z») of Art. 50
is equivalent to two independent relations connecting the fifteen con-
stants of the homography, since that equation is equivalent to the two
conditions that a certain conic should be a circle.

NOTE.—The focal properties of homographic point-figures might bo obtained by
simple considerations of perspective (scp.Axts. 21 and 37). Wo have, however, pre-
ferred to deduce these properties from their genuine source—tho properties of tho
imaginary circle in which all spheres intersect one another at an infinite distance.
In the case of homographic plane figures, we have ventured to employ both methods
successively (Arts. 1—4, and Art. 6). This has been done at some risk of repeti-
tion ; but it seemed desirable to exhibit this part of tho theory in its most ele-
mentary and practical, as well as in its most abstract form, in the hope that some
of the simpler results may be found of use in the actual practice of perspective.
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IN accordance with the wishes of the Council, the second volume of
tho Society's Proceedings closes with the present Number. An attempt
has been made to recover the shorter, and in many cases very inter-
esting, communications which have from the outset been given in the
course of discussions on the main papers of the Evening Meetings. A
few of these are appended below, and references are, in some cases,
given to the works in which others subsequently appeared.

Taking these communications in the order in which they were made,
we have " The regular Hypocycloidal Tricusp," by M. Jenkins, B.A.,
(read June 19th, 1865) ; a portion of this paper is given in the " Edu-
cational Times" for September, 1865.* "A proof of Euclid i. 47 not
involving the definition of a parallelogram," communicated by A. De
Morgan, F.R.A.S., (Nov. 20th, 1865). This proof, which is given in
many German editions of Euclid, is now also to be met with in Cassell's
Elements. " On Motion in a Circle, and its relation to Planetary
Motion," communicated by Prof. Sylvester, (Dec. 18th, 1865,) has
since been given in " Nugse Mathematics," extracted from the " Phi-
losophical Magazine for 1866."

At the samo meeting, Prof. Cayley gave the following simple method
for finding the volume of a Tetrahedron. " If a, b be the lengths of
two opposite sides, X their inclination, h the length of their shortest
distanco ; the section by a plane perpendicular to the line h, at a distance

x from the side &, is a parallelogram, angle X and sides - a, -H^ 6 ;
h h

whence element of volume is
x h—X-, • -v j a&sinX ,, . 7

-a o sinXax = . — x{1i—x) ax;
h h h*

whence integrating from x = 0, to x = h, the whole volume is

ah sinX fhs 7i3\ , 77 • A „

" The Centres of Algebraical Curves and Surfaces," by S. Roberts,
M.A., (read March 19th, 1866,) was subsequently printed in the
"Quarterly Journal of Mathematics," Vol. IX., No. 33, p. 25.

A fuller account of Prof. Sylvester's paper, read at the samo meeting,

* Mathematical Reprint, Vol. IV., p. 58.
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of which an abstract is given in No. VI., appears in the " Proceedings
of the Royal Society," No. 84, 1866, whero it is entitled, " On the
Motion of a Rigid Body moving freely about a fixed point."

At the meeting held April 16th, 1866, Prof. Cayley called attention
to the theorem, that the difference between two consecutive prime
numbers may exceed any given number N—1 whatever. For if
a,b,c... It are the prime numbers not greater than N, then abc... k+l,
and abc . . . & + 1+N may be one or both of them prime, but all the
intermediate numbers are composite; that is, the difference of the two
successive primes is = N at least. Mr. A. J. Ellis, at the same
meeting, communicated the following constructions :—" From a pair of
conjugate diameters in an ellipse, to find the foci and the axes." Let
CP, CD be the conjugate semi-diameters. Through P draw MPN,
bisected in P, twice the length of CD, and perpendicular to it. Draw
CS bisecting the angle MCN, and a mean proportional between the
lengths of CM, CN. S is one focus, whence H the other, and direc-
tions of the axes are given. Draw PN, DR perpendicular to CS, then
CA, CB being the semi-axes, their lengths are given by the equations

CA2 = CN2 + CR2, CB2 = PN2+DR2.

If, by the conjugate diameter CD in an hyperbola, we mean the
diameter of the conjugate hyperbola which is parallel to the tangent at
the extremity P of the first diameter, and preserve the same letters,
the construction is the same, with these differences; MPN must bo
parallel to CD (instead of being perpendicular to it), and CA2 =
CN2 ̂  CR2, CB2 = PN2 in DR2. This construction is easier and more
complete than that given for the ellipse only, in Chasles' " Sections
Coniques, art. 205." The demonstration depends upon Proceedings of
tho Royal Society, 14th June, 1866, vol. 15, p. 200, equations d, e,
(where in equation d, read o'e for oV), first given by Mr. Ellis, and
having a much wider application. A solution of the problem, " Given
a pair of conjugate diameters of an ellipse, to find any number of points
on the curve," by R. Tucker, M.A., (communicated Nov. 22nd, 1866,)
has since appeared in the "Mathematical Reprint," vol. VII., p. 28.
" Proof of the Rectangle of Forces," by J. J. Walker, M.A., (communi-
cated March 28th, 1867,) was given subsequently in the " Quarterly
Journal of Mathematics," Vol. IX., No. 34, p. 173.

It remains only to add a few words of explanation about the two
Indices. They are intended to be mutually exclusive. The first gives
the names of all the authors of papers, and nearly all their communi-
cations ; the second is concerned with points which turn up in the
communications themselves.

A short list of the Errata which have been detected follows; doubt-
less others exist. Tho Secretaries will bo glad to receive a list of any
which have escaped their notice, for insertion in a futuro Volume.

R.T.




