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Prof. Sylvester then gave an explanation of some of the processes
employed in his paper on “ Reducible Cyclodes.”

The following present was made to the Society :—

“Crelle, 70 Band, Zweites Heft.”

The following paper, an account of which was given by the author
on April 8th, could not be inserted in the account of the Proceedings of
that day :— :

On the Focal Properties of Homographic Figures. By HEnry J.
SteereN Smirr, F.R.S,, Savilian Professor of Geometry in the
University of Oxford.

A.—FocaL ProrerTiEs or Two HoMmogrAPHIC PLANE FIGURES.

(1.) Two Plane Figures in Perspective.

We consider two plane figures Q and w in perspective with one
another ; we denote the centre of the perspective by S, and the axis of
the perspective (or the line of intersection of the two planes) by Qu;;
we exclude the cases in which the straight lines at an infinite distance
in the two planes are corresponding lincs; i.c., we suppose that the
centre of perspective is not at an infinite distance, and that the planes
are not parallel. Let OY, o'y be the vanishing lines of the planes Q
and w, or the straight lines which in the planes Q and w correspond
‘to the straight lines at an infinite distance in the planes w and £2; the
plane Q is divided by OY into two regions (2,) and (2,) ; similarly,
o'y divides o into two corresponding regions («;) and (w;). Let (£2)
be that region of @ in which Qu, is situated; then Qu, is also
sitnated in (w,); and it will be seen that if P, p are corresponding
points in the regions (,), (&), the radii vectores SP, Sp are of the
same sign ; but if P, p are corresponding points in (), (e,), the radii
vectores SP, Sp are of opposite signs; or, in the language of some
writers on perspective, (£2,) and (w,) arc projections of onc another, but
(£2,) and (w,) are transprojections of onc anotlier.

(2.) The Carrespondence of Directions.

If the positive and negative dircctions on any straight line in either
of the planes £ and w are regarded as determined, the corresponding
directions on the corresponding line are also determined; viz., if a
point move in the positive direction on a straight line in either plane,
its image in the other plane moves in the positive direction on the cor-
responding straight line. Hence, if P,Q are two points in the same
region of 2, and p, q their images, which are of course in the corres-
ponding regiun of w, the divection from P to Q along the finite segment
PQ is of the same sign as the direction from p to q along the finite
segment py; but if P, Q are in opposite regions of Q, so that the
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finite segment PQ is divided internally by OY in the point A, the
direction p o ¢ will correspond to the direction PAQ, and the directions
of the finite segments PQ, pg will be of opposite signs. We may add
that if A is any point whatever on OY, to the directions PA, QA
there will correspond similar or dissimilar directions on the parallel
straight lines which are the images of the lines PA, QA, according as
P and Q are in the same region, or in different regions of . And in
particular, if in the plane Q there be drawn any parallel to the vanish-
ing lines, the corresponding line in the plane w will also be parallel to
the vanishing lines, but the corresponding directions on the two
poarallels will be similar or dissimilar, according as they lic in the
regions (€2,), (), or in the regions (£,), (w,).

Again, if in the plane @ we consider one of the twaq directions of ro-
tation round any point as positive, (say, fur example, that direction of
rotation which viewed from S appears right-handed,) the signs of the
directions of rotation will thereby be fixed for each point of the plane w;
but for all points in the region (w,) that direction of rotation, which
viewed from S is right-handed, will be positive, whereas for all points
of the region (w,) the same direction of rotation must be considered ne-
gative; it being inconsistent witl- the perspective- relation~to regard
one and the same direction of rotation as being positive for all points of
the one plane, and also to regard one and the same direction of rotation
as being positive for all points of the other plane.

(8.) The Equiangular Points, or Foct.

Through S draw two lines perpendicular to the planes which bisect
the dihedral angle formed by the intersecting planes Q@ and w. Let
these perpendiculars mecet the plane @ in F,, F,, and the plane w in
Ji fa2; let also SF,f, be perpendicular to that bisecting plane which
lies in the same angle with S; then SF,, Sf, are of the same sign, and
F,, /i lie in the regions (©,), (w,) rospectively; but SF,, Sf; are of op-
posite signs, and F,, f; lie respectively in the regions (), (v.).

Since each of the lines F\f,, F,f,, is at right angles to the line.of in-
tersection of 2 and w, and is besides equally inclined to those two
planes, any dihedral angle of which the axis is either F\f;, or F,fj, is in-
tersected in two equal rectilineal angles by the planes @ and w. We
thus obtain the theorem :

“ Angles in the plane  at the points F\, F,, are projected into equal
angles in the plane w at the points f;, f,.”

Or, more precisely, -

“The angle contained by given directions on two straight lines lying
in the plane Q, and intersecting at F, or F,, is equal to the angle formed
in the plane w by the corresponding dircctions on the corresponding
straight lines, which intersect at f, or f,.” '
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For brevity, we shall call Fy, F,, f,, f2, the foct of the perspective in

the planes 2 and w respectively. And since the directions of rotation,

- as viewed from §, arc the same round F, ind f,, but are opposite round

¥, and f;, we shall call F, f, the similar foci, and F,, f; tho dissimilar
foci.

In the annexed diagram the plane of the paper is the plane of sym-

metry; f.e., it is the plane passing through 8, and cutting Q, w at
right angles; O, od'w, aro the traces of the given planes @ and w,
K,, K, are the traces of the bisccting planes; ¥\F,, f,f; are the foci,
which lie of course in the plane of symmetry ; the axis of the perspective
Qw, is perpendicular to the plane of the paper at ©, or w,, and the van-
ishing lines OY, o'y are perpendicular to the same plane at the points
0, ¢, which we shall term the centres of the two planes. IfY, y aro
the points at infinity on the vanishing lines, Y and y are corresponding
points ; but it will be observed that the vanishing lines are not corres-
ponding lines, nor the centres corresponding points. We may term
the lines F,0F,, fio'f;, which are corresponding lines at right angles to
the vanishing lines, the focal axes of the two planes; so that the centre
of each plane corresponds to the point at an infinite distance on the
focal axis of the other. Since SO, So’ are parallel to the traces of the
planes £, v, and SF,f;, SF.f, to the traces of the bisecting plancs, the
figure SOQ,0’ is a parallelogram, the triangles SOF,, SOF,, Sv’f,, So'f,,
arc isosceles, F\F, and ff; arc bisccted at the centres O and o, SO is
cqual to OF, or OF,, S¢’ to o'f, or 0f;; whence we find

QF = oify =} (L fi+FF),
QF = —of; = § (i-FE).
These equations, as all others in this paper, are to be interpreted, with

regard to sign as well as magnitude; we shall avoid the use of the
sign =, when we have to speak of equality irrespective of sign.

(4) The Bqui-Segmental Axes, or Cyclic Lines.

Any point of the line £, w, in which the planes @ and w intersect,
considered as a point in either plane, has itself for its corresponding
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point in-the other plane. If we do not attend to the coincidence of the
corresponding points, we may express this by saying that Qw;,is an
equi-scgmental line in either plane; 7.c., that to any segment of Q,w;, con-
sidered as a line in either plane, an equal segment corresponds in the
other plane. But besides this coincident pair of equi-segmental lines,
there is another pair of corresponding equi-segmental lines which are
not coincident. Through S extend a plane parallel to the plane con-
taining the vanishing lines, and let it meet the focal axes of the two
planes in Q, and w,, The lines 0,Y, w,7, parallel to the vanishing
lines, arc equi-segmental lines. For if P,p are corrcsponding points
on thosc lines, the radii vectores SP, Sp, 8Q,, Sw,, arc respectively
cqual and of opposite signs, and the angles Q,SP, w,Sp, are equal; so
that P, p lie at equal distances from the plane of symmetry, but on
opposite sides of that plane; <.e., the axes Q,Y, wyy are equi-segmental.
We may term the coincident axes ©,9,, w, 9, the similar axes, and tho
axes Y, w,y the dissimilar axes. Since £,, is double of £,0, <. e. of
0'S, or ofy, and similarly w,w,is double of w0, t.c. of OS or OF,, we
see that in either planc the cqui-scgmental axcs are situated sym-
metrically with respect to the centre of that plane, and that the semi-
distance between the foci is equal to the semi-distance between the
cqni-segmental axes in the other plane. The scmi-distance between
the foci in either plane may conveniently be called the parameter of
that plane. Designating the parameters of the planes @ and w by C
and ¢, we shall find, if C=¢, that the foci of each plane lie on its equi-
segmental lines, and that the centre of perspective lies on onc of the
two bisccting plancs. DBut if C and ¢ are unequal, if for example C<e,
the foci lie between the equi-segmental lines in Q, and outside themn
in @, and the distances ¢+ C and ¢— C, between a focus and the ncarer
and further equi-segmental line, are the same for both planes. .

If we causc one of the two planes, for example the planc w, to revolve
round the axis of intersection of the two planes, the two figures, as is
well known, will continue in perspective ; and the locus of the centre
of perspective will be a circle, lying in the plane of symmetry, and
described on F\F, as diameter. At one of the coineidences of the two
planes which take place during a complete revolution, the similar foci
come to coincide with one another and with the centro of perspective ;
and, in like manner, at the other coincidence, the dissimilar foci coin-
cide with one another and with the centre of perspective ; the similar
foci continuing similar, and the dissimilar foci continuing dissimilar
during the whole revolution. If, however, we bring togcther cor-
responding points in the dissimilar axes (which we may conceive done
by causing cither plane to rotate through an angle of 180° round an
axis perpendicular to the plane Q,w. at'S), the two figures will again be
in perspective, but the foci, which were before similar, will become dis-
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similar, and vice versé. Thus the two foci, and the two equi-segmental
axcs, in either plane, are not absolutely distinguished as similar to, or
dissimilar from, their corresponding foci or axes; these denominations
being, in fact, relative to one or other of the two ways in which the
planes can be placed in perspective with one another, and changing
when we pass from one of those ways to the other. In every case, if
a focus or axis be regarded as similar, the nearer axis or focus is also
to be regarded as similar.

The cqui-scgmental lines may, perhaps, be called the cyclic lines.

This denomination is suggested by an analogy which will come before
us presently.

(3.) Any two Homographic Plane Figures.

Since any two homographic plane figurcs, such that the lines at an
infinite distance in the two figurcs are not corresponding lincs, (this
limitation is to be always understood in what follows when we speak
of two homographic plane figures,) can be placed in perspective
with one another, it appears that in any two such homographic systems
there exist two pair of corresponding foci, and two pair of equi-seg-
mental axes. This we shall now show independently of all considera-
tions of perspective. Let Py, Py, q,, ¢, be the imaginary circular points at
an infinite distance in the pla.nes Q and w respectively ; and to PP,
0192 let pipy, QiQ: correspond in- the planes w and © respectively. The
lines P, Py, p1 125 QiQa q192 will be pairs of corresponding lines; P, Py,
{1¢2 being the lines at an infinite distance in the two planes, and pypn,
QiQ; the vanishing lines. Further, the three diagonal points of the
quadrangle P,P,Q,Q, (which are all real) will correspond to the three
diagonal points of the quadrangle pyp,0,¢;; of these three pairs of cor-
responding points, one pair are the points Y, y at an infinite distance
on the vanishing lines ; the two other pairs are the two pairs of foci.
For if F, f are corresponding diagonal points (other than Y, ¢) of the
two imaginary quadrangles, the homographic pencils at F, f are equi-
angular, because the imaginary circular asymptotes ¥P,, FP, correspond
in the pencil at F to the imaginary lines fp,, fin, or fq, fq., t.e. to the
imaginary circular asymptotes in the pencil at f. To determine the
two pair of foci in two given lhomographic planes O and w, we con-
sider a pair of rectangular points at an infinite distance in each plane;
let A\A, bb; be these pairs of points; aja; B,B, the pairs of points
corresponding to them. The lines B,B,, a,a, are the vanishing lines of
the two planes; the centre of either plane is the point corresponding
to the point at an infinite distance in the direction perpendicular to
that of the vanishing linc in the other plane; the focal axes are the
lines perpendicular to the vanishing lines of the two planes at their
respective centros ; lastly, the foci are the points of intersection of the
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focal axes by the circles described on B,B,, a,a, as diameters, and are
sitnated in each plane symmetrically with regard to its vanishing line.
If, assuming that we view each plane from a determinate region in
space, we regard the rotations round F,, f, as similar, it is evident that
the rotations round T, f, must be dissimilar, and wvice versd ; otherwise
the two homographic figures would be similar, and the lines at an in-
finite distance would be corresponding lines, contrary to the hypothesis.
‘We might prove the same thing, by imagining the planes of the two
figures to coincide. The circular asymptotes at F,, f;, and again at Fy, f,
will then be corresponding lines. But the correspondence in one case
will be dircct, and in the other inverse (¢.e., in the one case, those
asymptotes which run to the same imaginary circular point at an in-
finite distance will be corresponding lines, in the other case asymptotes
running to opposite circular points will correspond). And, since the
locus of the intersections of corresponding rays in two equiangular
pencils is a circle, or an equilateral hyperbola, according as the rota-
tions of the two pencils are in the same or in opposite directions, we
infer that two equiangular pencils in the same plane have the same
dircction of rotation, or opposite directions, according as the circular
asymptotes of the two pencils correspond directly or inversely.

As we have obtained the foci in each plane by a quadratic construc-
tion (which seems inevitable) we have still to determine their corre-
spondence, and the corresponding directions of rotation round each.
To do this, we have only to observe that cach plane is divided by its
focal and vanishing axes into four regions, which correspond to one
another in & manner which is readily ascertained, because when we pass
in either plane from one region A into another region B across one of
their common boundaries, we must simultaneously pass in the other
plane from the region corresponding to A into the region corresponding
to B, and must traverse the corresponding boundary ; (the line at an
infinite distance is a common boundary, it will be observed, of two dia-
metrically opposite regions). Thus we have only to ascertain in either
plane the region which corresponds to a given region in the other; the
correspondence of the remaining regions is then known, and with it the
correspondence of the foci. Lastly, if O’, o be the points at an infinite
distance on the focal axes of the two planes, the direction of rotation
from FO’ to FY corresponds to the direction of rotation from fo to fy,
the rotating radii vectores being supposed to move in corresponding
regions in the two planes.

If A, a are corresponding points in the regions (£,), (w;) respectively,
the angles F,F|A, f, fia, are both acute ; they are, therefore, equal to one
another, since, by virtue of the equiangularity of the pencils at F, f,, they
must be either supplementary or equal. Observing that the directions
F\¥,, F1A are opposite in sigun to the directions f, f., fia, we sce that
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angles between corresponding directions on corresponding radii vectores
are equal, in which form we have already stated the equiangular pro-
perty of the foci. :

The determination of the foci requires (as we have seen) the con-
struction of three points in each plane corresponding to three points at
an infinite distance in the other plane. And thus the actual determina-
tion of the foci, though very elementary in theory, is in actual practice
somewhat troublesome. But when the foci have once been determined,
the homographic representation of ‘either plane upon the other can be
carricd out very rapidly; since, if A be any given point of Q, I, the
farther, and F, the nearer focus, we have only to make the angle f, fie
equal to the angle F,F,A, and the angle ffie supplementary to the
angle FiF,A; the directions in which these angles are to be measured
being at once indicated by the correspondence of the regions in which
A and o are situated.

The anharmonic equation (O, X, F), ) = (o, @, f;, o), or OX .o’z
= — C . ¢, in which X, # denotc corresponding points on the focal axes,
suffices to prove that the parallels to the vanishing lines at Q,, w;; (b,
w,, are corresponding lines. And that thesc lines are equi-segmental,
will then follow from the equiangular property of the foci, since F,Q,
= fiw,, F1Q = — fiw,. The image in either plane of any given inde-
finite linc in the other is most easily found by making the intercepts on
the equi-scgmental lines in the first plane equal in sign and in mag-
nitude to the corresponding intercepts in tho second plane; so that, if
the two intercepts are drawn in the same direction from the focal axis
in one plane, they are drawn in opposite directions in the other plane.

(6.) Homographic Plane Figures placed Homologically.

It will be observed that any two homographic plane figures can be
made homological, or put in plane perspective with one another, in four
different ways. For we can take either pair of equi-segmental axes for
the axis of homology, and either pair of foci for the centre of homo-
logy. And it is sometimes of importance, in the theory of homological
figures, to consider the non-coincident foci and equi-segmental axes, as
well as the two foei which are united in the centre of homology, and the
two equi-segmental lines which arc nnited in the axis of homology.
~ For example, if we regard a conic section as homological with itself,
any point in the plane of the conic being the centre of homology, and
its polar the axis of homology, the foot of the perpendicular let fall
from the pole upon the polar will represent the sccond pair of foei (which
in this case are coincident because the parameters are equal) ; and in
like manner the second pair of equi-segmental lines will be represented by
the parallel to the polar through the pole. Thus we have the clemen-
tary properties of a conic section, * angles subtended at the foot of the
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perpendicular by chords passing through the pole are bisected by the
polar;” ““the pole is the point of bisection of intercepts on the parallel
to the polar made by tangents at the extremities of chords passing
through the pole,” &c.

Again, if we regard two conics as homological, a point of intersection
of their common tangents being the centre of homology, and the axis of
homology being either of the two common chords which pass through
the intersection of the polars of the centre of homology with regard
to the two conics; it will be found that there is a second pair of foci,
situated on the perpendicular let fall from the centre of homology upon
the axis of homology, and that corresponding points of the two conics
subtend equiangular pencils (with opposite rotations) at these two
points. And, in like manner, corresponding lines in the two figures
determine equal intercepts (but measured in opposite directions) upon
two axes situated at the same distances from the second pair of foci,
that the axis of homology is from the centre of homology.

(7.) Homographic Plane Figures placed Symmetrically.

The equality of the parameters of two plane homographic figurcs is
the necessary and sufficient condition that they should be capable of
being so placed in the same plane that each point shall have but one
corresponding point. For if the two figures can be so placed as to have
this symmetrical relation to one another, the imaginary points corre-
sponding to the imaginary circular points at an infinite distance must
coincide ; and hence the imaginary chords Q,Q;, p, p;, and with them the
real parameters, must be equal. Conversely, we can always render the
two figures capable of a symmetric position by altering the linear dimen-
sions of either of them in the ratio of its parameter to the parameter
of the other; since after this alteration the imaginary chords Q,Q.,
1 Py, will be equal, and can be made to coincide. There are then two
positions of symmetry—viz., the two positions of homology in which
the vanishing lines coincide. It is sometimes convenient to imagine
the scale of one of the figures altered in the parametric ratio; we shall
express this by saying that the figures are reduced to the same scale.

(8.) AMetrical Properties of the Focal Radiv Vectores.
The following elementary properties of the foci of two homographic
plane figures are frequently useful :—
(a.) The focal radii vectores of two corresponding points P and p
satisfy the equation BP_ fip_y

T E=
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The truth of this equation, so far as absolute magnitude is concerned,
appears immediately from a comparison of the triangles F\PF,, fpf,;
the two ratios are of opposite signs, becanse the radii vectores drawn
from the nearer foci are of the same sign, and the radii vectores drawn
from the further foci are of opposite signs.

(B.) The rectangle contained by the sum of the radii vectores of P, and
the difference of the radii vectores of p, is equal to the rectangle con-
tained by the difference of the radii vectores of P and the sum of the
radii vectores of p; and either of these rectangles is equal to four times
the rectangle of the parameters. This relation is expressed by the
single equation

(F\P+F.P) (fip+ fap) = BiFs. fifa,

if we observe that in it the signs of F\P and F,P are arbitrary, and
that the signs of fip and f,p depend on the signs of F\P and F,P re-
spectively. The truth of the equation may be inferred immediately
from the elementary theorem, that if a straight line bisecting the angle
of a triangle either internally or externally be produced to meet the
base, the square of the bisecting line is equal to the rectangle contained
by the sum of either side and the segment of the base adjacent to it,
and by the difference of the other side and the segment adjacent to it.

(7v.) Let N, n be the feet of the perpendiculars let fall from P and p upon
the vanishing lines. The distances NP, np are of opposite sign, and
their rectangle (see Art. 5) is equal to the rectangle of the parameters.
‘We then have the relations

P _AfAp EP_fip fp_ FP fip FP

NP~ of,;;, NP of;; mp OF up OF’

any one of which, combined with the equation NP.zp = OF,.0’f,, and
with the equation (a), gives the other three. To prove them, we have
only to observe that the quadrilaterals NPF,0, o/fipn are not only equi-
angular, but also similar, becanse NP .up = OF,. df.

If, in the construction of the point p, corresponding to a given point
P, we wish to avoid the use of points lying on the further side of the
vanishing line, we may either determine the ratio of fip to F\P by one
of the formule () ; or, preferably, we may make the angle fio'» equal
to the angle OF,N ; the point p is then the intersection of o'p and fip.

(8.) If the two planes are in perspective, we have

F_E = §E for the similar foci,
hip Sp
F,P SP

and

2 — — = for the dissimilar foci.
J2p Sp
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(9.) Circles changed into Circles.

. The circles of the system of which Fy, F,; are the limiting points, and
the vanishing line the radical axis, are transformed into circles of the
system of which f;, f; are the limiting points, and the vanishing line the
radical axis; and these are the only circles in either figure which are
changed into circles in the other figure. For it is evident that to the
conics (P, P,, Q), Q;) there will correspond the conics (py, Py q1y ¢2) 5
or again, if the locus of A be a circle of the system of which F), F; are
the limiting points, the ratio %"_i is constant ; therefore the ratio f'—::
. 2 2
is also constant, (Art.8, a); ¢.e., the locus of a is a circle of the
system of which f,, f; are the limiting points. We shall, for brevity, call
these two systems of circles the focal circles of the two planes.

It will be found that the radii of corresponding circles are to one
another as the parameters; and that, if the figures be reduced to the
same scale, and superposed so that their foci coincide, the correspond-
ing circles will coincide (but not in respect of their corresponding
points).

(10.) The Homographic Modulus of Corresponding Pencils.

In any two homographic pencils (A) and (a) there exists a pair of
corresponding right angles (Steiner, ‘ Systematische Entwickelung,”
P- 31); and if the pencils are not equiangular, there is only one such
pair. We shall term these corresponding right-angles the right-angles
of the pencils (A) and (a). Let A and o be any two corresponding
points in the planes Q and w; the lines bisecting the angles F\ATY,
Siof,, internally and externally, are the lines containing the right
angles of the pencils at A and a. For the double rays of the pencil
A . [P,P,, QQ, F,F;], (which is a pencil in involution, because P,P,,
Q:Q,, FiF; are_the vertices of a quadrangle,) correspond to the double
rays of the corresponding pencil a.[p1ps 102 /ifz]- We might prove
the same thing, without using imaginary points, by considering the
corresponding circles which pass through A and @. And since the
rectangle of the central abscissas of corresponding points is equal to
the rectangle of the parameters, we see that the external bisector at
either of the two points A or @ answers to the internal bisector at the
other.

If, in any two homographic pencils, ® and ¢ are corresponding
angles, measured from either pair of the corresponding rectangular
lines, the ratio tan @ : tan ¢ is constant. This constant ratio we may
term the homographic modulus of the two pencils. We observe (1)
that the definition is applicable to homographic pencils in involution ;
(2) that the homographic modulus is positive or negative according as
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corresponding directions of rotation in the two pencils are regarded as
having the same sign or opposite signs; (3) that the homographic
modulus of two equiangular pencils is +1 or —1; (4) that the defi-
nition is relative to a given pair of the corresponding rectangunlar lincs,
and that if for this pair we substitute the other pair, the homographic
modulus changes into its reciprocal.

The homographic modulus of the pencils at A and a, taken relatively
to the external bisector at A and the internal bisector at a, is evidently

cot LA cot 1o =tan } (F\+F,) tan } (fi+/)
=tan } (F,+F,) : tan L (F,—F.) = Ry+ R, : By— Ry = np—1y 1+,

the letters A, F, ¥y, a, fi, f2 denoting the internal angles of the tri-
angles ¥ AF,, fiafy, and Ry, Ry, 1, 7, representing the absolute values
of the focal radii vectores of A and a. We have supposcd that F, is
the nearer, I, the further focus, so that ¥, =f,, F\+f, = =.

(11.) Angles changed into Equal or Supplementary dngles.

In any two homographic pencils (A) and (a) there exists an
infinite number of equal corresponding angles, -and again an infinite
number of supplementary corresponding angles (M. Chasles, ¢ Géo-
métrie Supéricure,” Art. 147). We may add, that the angles in either
pencil A, which are equal to their corresponding angles in the other
pencil, form a pencil in involution, of which the right-angle is the right-
angle of the pencil A, and of which the modulus is the homographic
modulus of the two pencils taken positively ; and, similarly, the angles
in the pencil A which are supplementary to their corresponding angles
form a pencil in involution which has the same right-angle as the pencil
(A), and the same modulus, only taken negatively. The former invo-
lution always has real double lines, the latter never.

To find the involutions of equal angles at the corresponding points A
and a; let F, /i be the nearer foci, let any circle passing through A and
¥ cut the vanishing line in M,, M,, and let s, m, be the corresponding
points at an infinite distance in the plane w. The angle M,AM, will be
transformed into an equal angle mam,; for the angles M,AM,,
M,F,M, are equal (not supplementary, since the chords M,M,, AF, do
not intersect) ; ©. e, the angles M;AM, and , fym,, or finally MAM,
and mam,, arc equal. Tt will be observed that the directions AM,,
am,; A M,, wmn, are corresponding directions.

To find the involutions of supplementary angles at the points A and a
we have only, in the preceding construction, to substitute the further
focus F, for the nearer focus F,. The angles MiAM,, M,I¥,M, will bo
supplementary (and not equal); so that M;AM, will be transformed
into a supplementary angle mwit,.
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(12.) Segments changed into Equal Segments.

If H and %' are the centres of two homographically divided lines,
(i. e. the points which on each line correspond to the points at an
infinito distance upon tho other line,) and if A, a are any two corre-
sponding points on the two lines, the rectangle H A X ' a (which we
may term the rectangle of the homography) is constant.

In any two homographically divided lines there is an infinite number
of segments equal to their corresponding segments and having the same
sign, and again an infinitc number of segments equal in absolute mag-
nitude to their corresponding segments, but having opposite signs.
Upon cither line cither sct of scgments form an involution of -which
the centre is the homographic centre of the line, and of which the
rectangle is the rectangle of the homography, taken positively or nega-
tively, according as the segments considered are equal to their corre-
sponding segments with the same sign, or with opposite signs.

Thus, if 2D, 24 are- the intercepts made by the cyclic axes on any
two corrosponding lines meeting the vanishing lines in H and 7/, the
scgments X, X, of the involution determined by the cquation HX, x
HX, =D X d are equal to the corresponding scgments z, 2, of the in-
volution A'z; X W'z, = D X d; and, again, the corrcspbudiug segments
of the involutions HX, x HX, = — D xd, o, xk z,= —D X d are
equal, but have opposite signs.

And, in gencral, the scgments of the involution HX, x HX, =
puD x d, where g is any multiplicr, arc g times the corresponding seg-
ments of the involution p x ¥, X Az, =D xd. The segments of the
two involutions arc divided cxternally or internally by the vanishing
lines, according as u is positive or negative.

It thus appears that there arc an mﬁmte number of tr: 1aunrlcs in either
plane, similar to their corresponding triangles, and having a given ratio
to them. For take any point A in the plane @, any straight line pass-
ing through it, and any positive ratio; there is always one triangle
(and only one, if A is not a focus, and the given line not a cyclic axis),

" having a vertex at A, and a side in the given straight line, which is
transformed into an equiangular triangle of which the sides are to the
sides of the triangle.in the given positive ratio. The two correspond-
ing triangles are not intersected by the vanishing lines, so that points
interior to either triangle corrcspond to points interior to the other.
If wo do not attend to the sign of tho given ratio, there are in all four
triangles, cach having a vertex at the point A, and a sido npon the
given line, which are equiangular to their corresponding triangles, and
which have the given ratio for their ratio of similarvity. For, it we do
not attend to signs, there arc two segments of the given line having a
common extremity at A, which ave in the given ratio to their corre-
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sponding segments, and there arc two lines passing through A which

make angles with the given line equal to the corresponding angles. Of

these triangles, that just considered is one; the other three are all in-

tersected by the vanishing line; so that two of the sides of any one of
them are to their corresponding lines in a.negative ratio.

(18.) The Confocal Conics.

Every conic which has a focus at F, or F, is transformed into a conic
having a focus at f; or f. TFor right-angles at F are transformed into
right-angles at f, so that if the involution determined by the given
conic at the point F be rectangular, the involution determined by the
corresponding conic at the point f is also rectangular. And conversely,
if a point in either figure, and its image in the other, be both foci of
corresponding conics, the point and its image are corresponding foci in
the two figures.

Two cases of this property are of special interest.

(i) A circle having its centre at F is transformed into a conic, of
which F is the focus, and the vanishing line the directrix. This fol-
lows, independently of the general property, from the equations (v),
which also show that the eccentricity of the conic is equal to tho radius
of the circle divided by the parameter; it thus veries dirvectly as the
radius of the circle.

(i1.) Conics in the plane @, of which T, F; are the foci, are trans-
formed into conics of which f, f; ave the foci, the ellipses into hyper-
bolas, and tho hyperbolas into ellipses. We shall term these conics the
confocal conics of the two lomographic figures. An independent
proof of the theorem is supplied by the formula (3) ; and conversely,
the theorem may be used to establish that formula, since the rectangle
contained by the major semi-axes of two corresponding confoca] conics
is evidently cqual to the rectangle of the parameters.

The eccentricity of any confocal in either figure is the reciproeal of
the cccentricity of the corresponding confocal, the asymptotes of the
Liyperbola containing the same angle as the focal radii vectores of the
extremitics of the minor axis of the cllipse. If the figures be reduced
to the same scale, and the foci be superposed, corresponding confocals
will interscet on the cyclic axes, and will thus have the same latus
rectum.

If 2 und o arc any two corresponding confocals, the normals of 2 and
the normals of o are corresponding lines (Art.10). Hepce also the centre
of caurvature at any point of 2 corresponds to tho centre of curvature
at the corresponding point of o; and the evolute of cither is trans-
formned into the evolute of the other.  Again, any two similer arcs of
3 (i.e. ures of which the difference is geometrically rectifiable) have
for their corresponding aves two similar ares of o; and the rectifying
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tangents in either figure (v. e., the tangents of which the difference is
equal to the difference of the arcs) are images of the rectifying tan-
gents in the other figure. In the same way, the polygon of a given
number of sides, and of minimum perimeter, inscribed in any arc of a
confocal conic of either figure, corresponds to the polygon of the same
number of sides, and of minimum perimeter, inscribed in the cor-
responding confocal arc. It is hardly necessary to observe, that the
elliptic integrals which express the lengths of corresponding arcs of
corresponding confocal curves are not themsclves equal to onc another,
and are not transformed into one another by the homographic trans-
formation.

(14.) The Indicatriz, or Strain Ellipse.

The indicatriz at any point A of the plane Q is the evanescent ellipso
which is the image of an cvanescent circle, having its centre at the
corresponding point @. The indicatrix is, in fact, the * strain ellipse,” if
we regard any part of the plane  as a deformation of the corresponding
part of the plane w, produced by a mechanical strain. It is readily
scen that, if we consider the radius of the evanescent circle at ¢ as an
infinitesimal of the first order, the distance of the centre of the strain
ellipse from A will be an infinitesimal of the second order. Tor the
determination in species of the strain ellipse at the point A, we have
the theorem : “ The strain ellipse is similar and similarly situated to
the ellipse, of which the principal axes are normal, at the point A,
to the confocal ellipse and hyperbola intersecting at that point, and are
respectively equal to the major axes of those curves.”

This auxiliary ellipse is no other than the ellipse employed by M.
Chasles, in his solution of the problem, “To determine the principal
axes of an ellipse, of which one paif of conjugate diamcters are given
in magnitude and position” (Aper¢u historique des Mdéthodes en
Géométrie, Note 25). M. Chasles has shown that a reciprocal relation
subsists between the auxiliary ellipse and the ellipse of the confocal
system which passes through its centre. Thus the centre of cither
ellipse lies on the circumference of the other ; the major axis of either
is normal to the other; the asymptotes of either pass through the
imaginary foci of the other; the major and minor axis of either are
respectively equal to the sum and difference of the focal radii vectores
of its centre considered as a point on the circumference of the other;
lastly, the distance between the recal foci of either is cqual to tha
diameter of the other which is conjugateto the diameter passing
through the two centres.

To prove that the strain ellipse is similar and similawly sitnated to the
auxiliary cllipse, it is sufficient to observe, that the asywiptotes of the
evanescent circle at a are aq,, ag,; and that, conscquently, the strain

I
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ellipse touches the imaginary lines AQ,, AQ, at the points Q;, Q.. But
the strain ellipse is infinitesimal; the imaginary lines AQ,, AQ. arve
therefore its asymptotes, #.e., it is similar and similarly sitnated to the
auxiliary ellipse.

To determine, then, the strain ellipse in species, we have only to draw
the focal radii vectores of the point A, and to biscct the angle con-
tained by them internally and externally ; the major and minor axes of
the strain ellipse are respectively in the directions of the bisecting
lines, and ave proportional to the sum and difference of the radii vectores.
It will be seen that the confocal hyperbolas are lines of greatest elonga-
tion (or least compression), and that the confocal ellipses are lines of
least elongation (or greatest compression). The focal circles are lines
of similar distortion, because for all points on any one of them the
ratio of the two radii vectores is constant, and thercfore the ratio of
their sum and difference ; 4. e., all points on the same focal circle have
similar indicatrices.

It remains to find the absolute dimensions of the indicatrix. Let
dZ, d2, represent the elements of the arcs of the confoeal hyperbola
and ellipse which intersect at A ; let day, do, represent the correspond-
ing clements in the plane w; and let A}, Ay Ay A, be the semiaxes
major of the curves 2, B, oy, ,; 80 that, supposing F} the nearer
focus, we have A,=13 (Ru+R,), A, =1(02—n), A =1R,—R),
A =3 (1+n), AN = A, = Cc. Considering two points on I, and
2, indefinitely near to A, and denoting, as in Art. 10, the angles F\AF,,
fiaf; by A and «, we find

dA, dh,
a2 = 1A doy = — sin 3 @’
dA, X\,
W= = .
%, = sin 1 A’ de cos @
dA,  d\ da,  dA,
3 o4 —=0 uiat S ) I8
But VL N I WL W
sinla 1
so that d3, = ma® - Ay day,
cos 3 A,
a1
am=omie Loy,
sin A

Again, substituting for }a its valne 1 (I\—F,), we find, from the

triangles ¥ AT, fiaf,,

sin la A cosla _ A, )

cos%A_C‘_’ si—rf;_»K_—C_’
whence, if ¢ be the radius of the evancscent circle at a, the major and
minor scmi-axes of the strain ellipse at A are vespectively

(A oo, My By Ml A
Ce C Ce C




Focal Propertics of Homographic Figures. 211

From these expressions it follows that, given in magnitude the para-
meters of the two planes, and given in position a single pair of corre-
sponding points A and a; given also in position and magnitude the
indicatrix at one of these points, for example at A ; tho homography of
the two planes is determined. For the coefficients,

M, B MA, A

T XT TG 1T
being given, the values of A, and A; may be found (by the extraction
of a cube root) : thus the auxiliary cllipse at A is completely deter-
mined. The vanishing linc of the planc € is onc of the four tangents
of the auxiliary cllipso which are parallel to a diameter equal to 2C,
and the homographic centre is the point of contact. Similarly may the
vanishing line and centre be determined in the plane w; since the indi-
catrix at @ can be found when that at A is given. '

(15.) The Canonical and Llliptic Equations of a Plane
Homography.
If X,Y, @,y are the coordinates of two corresponding points, the
focal axis and vanishing line in each plane being taken as the axes of

coordinates, we have Xz = Ce,
Y _ 9
X+4+C 7 z+c

the former equation being equivalent to the anharmonic equation of
Art. 5, the latter expressing the property of the corresponding foci of
which tho abscisse are —C and —c¢. These equations, written in

either of the forms Xo = Cc:’
3B)......... Yz =Cy

Xz = Cc:'
Xy =cY

may be termed the canonical equations of the homography (M. Chasles,
“ Géométrie Supérieure,” Art. 533), and may be employed to verify ana-
Iytically the preceding results. It will be remembered that the axes of
y and Y are not corresponding lines, neither are the origins correspond-
ing points. Thus the abscissm of corresponding points arc not corre-
sponding lines, and indeed arc not measured in corresponding direc-
tions ; but the ordinates of corresponding points (considered as lines
drawn from the extremitics of the abscissee parallel to the vanishing
lines) are corresponding lines.

The elliptic coordinates A, Ay; A, Ay of two corresponding points
(4. e., the major semi-axes of the confocal conics passing through the
points) are, as we have seen, connected by the relations

B) ceenn. AR, = A\, = Ce,
rR2
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Thus every homographic transformation of a plane figure, in which the
line at an infinite distance is transformed into a line at a finite distance,
- i8 equivalent to an inverse transformation of the elliptic coordinates of
the points of the plane. In this way the expressions already given for
the semi-axes of the indicatrix may be immediately deduced from the
elementary elliptic formule
AI _ Ai A! _ 3
an=v(G=ct)an, an=—y(Z o

t) aa,
—
combined with the corresponding formule for the plane w. Again,
using the formule A A, = CX, A, = c», we may write those expres-
sions in either of the forms
A
7, —

X X A
(A) X i, . . —

i; or
Thus the ratio of corresponding elementary areas at A and o is that
]

of X2 to A\, or of A A, to 23, or of CiX® to c¥ad; i e, it varies in tho
sesquiplicate ratio of the distances of the two areas from the vanishing
lincs. The lines X®= (¢’ 2* = +C%, (of which two in each plane
are real, and four imaginary,) are lines at which corresponding elemen-
tary areas are equal. More generally, the lines £ X = +KC, Ko ==ke¢
are the real lines, in the planes 2 and w, at which corresponding eva-

nescent areas are to one another in the ratio of K’C? to &*c*.

(16.) Theorems relating to Curvature.

Since evanescent segments, at the same point, and upon the same
straight line, are altered in one and the same ratio in any homographic
transformation, the curvature of all curves which touch one another at
a given point is altered in one and the same ratio. Thus, if a curve
touch a focal circle of the plane £, its radius of curvaturc at the point
of contact is altered in the transformation in the ratio of Cto ¢. Again,
it will be found that the radius of curvature of a curve at a point at
which its tangent is parallel to the vanishing line is altered in the same
parametric ratio. Hence if we consider in the plane £ any conic which
‘passes through the imaginary points Q,, Q, (and which, consequently, -
is transformed into a circle), it has the same curvature at the two points
where it is touched by focal circles, and at the two points where it is
touched by parallels to the vanishing line; for the radius of curvature
at any one of these four points is to the radius of the corresponding
circle in the ratio of the paramcters. We thus obtain incidentally a
solution of the problem, “ Given a system of circles, and a conic, having
the same radical axis, to determine the two circles of the system wlich
touch the conic;” for the points of contact are at the extremities of the
diameter equal to the diameter conjugate to the radical axis. In par-
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ticular, the radius of curvature of the indicatrix at the points where its
tangent is parallel to the vanishing line, or to the tangent of the focal
circle passing through its centre, is to the radius of the corresponding
evanescent circle in the ratio of the parameters: thus, if R is the radius .
of curvature of the auxiliary ellipse at the point O, As, B¢ the principal
semi-axes of the indicatrix, we have the equations

My O, By,

03
A8y
More generally, if Di is any semi-diameter of the indicatrix at the point
A, the radius of curvature of any curve touching that semi-diameter at

which are in accordance with the equations (A), since R =

. D* .. .
the point A is altered in the ratio of D* to AB (since Aptis the rading

of curvature of the indicatrix at the extremities of the diameter con-
jugate to D7). It will be seen, that of all curves passing through the
point A, those which touch the confocal byperbola at A experience in
the transformation the greatest augmentation (or the least diminution)
of curvature, and those which touch the cunfocal ellipse experience the
greatest diminution (or the least augmentation) of curvature; so that
the confocal conics may be said to be loci of greatest and least augmen-
tation (or diminution) of curvature. The ratio of the radius of curva-
ture of any curve passing through the point A to the radius of curva-
ture of the corresponding curve is thus intcrmediate between the ratios
A} : C% and A}: C%. Let K®: C% be any ratio intermediate between
these two ; there are evidently two equal semi-diameters of the indica-
trix at the point A such that the radii of curvature of curves touching
either of them are altered in the ratio K’:C%. If & be the angle
made by either of these semi-diameters with the major axis of the indi-
catrix, the equation E_g = é{: ¢ becomes, on substituting for A and B
their values given by the equations (A),

cos’® sin’d 1
(©) vrveriiines ——+ _T_E
Al Al
or ©)...... vee A3 cOS? & 47T 6in’ @ = C'

K

From the first of these equations we learn that the two semi-dia-
meters coincide in direction with those semi-diameters of the auxiliary
ellipse which are equal to K; the second implies that the angles made
by the two semi-diameters with the axis major of the indicatrix at A
are equal to the angles made in the plane w with the major axis of the
indicatrix at @ by the tangents drawn from the point @ to that confocal
conic which, in the plane w, corresponds to the confocal conic of semi-
axis major K in the planc (2.
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(17.) Curves of Constant Alteration of Curvature.

‘We may also regard the equation (C) as equivalent to the differential
equation of a system of curves such that at any point on any one of
them its radius of curvature is altered in the constant ratio of K° to
C’. Substituting for tan’® its value,

Af—C dA}

Al—c an?
we find for this differential equation the expression
da, (A:—K’) _ . ‘/(K”—Af)
A, \p— 2 Ay TG —A]

The integral of this equation is easily obtained in a finite form; it
seems, however, too cumbrous for discussion. It contains an alge-

braical function raised to the power Ié, bat no other transcendental

function. If, therefore, % be rational, 7. e., if the given ratio K®: C%

is a maultiple of the parametric ratio by the cube of a rational number,
the curves of constant alteration of curvature are algebraic and of finite
dimensions ; in every other case they are transcendental. They lie
entircly outside the confocal conic (K), and seem to meet it in cusps of
which the tangents are normal to it. If K=C, i.e., if the ratio is the
parametric ratio, the curves of constant alteration of curvature are
given by the equations '

dA, da,
—— = :*: y
Aﬂ Al
or 4 = constant, A;A; = constant;

2
they are thus the focal circles and the parallels to the vanishing line,
a3 we have already seen.
The orthogonal trajectories of the curves of constant alteration of
curvature are always algebraic; they have for their differential equation
NydA, A dA,

Ji— ) (A —K) (T A1) (K—A1)

(18.) Ourves of Constant Elongation.

Let 6C : ¢ represent any given ratio; there arc in general two equal
scmi-diameters of the indicatrix at any point A which are in that ratio
to the radius ¢ of the corresponding evanescent circle. If, however,

C . . . .
6 — ¢ be greater than the major axis, or less than the minor axis of the
¢

indicatrix, the two diameters are imaginary. The equations
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AZA = 6C......... («)y AN =06C"......... (B),
represent two loci, which separate the parts of the plane Q, in which
the two diameters are real, from those parts in which they are imaginary;
at points on the locus (a) the two diameters coincido with the axis
major of the indicatrix ; at points on tho locus () they coincide with
its axis minor. The two loci are included in the same Cartesian equa- °
tion of the sixth order

OXY? = (X*—6°C?) (X*—00%) (X*+0C?),
which represents a curve symmetrical with respect to the vanishing
Iine and focal axis, and having a quadruple point at Y (the point at an
infinite distance on the vanishing line). The two branches, one on
cach side of the vanishing axis, which touch it and one another at the
point Y, form the locus (a); the locus (/3) consists of the two branches
which have the line at an infinite distance for their common tangent at
the point Y. In the space included between the two branches of the

c. .
locus (a), the semi-axis major of the indicatrix is less than 6 sS4

the spaces intermediate between the loci (a) and (3) the two diameters
are real, and they are again imaginary in the spaces interior to the
locus (). To determine the angle ®, which either of the two dia~
meters makes with the axis major of the indicatrix, we observe that

these lines coincide in direction with the two diameters of the auxiliary
3

ellipse which are equal to 20 ; we thus obtain the eqnation

AN,
AjA;  X*

which implies that the two diameters coincide in direction with the
tangents drawn from the point A to the confocal conic of which the

[€0) JR Al cos?®+ A sin® & =

semi-axis major is =~. Substituting for tan*® its value, we find

0C-
A A —6°C° dA;  ATA —6C° A}
—_— T =g —
A;—C A AT—C A}

which ig the differential equation of the curves of constant elongation,
and seems not to admit of integration in any finite form. Its equi-
valent in Cartesian coordinates is

IXi+dY _ o, dt - dy?
¢ d
X* (dX*+dY?
or ——(-Ri:‘——) = CWX?+ (YdX —XdY)

It will be observed that A;A;, = 6C? or X = 6C, is a particular integral
of tho equation.
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The following is an important property of the curves of constant
elongation :—

“The intercept in the plane Q on any tangent to one of these curves
between the point of contact and the vanishing line is in the given
ratio to the similarly defined segment on the corresponding tangent in
the plane w.”

To establish this property, we have only to observe that the point of
contact is one of the double points of that involution upon the tangent
of which the segments are to their corresponding segments in the given
ratio. Or we may infer it from the equation (D), with the help of the
casily demonstrated theorem—

“If ¥ and  are the angles made with the vanishing line by any
two corresponding tangents to the confocals (I') and (y), the ratio
s1n C 1

_._‘I’ is constant and equal to T or Z.
sin C y

(19.) Curves of Equal Tangential Deflexion.

Through any point A of the plane Q there pass two curves, such that
the angle between any two tangents to either of them is equal to the
angle between the two corresponding tangents of the corresponding
curve. We may term these curves the curves of equal tangential de-
flexion. If D¢ be the length of the semi-diameter of the indicatrix, which
touches one of these curves at the point A, and if d© = db be the angle
contained between this semi-diameter and a consecutive tangent to the
curve, we find, since all arcas at the point A are altered in the same
ratio

"’ DWde:d0 :: AB2: @, orsimply D'= AB.
Denoting by ® the angle made by the semi-diameter Di with the major
axis of the indicatrix, and substituting for A, B, and D, their values, we
have for the differential equation of the curves of equal tangential de-

flexion .
(B) cos’® in’®

A, A
dA, dA,

=

WS R WV 3

or

These curves are always algebraic; for, putting A, = Cuy, A, = 9,,
Ug
du du
we have —_— = —

VA-u) T /(Q—up)

of which the integral is algebraic.
The equation (E) may be also obtained by observing that the curves
of equal tangential deflexion which pass throngh the point A, must
touch at that point the double lines of the pencil in involution, which
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is equiangular to the corresponding pencil, and that the equation (E)
is the equation determining these double lines (see Arts. 10 and 11).
It appears from this that the angle at which the two curves intersect
is always supplementary to the corresponding angle.

(20.) Curves similar and similarly situated to their images.

As an additional example of the use of the formule (B), let us pro-
pose to dctermine the conic sections, which in either figure are trans-
formed into conics similar and similarly situated with regard to the
vanishing line and focal axis of the other figure. If

aX?+a'Y?+a"C* 4+ 20CY +20'CX +20"XY =0
be the equation of any conic in the plane Q, the equation of the cor.
responding conic is
'’ +a'y* + ac* + 207cy + 2b'cx + 2bwy = 0.

And if these two conics are similar and similarly situated, we must
have a = a”, b = £0”; 1. e., every conic for which one of the two foci
is the pole of the line parallel to the vanishing axis, and passing through
the other focus, (or, which is the same thing, any conic for which one of
the pairs of lines joining its points at an infinite distance to its points
on the vanishing axis, intersect at a focus,) is transformed into a
similar aund similarly situated conic, the ratio of similarity being that
of the parameters. There are thus two sets of conics (each forming a
triply indeterminate linear system) which satisfy the conditions of the
problem ; but the conics of only one set at a time can be regarded
as similarly situated to the corresponding conics, because in deter-
mining the two sets different directions on the vanishing lines are taken
to determine the similarity of position.

Again, tha corresponding conics will have their areas in the ratio
of the squares of the parameters, if (aa’'—0")* = (a'a”—b*)*; 4. e., the
areas of all conics with regard to which the lines parallel to the
vanishing line and passing through the foci are self-conjugate lines are
to the areas of their correspondmg conics in the duphca,te ratio of the
parameters. The only real conics of which the area is changed in this
ratio are those defined by this geometrical condition; they form a
quadruply indeterminate linear tangential system. But the analytical
condition is also satisfied by the imaginary conics in the plane £,
with regard to which the imaginary lines X = %pC, or X = £p'C,
are harmonically conjugate, p denoting an imaginary cube root of .
unity. More generally, it will be found that the conics of which the
area is changed in any given ratio are those which have for a pair of
conjugate lines the two straight lines at which elementary areas are
changed in the given ratio (Art.15). If the corresponding conics are
hyperbolas, we may substitute for the arca in this result the triangle
contained by the asymptotes and any tangent.
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Lastly, the geometrical condition that a conic in either plane should
-be similar to its corresponding conic is that the pairs of points in
which it intersects the vanishing line and the line at an infinite dis-
tance should subtend equal angles at & focus. But the quadruply in-
determinate system determined by this condition is not a linear one.
Theorems of a similar kind to the preceding, but relating to curves
of a higher order, may be obtained by observing that symmetrical
functions of X, z; Y, y; or again of A),A;; A A; are unchanged by the
transformation. Thus any curve represented by

Ce cY? cY
P(X+g o THg)=0
: C C
or again by f(A,+ X’i, A+ 7\—2) =0,

is transformed into a curve similar and similarly situated with regard
to the focal axis.

B.—FocarL ProrerriES OF Two HoMograPHIC PoINT-FIGURES.

(21.) The Imaginary Cones corresponding {o Bvanescent Spheres.*

By a point-figure we shall here understand a system of straight lines
and planes passing through a point which is termed the centre of the
point-figure. Let S,s be the centres of two point-figures, homogra-
phically related to one another; and let P, q represent the evanescent
spheres (here to be regarded as imaginary cones), which have their
centres at S,s. Excluding altogether from consideration the very par-
ticular case in which these two imaginary cones correspond to one an-
other homographically, and in which, consequently, the two figures
admit of exact coincidence with one another, let us represent by p, Q
the imaginary cones, which in the figures s, S correspond to the cones
P,q. We observe that if either p or Q is a cone of revolution, the
other is so too; for if the cones P, Q have double contact, so also
have the corresponding cones p, g. We shall hereafter (Art. 88) re-
turn for a moment to this particular case, but for the present we
shall suppose that neither p nor Q is a cone of revolution.

(22.) The Principal Axes.

On this supposition there exists in each pencil one, and only one, sys-
tem of straight lines at right angles to one another, such that their
corresponding lines are also at right angles to one another. Theso
lines are the principal axes of the cones Q and p. For the principal
axes of Q are the system of self-conjugate axes common to the concs P
and Q; these principal axes, therefore, correspond to the system of
axes self-conjugate with regard to p and ¢; 7. e. to the principal axes

* Sco Note at end of Paper, p. 248.
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of p. We shall call these two sets of rectangular axes the principal
axes of the two figures, and we shall distinguish them as the axes of
XY7Z, yz.

(23.) The Focal Lines and Cyclic Planes.

To the four imaginary lines of intersection of P and Q, and to the
four imaginary tangent planes common ta those two cones, there cor-
respond the four lines of intersection, and the four common tangent
planes, of p and q. Hence to C, and C,, the two real cyclic planes of
Q, and to F,, F,, the two real focal lines of Q, there correspond ¢, ¢,, the
cyclic planes, and f), f, the focal lines of p. It will be observed that
the real focal lines of an imaginary cone (differing in this respect from
the focal lines of a real cone) lie in that principal plane of the cone to
which the cyclic planes are perpendicular. We shall call the axis, in
which the cyclic planes intersect, and which is perpendicular to the focal
plane (%. e. to the plane containing the focal lines), the mean axis; of
the two axes in the focal plane, we shall term that the major axis
which makes with either cyclic plane, and with either focal line, acute
angles together less than a right angle.

(24.) The Reciprocity of the Imaginary Cones.

The imaginary cones Q and p are reciprocal. Let Y, y be their mean
axes ; X7, xz, their focal planes ; P\P,, Q,Q., and p,p;, ¢:¢:, the imaginary
lines in which these planes meet the cones P, Q and p, ¢ respectively.
From the anharmonic equation

1@...... [Py, Py, Q1 Qs X, Z] = [Py P O Q2 @, z]
we infer the equation
[Py, Py @1, Q] = [, g0 1y 1215
which implies that the imaginary angles Q,SQ,, pisp; are equal, because
P, P, and ¢, ¢; are pairs of lines representing evanescent circles.
Again, X, Z and @, z are harmonic conjugates of the pairs P\P,, Q,Q,,
and p,p,, 192 Tespectively. Hence we must have either the equation
[ b PZ’ Ql) Q'z: X Z] - [q“ Q2 P1y Py T z]s
or else the equation
[Py, Py, Qi Qp X, Z] = [q1, g2 21y P2 %, 2]
But the former equation is inadmissible; for, on combining it with
(1), we obtain
[Py g1 =, 2] = [qu Py 2, z),
which is untrue, since p;, and not ¢, is the harmonic conjugate of p,
with regard to 2z. It is, therefore, the latter equation which subsists;
it implies that Q, or Q, makes the same angles with X, that p, or p,
makes with z; 4. e, that the angle Q,SX is the complement of pse.
Similarly, the angle which the axis of X makes with either of the lines
of Q which lic in the plane XY, is the complement of the correspond-
ing angle in the plane xy; that is to say, the two concs are reciprocal.
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It is evident that the mean axis of Q corresponds to the mean axis of
p- Let G, ¢ be the acute angles F,SX, fsz; then the acute angle con-
tained by YX and either cyclic plane of Q is the complement of ¢, and
the acute angle contained by yz and either cyclic plane of p is the com-
plement of C. Hence X is the major or minor axis of Q, according as
C < ¢,or C > ¢; and to the major axis of Q the minor axis of p cor-
responds, and vice versdé. Neither of the angles C, ¢ can be zero, nor a
right angle, nor can they be equal to one another.

The reciprocity of the cones Q and p gives rise to a reciprocal rela-
tion between the two homographic figures, which may be thus stated.
Conceive the two fignres placed with their corresponding principal axes
coincident. Let A, a be any two corresponding planes in the figurcs
S and s; let b be the normal to A at the common centre of the
figures ; and B the normal to @ at the same point; then B and 0 are
corresponding lines in the figures S and s. If, therefore, we consider
any two corresponding systems of planes and lines in S and s, the
reciprocal systems of lines and planes will also be corresponding sys-
tems in s and S. Thus all the properties (metrical as well as deserip-
tive) of two homographic point-figures are double, and we have an’
uniform method for passing from any property to its correlative.

(25.) The Correspondence of Directions.

The angles contained by planes intersecting in & focal line of S are
equal to the corresponding angles contained by planes intersecting in a
focal line of s; and, correlatively, the angles contained by lines inter-
secting at S in one of the cyclic planes of S, are equal to the corre-
sponding angles in a cyclic plane of s. These theorems are evident, be-
cause the imaginary tangent planes of P, which intersect in F,, cor-
respond to the imaginary tangent planes of g, which intersect in f,;
and similarly, the lines in which P is intersected by either cyclic plane
of Q, correspond to the lines in which ¢ is intersected by either cyclic
plane of p.

To fix the correspondence of thé directions of rotation round either
pair of corresponding focal lines, or in either pair of corresponding
cyclic planes, we consider the intersections of the planes and lines of S
and s by the surfaces of two spheres of radius unity having their
centres at S and 5. Let A, B, C be three points on the sphere S, forming
a spherical triangle; it will be remembered that three points, not in
the same great circle, always form one, and only one, spherical triangle,
if by a spherical triangle we understand (as is usually done), a triangle
formed by arcs of great circles, each of which is less than two right
angles. As corresponding point to any point A on the sphere S, we might
take either of two diametrically opposite points «, ' on the sphere s. Dut
for one of these points (fur example «) the corresponding directions of
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rotation round A and & are similar (4. e., both right handed or both left
handed, when viewed from the centres of the spheres); while for the
other point a’ the corresponding directions of rotation are dissimilar.
Let then a, b, ¢ be the three points which on the sphere s correspond
with similar rotations to the points A, B, C. These three points are thus
determined without any ambiguity, and we shall now show that to
points in the interior of the triangle ABC there correspond, with
similar rotations, points in the interior of abec. The proof of this
important theorem depends on the two principles: (i.), that if a point
move continuously on either sphere, and traverse any curve on that
sphere, its corresponding point on the other sphere simultaneously tra-
verses the corresponding curve ; (ii.), that if A and a are corresponding
points with similar rotations, and if, while A moves continuously to B,
@ moves continuously to b, then o and b are also corresponding points
with similar rotations. The first of these principles may be considered
as evident ; to establish the second, it will suffice to consider A and B as
consecutive positions of A, so that while A describes the element AB,
a describes the element ab. Let E be any great circle not intersecting
AB, then the corresponding great civcle e does not intersect ab, and if
these two great circles be described by corr espondmg points V and v,
the vector arcs AV, av will by hypothesm revolve in similar directions.
But the arcs AV, BV evidently revolve in similar directions, and so do
the arcs av, bv; 1. e., the corresponding rotations round B and b are
similar. Let us now suppose that a point sets out from B, and describes
the side BC of the triangle ABC; the.corresponding point will at the
same time describe the side bc of the triangle abc; for as it must not
traverse either of the great circles ab, ac, it cannot describe an arc
greater than a semicircle. Thus, to the points of any side of ABC
there correspond, with similar rotations, the points of the corresponding
side "of abe. Let V be any point internal to ABC, let AV cut BC
in A,, and let @, on be¢ correspond to A, on BC; then AA,B, aac are
corresponding spherical triangles, with similar rotations at their corre-
sponding points; therefore the points of aa, correspond, with similar
rotations, to the points of A A, ; <. e., the point v, which corresponds with
similar rotation to V, lies on aa, in the interior of the triangle abe.

The great circles which form the triangles ABOC, abc, divide the
spheres S and s each into eight spherical triangles, which correspond
to one another one by one, with similar rotations at their correspond-
ing vertices, just as the triangles ABC, abc. Thus each sphere is di-
vided into eight regions, corresponding to the eight regions of the other
sphere, in such a manner, that, if any point be taken on either sphere,
the point which corresponds to it with similar rotation lies in the cor-
responding region of the other sphere.

We shall now take for ABC one of the eight octantal tmangles XYZ,
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and for abe the corresponding octant zyz ; we shall denote by F,, f,; YQ,,
yw,, the foci and cyelic arcs which lie in the octants XYZ, zyz; and by F,,
fo; Y, yw,; the foci and cyclic arcs which lie in the octants XYZ,
ays; so that the directions of rotation round the corresponding foci
F, f, and F,, f;, will be similar, and the directions YQ,, yu,; YQ,, yu,,
will be corresponding directions on the cyclic ares. It will be con-
venient to consider only the hemispheres of which the points X, = are
the spheric centres, and the planes YZ, yz the bases. Thus, to any
given point on the hemisphere S (not lying on the base circle itself),
there corresponds one point, and only one, on the hemisphere s; and
again any two great circles upon either hemisphere (neither of which
is the base circle) intersect one gnother only in one point. To find
the point a of the hemisphere s, which corresponds to a given point A
of the hemisphere S, we draw the vector arcs F\A, F,A, and make the
angles f; fia, f, fo2 equal in sign and magnitude to the angles F,F\A,
FF,A; the point of intersection of the arcs fia, fia is the point a
required. Similarly, to find the great circle a of the hemisphere s,
which corresponds to a given great circle A of the hemisphere S, wo
find the points D), D;, in which A intersects the cyclic arcs of S, and we
make the arcs w,d), wyd,, equal in sign and magnitude to the arcs Q,D,,
Q,D;; the arc dyd, is the arc required.

(26.) The Confocal Spherical Conics.

The spherical conics of which Fy, F; are the foci are transformed into
the spherical conics of which f,, f; are the foci. This is evident from the
equiangular property of the foci; or, again, if R,, Ry, 7, 7, are the
focal radii vectores of the corresponding points A and ¢, the spherical
triangles F\AF,, f,8f, give the equations

tan 1 (R,+R,) _ tan { (R,—R,) _ tanC

tan L (n,+7) = tanl(n—m) tanc’
which imply that if R, = R, is constant, » = 7, is also constant. Thus
the ellipses are transformed into ellipses, and the hyperbolas into hyper-
bolas, these denominations being relative to the two foci lying on each
of the hemispheres Sand s. If A =1 (R,+R,), or =1 (R,—R), is
the focal semi-axis of one of the confocal conics of S, the quoticnt
tan A
tan C
unchanged in the transformation; for, if A be the semi-axis of the
corresponding conic, we have the equation

tan A _ tan C
tan X~ tanc¢’

, which is one of the spherical eccentricities of the conic, remains

which results from the homography' of corresponding points of the
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great circles XZ, zz. It is also evident that if we consider any two cor-
responding: conics of the two confocal systems, there will correspond to
one another in the two figures—the normal arcs of the two curves, their
spherical centres of curvature, their evolutes, their similar arcs, as also
the spherical polygons of minimum perimeter circumscribing corre-
sponding arcs, and the spherical polygons of maximum perimeter in-
scribed in corresponding arcs.

(27.) The Concyclic Spherical Conics.

Correlatively, the system of concyclic conics of which YQ,, YQ, are
the cyclic arcs are transformed into concyclic conics of which yw,, yw,
are the cyclic arcs, the ellipses into ellipses, and the conics of the third
species into conics of the third species; these denominations being
again relative to the hemispheres which we are considering. (See
M. Chasles “Sur les propriétés générales des coniques sphériques,”
art. 1—4). If D,D,, d\d, are corresponding arcs, cutting the cyclic arcs
in D, D,, d,, d,, the spherical triangles D,YD,, d,yd,, in which D;Y =d,y,
D,Y = dyy, supply the equations

tan L (D,+D,) _ tan 3 (D,—D,) _tane¢
tan §(di + ;) ~ tan 3 (di—d;) ~ tan C

Let E, 6 be the areas of the spherical quadrilaterals Q,D,D,0,, w,d,d,w,,
we find E =#n—D,—D,, ¢ = v—d,—d,, whence

tan LE _ tan C

tan le = tanc’
a formula which expresses a remarkable property of the cyclic arcs.

To chords of any conic (®) of the concyclic system of S, which cut off
equal spherical areas from that conic, there will correspond chords
cutting off from the corresponding conic (¢) areas equal to one another.
To a spherical polygon of maximum area inscribed in any arc of (®), or
to a polygon of minimum area circumscribing any arc of (®), there will
correspond polygons possessing a similar maximum or minimum pro-
perty with regard to the corresponding arc of (¢). These results follow
from the known properties of concyclic spherical conics ; or they may
be deduced by reciprocation from the properties of the confocal conics
of the two homographic systems.

(28.) Arcs and Angles changed into equal Arcs and Angles.

On any great circle A of S there are two points at right angles to
one another, such that their corresponding points, on the corresponding
great circle a, are also at right angles. These points are the ex-
ternal and internal points of bisection of the intercept made on
the great circles by the cyclic arcs ; they are also the points at which
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the great circles are touched by conics of the concyclic systems. Let
2D, 2d be the intercepts; the homographic modulus of the two great

circles (relative to the internal points of bisection) is ttan ]?; the arcs
an ¢
of the involution
tan H, tan H, = tan D
tan d

are equal to the corresponding arcs of the involution

tan d
tan I, tan h, = ;
an I, tan 7, D

and the arcs of the involution

tanHltanﬂz =_M
tan d
are equal to the supplements of the corresponding arcs of the involution
tan d
tan %) tan iy = — —.
n Iy tan D

The determination of the angles which at any point A are trans-
formed into equal or supplementary angles at the point & is correlative
to the preceding. The external and internal bisectors of the angles
between the radii vectores at A and ¢ are the right angles of the homo-
graphic pencils at A and @, and if F\AF, = 24, f, éf, = 23, the homo-
graphic modulus of the pencils, relative to the internal bisectors, is

fan & e equiangular and supplementary involutions are respec-

tané
tively s
tan A tan
= I =
tan H, tan H, tan s tan 7, tan h, A
tan A tan &
= —— hy = — ",
and tan H, tan H, = o tan %, tan 7, oA

Combining the results relating to equal arcs and to equal angles, we
see that, given any arc of a great circle in either figure, and a point
upon it, there is always a spherical triangle having a vertex at the
given point, and a second vertex upon the given arc, which is trans-
formed into an equal and superposable spherical triangle.

The homographic modulus of the pencils at A and é may be also
expressed in terms of the radii vectores of the points A and 9, since
from the triangles I'\AF,, f,¢f, we find

tan A _ sin 3 (Ri—R,) sin § (n—n)
tan & ~ sin L (R, +R,) “sin 1 (n+m)
cos %LR,—R;) . cos L (n—m)

cos L (R,+Ry) “cos } (i+m)
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(29.) The Equations of the Homography in Spherical Coordinates.

The equation of the cone Q, referred to its principal axes, is

il 2
s’ C i ye Z‘;Z,f Z0=0 e (Q)5

sin’ ¢

the equations of its cyclic planes, and of its focal lines, are respectively
Y*+Zsec’c =0,
ZP—X?cot’c =0,
X'+ Ysin’c=0;
and Y’ +Z%cos?’C=0, X=0,
Z*—X?%tan’C=0, Y=0,
X*+Y?cosce’C=0, Z=0
The equations of the cone p, and of its cyclic planes and focal lines, are
obtained by interchanging C and c¢.

Let A, &' be correspanding points on the two spheres, and let the arcs
XA, YA, ZA, 29, 9, 26 meet the arcs YZ, ZX, XY, yz, 2z, 2y in the
points A, B, C, a,b, ¢ respectively. If we take the ratios of the cosines

X =cos AX, Y =cosAY, Z = cosAZ,

2 =cosdr, ¥y = cosdy, 2z = cos 0z,
as the spherical coordinates of the points @ and w respectively, the
homographic relation of the two figures is expressed by the equations

sinCcos X cosY cosCecosZ
8in ¢ cos @ cosy  COS o0 Cosz

Or again, if we take one of the followmg systems of tangents as the
coordinates of the points A and 4,

a...... Y =tan XB, Z = tan XC; y = tanad, z=tunma;
@ ...... Z=1tanYC, X =tan YA; z=tanyc, z=tanya;
A3)...... X=tanZA, Y =tan ZB; 2 =tanzq, y=tanzb;

the homographic relation is expressed by the equations
tan C 7= sin C

...... Y= , = .

() Y Yano # sinc’
Sil’lc Ccos C

2 ...... g Z - -0 =r—:,
2 z s X zcosC
cos C tane

) R X=uzw = .
@) v cosc’ ! tan C

(80.) The Parameters of the Confocal and Concyclic Cones.

Instead of the equation (Q), it will be convenient to employ the

X .z
+tmtE=0

equation otgE
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to rcpresent the cone Q ; so that
_sinc  _  cosc

A:B:T:: 1l —
sin C cos C’
B —TI* A A (BT
tan C = /(m), ta.UC:ftﬂaﬂC:F\/(m)-

We suppose A, B, T' all positive, and A >B>T, ¢, ¢>C. Tho
figure 8 is then transformed into s by the equations

(1) cooovrevne. X=Az, Y=By, Z=1%
- wsibine = L 5_1 _1l o tion
or, Wl lllg a = A’ == B, Y= I‘, y (3 0(11111 ons

z Y P
X = - = - Z = —
o s v
We shall term the quantitics ¥ and ® the paramefers of the confocal
cone

X2 Y2 Zﬂ

) Ar—y? + B:—¥? + I?— gy 0,
and of the concyclic conc
1 1 1 1 1 1
3) cneee X ) — = ()=
( ) (A'.l (b")+ (B'I ¢.‘)+Z (Iﬂ (D'.') 0’

respeetively.  These quantities are of frequent use in the theory, as
will appear from the following observations :—
(a.) 1f ¢ and ¢ are the parameters of the cones corresponding to (¥)

1 1
and &, we have ¢ = = ¢ = 3’ for the cones (2) and (3) arc trans-

formed by the cquations (1) into the cones
2 2 2

@ + K + z _
at— 4’2 }32—\#2 ,ya__‘pz -

o(b=2)ar (- (b-2) =0

of which the parameters are respectively ¢ and ¢.

0,

(3.) If we imagine the principal axes of the two pencils coincident,
the cone reciprocal to that confocal cone in S of which the parameter

is ¥ is the concyclic cone in s of which the parameter is é

(y.) Tf ¥, ¥, are the parameters of the two confocal spherical conics
which pass through a given point, the parameter of tic concyclic conic

passing through that point is Q—B‘;’- ; and, reciprocally, if ®,, ®, are the
1+2
parameters of the coneyclic conics touching a given are, the parameter
A

of the confocal conie touching that are is = o
W,
142
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(3.) Let A, X represent the focal semi-axes of the corresponding con-
focal conics (¥) and (Y); we have
¥?— I A R S &
Fo A= g BeAS G

with stmilar values for sin® A, cos® A, tan’ A; and hence

sin? A =

k2 ¥ r
1 = — sl = — A=-— A.
sin A 1 sinA, cosA T cos A, tan n tan

(e.) Thus, for the homographic modulus of the pencils at tho cor-
responding points A, J, we have the expression (see Art. 28)
tan A _sinA,.sinAl_&
tan 8 sin A, sMA, ¥,

the angles being measured from the tangents to the confocals (¥,), (¥.).
And correlatively for the modulus of the homography on any corre-

tanD _ &,
tan d - q’l’
the arcs D, d being measured from the points of contact of the concyclic
conics (®,) and (¢,)-
() Lastly, if (¥,), (¥,) are the two confocals intersecting at A,
(®) the concyclic conic passing through A, we have
sin (A, +4,;) ¥, or sinR, _sinR,_ B
sin (A, + A,) ~ AL’ sinr, sinr, &'
an equation which corresponds to the equations (y) of Art. 8.

sponding arcs D, d, we have

(81) The Indicatriz on the Sphere.

Let dZ,, d2,, do,, do, be corresponding elements of the spherical
ellipses and spherical hyperbolas which pass through the corresponding
points A and ¢ ; let also the arcs A}, Ay, A}, A, be the focal senii-diameters
of these conics; and let 24 = F,AF,, 2 =/,6f,, Considering two
consecutive corresponding points on the two ellipses, and again on the
two hyperbolas, we find

a5, =M gy I
s A 0S A

dﬂl = —l,Z—Az—-, Ty = -Q_‘_.
sin 0 cos

But, differentiating the equations
tanA, _tanA,  tan C
tanA, ~ tanA, tanc’
Ay, dN ddy,  dh
8in 274,  sin 27, sin 24, sin 2A,°

s 2

we have
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and from the tviangles ¥,P1,, finf,,

sinA _cosC  cose sinC | sine

sind  cosA;,  cos A, sind,

- ?
sIn Ay
‘cosA_cosC  cosc _sinC | sinc |

N . _ T . 0 »

co80 cosA, cosA, sinA; sin A,

d¥, _sine _sin A} sin 24,

whence — = : -
de, ~ sin C" sin A, ~ sid A,

d3, sinec sin A, sin2A,
- == g a H
de,  sin 0" sin A, sin 27,

or, substituting from the equations (9) and (y), Art. 30,
ds ¥
de, ABI — @’

g, _ ¥ _ ¥
de,  ABL — @'

If in these formule we put de,=ds,=1, the corresponding valucs of

dZ%, and d2, are the principal semi-axes of the evanescent ellipse corre-

sponding to the circle of which the centre is 9, and ¢ the infinitesimal

radius.

(32.) Curves of Equal Tangentiol Deflexion and of Constant
Llongation.

Since dZ, is the circular measure of the infinitesimal angle contained

between the two lines in which (¥,) is cut by (¥,) and (¥,+d¥,),
(¥ —¥)) ¥,d¥,
(A=) (B =) (Vi —T)
(¥ — ¥)) ¥l d¥)

(A= ¥) (V] - B) (¥ — I
which may also be dednced from the ordinary formuln of clliptic co-
ordinates in space. We may use these expressions to obtain the differ-

ential eqnations of certain loci analogous to those considered in Arts.
17,18, and 19. Thus, observing that the homographic modulus of the

2
we have dz =

az =

pencil at A is \—;’, wo have for the curves of equal tangential deflexion

1
the differential equation

[0 PP A L. S
VW) (B —¥) (¥ —19)]
S,

B ?L(z\'-'-—-\y';' ) (‘P.;, — B (\]r;': T’)J
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The curves of “ constant elongation” are defined by the equation
dz} + 4% = K* (de} + doy),

2 2 ot 2 2 Wt

in which the variables are not separated. If, however, we attend only
to the curves of no clongation, and consider any tangent to one of them
as determined by the parameters ®, and &, of the two concyclic conics
which it touches, its differential equation, in this system of tangential
coordinates, is obtained by writing @, and ®, for ¥, and ¥, in the

equation (4). For, substituting 1, ]_', 1-, 1—-, L for A, B, T, ¥, ¥,
a ﬁ Y 4’( ‘1’2

in that equation, we have an equation between ¥, and ¢, of the same

form as (4), which represents a curve of no elongation on the hemisphere

s; Y and Y, being the parameters of the concyclic conics which touch

any tangent of that curve.

It is evident that an infinitesimal spherical area at any point of the
concyclic conic (®) is altered in the ratio of ABI': ®*; and, in par-
ticular, that this is the ratio of the area contained between (&) and
(®+d®) on S, to the area contained between the corresponding curves
(¢) and (p+do) ons. The concyclic conics, as curves of constant
alteration of adjacent infinitesimal areas, resemble the parallels to the
vanishing line in the theory of two homographic plane figures.

(83.) Circles of which a Focus is the Centre.

Since, in general, spherical conics, of which F, or F; is a focus, are
transformed into spherical conics of which f; or f;is a focus, and the
director arcs of the corresponding curves are corresponding arcs, it
follows that circles of which F, is the spherical centre, are transformed
into conics of which f; is a focus, and of which the director arc is an
arc y6 perpendicular to 2z at a distance 6 from 2 defined by the equation
tan ¢
tan? C’

If R is the spherical radius of one of the given circles, and if  and 8
denote the spherical distances from the focus and from the director are
of any point on the corresponding conic, we shall have the equation

tan 6 =

sinr_sine tan R
sind sinf” tan C’

Similarly, spherical conics, of which Y@, or YQ, is a cyclic arc, are
transformed into spherical conics of which yw, or yw, is acyclic arc; and
the cyclic poles of corresponding curves are corrcspouding points. In
particular, circles parallel to Y{), ave transformed into conics of which
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yuw, is a cyclic arc, and of which the cyclic pole is a point (¢) on zz at a
distance ¢ from 2 defined by the equation
' tan’ ¢
tan C’

If B is the radins of a circle parallel to YQ,, p the spherical perpen-
dicular let fall from the cyclic pole on any tangent arc to the corres-
ponding conic, p the angle contained between the tangent arc and the
cyclic arc, we shall have the equation

tan¢ =

sinp sing tanR
sinp ~ cosC " tanc¢

The two arcs 6 may be termed the director arcs, and the two points (¢)
the cyclic poles, of the figure 5. It is evident that we shall have the

relation tan 6 tan® =tan ¢ tan©® =1, or ®+0=}r=¢+0.

(34.) Circles changed into Circles.

To determine the small circles of the sphere S which are trans-
formed into small circles of the sphere s, we make use of the principle
that a small circle of a sphere is a spherical conic having double
contact with the imaginary asymptotic circle; the chord (or arc)
of contact being the parallel great circle. Hence, the circles required
are the spherical conics which have double contact with both P and Q.
Of these circles there are three series corresponding to the three pairs,
of chords of intersection of P and Q. For the chords of contact of any
one of the circles with P and Q are a pair of harmonic coujugates of
one of the pairs of chords of intersection of P and Q; and, conversely,
any such pair of harmonic conjugates may be taken for the chords of
contact of a circle with P and Q, or again with Q and P. But the
circles of only one of these series are real ; their chords of contact being
harmonic conjugates of the cyclic arcs, and their centres being on the
great circle of the foci. Let R be the radius of one of these circles, ® the
distance of its centre (®) from X. The harmonic conjugate of the great
circle, of which (®) is the spherical pole, with regard to the cyclic arcs,
must have the same pole with regard to the imaginary conic Q and
with regard to the circle. This condition supplies the equation

sin (#—C) sin (¢4 C)
" sin (6—¢) sin (P +c)’

which determines the radius of the circle when the position of its centro
is given; and shows that the circle is real only when ¢ is intermediato
between C and «.

If r be the radius of the corresponding circle, and ¢ the distance of
its centre from «, we shall have the equations

tan* R =
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tan R sin2C

tans  sin2¢
tan ® tan ¢’=tan C tanc.

The corresponding formulwe for the circles of the imaginary systems
whose centres lie on XY, 2y are
tan® C+sec? C tan’ &
tan? c+sect ¢ tan*d’

taan= -—

tan & tan ¢’= —sin C sine,
tan’ R _ cos’c tan?C

= . ——
tan*r  cos’C tan*c

where ® and ¢’ arc the distances of the centres of the corresponding
circles from X and 2. Changing in these formulm ¢ and C into their
complements, we have the formulw for the corresponding imaginary
circles of which the centres lie on ZY, zy.

(85.) Theorems relating to Curvature.

If two curves on either sphere touch one another at any point, the
ratio of the tangents of their spherical radii of curvature remains
unchanged in the transformation. This is evident from the cor-
responding theorem relating to plane homographical figures, because
the two planes touching the spheres at two corrcsponding points are
homographic. Thus the ellipses and hyperbolas on either sphere are
lines of greatest or least alteration of curvature, as well as lines of
greatest or least elongation or contraction. The circles which are
transformed into circles are of course loci of points at which the
tangent of the radius of curvature is altered in a constant ratio.

(36.) Conncxion with the Plane Theory.

If we suppose the arcs C and ¢ to become infinitely small, retaining
a finite ratio to onc another, the parts of the two spherical
figures which lie infinitely near to X and # will nltimately become two
planc similar figures. But we can also regard two dissimilar homo-
graphic plane figures as a limiting case of two homographic figures
upon a sphere. The points of the two hemispheres, which we have
hitherto considered, correspond to onc another throughout the whole
of each surface with similar directions of rotation. But if, in the
hemisphere S, we substitute for the quadrant containing F; the
opposite quadrant, so as to consider the hemisphere of which 7 is
the spheric centre, and the great circle XY the base, we shall obtain
a figure of which one quadrant (1',) answers with similar rotation to
the corresponding quadrant (f,), and the other qnadrant (1)) answers
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with dissimilar rotation to the corresponding quadrant (f,). If, for
example, in the formules of Arts. 26—28, we change C, D, }D,, or 4D,
H, H, 4, iR, or }R, into their complements, we shall have the
equations which express the metrical relations of the two figures,
considered in this particular manner. In these new formule, 2¢ and
2C are the angles contained between the foci, and between the cyclic
planes of s; or, again, they are thc angles contained between the
cyclic planes and the foci of S. The new arcs D, H,, H,, are
not measured from the pouints corresponding to the original points
of arcs d, h, h, but from points distant by a quadrant from
the points corresponding to* those original points; they are also
measured backward —i.e, in the direction opposite to that which
corresponds to the direction in which the arcs d, %, % are
mecasured. And a correlative statement is true for the angles
A, H,, H,, It will be observed that R, or R, is changed into
its supplement according as the points considered lie in the regions
of similar or dissimilar rotation. Again, it is immaterial whether we
change D, or D, into its supplement ; in the former case, we consider
(in the figure S) the triangle D, YD, in the latter the triangle
D, YD,

If we now suppose the arcs ¢ and C to become evanescent, the parts
of the two figures adjacent to # and Z respectively will become two dis-
similar homographic plane figures, and we may pass from the spherical
formule to the corresponding formule of the plane theory.

(87.) Point-Figures in Perspective.

When two homographic point-figures are in a perspective posi-
tion, (i.e., when the corresponding planes and lines of the two figures
intersect upon the same plane,) one of the focal lines of each pencil is,
evidently, the line joining the centres S and s of the two pencils. To
find the other focal lincs, let Ss meet the plane of intersection in O,
let O be the point harmonically conjugate to O,, with regard to Ss,
and O, the orthogonal projection of O on the plane of intersection ;
S0,, and s0,, are the focal lines required.

To place two given homographic point-figures in a perspective
position, we first of all place a pair of corresponding focal lines in the
same straight line, the vertices of the two pencils not coinciding, but
corresponding vectorial planes coinciding. Let O, be the point of
intersection of the two remaining focal lines ; let V, and 'V, be the planes
which bisect the angle SO,s externally and internally. According
as the corresponding directions of rotation round SO, and so, ave
similar or dissimilar, V, or V,is the plane of intersection of the two
homographic figures. It is evident that the two figures continue in
perspective if their centres be moved nearer to or further from ouc
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another in the coincident focal lines; or, again, if either of them be
rotated through an angle of 180° round these coincident lines. Of the
cyclic planes, one pair are parallel to the plane of intersection, the
other pair intersect in that plane, and in the plane bisecting Ss at right-
angles.

(88.) Case when the Homography s Spheroidal.

The theory of the particular case in which the transformation is
spheroidal—i.e.,in which the imaginary cones Q and p, corresponding
to the evanescent sphere-cones ¢ and P, are cones of revolution—pre-
sents no difficulty whatever. If X and 2 are the centres of the
imaginary small circles Q and p, the azimuths of any two corre-
spondiug points A and @ are cqual, and their zenith-distances are con-

tan XA

nected by the relation -——=—= = constant.
tan za

This constant ratio we may term the modulus of the transformation.

C.—Focar PropertiEs oF Two HOMOGRAPHIC SPACES.

(39.) The Imaginary Conics, and the Parameters.

We proceed, in the last place, to consider two spaces S and s,
homographically related to one another. Let 2 and ¢ be the imaginary
circles at an infinite distance in which all spheres in the two spaces
intersect one another; w and 2 the imaginary conics corresponding to
them. As we shall suppose that the planes at an infinite distance in
the two spaces are not corresponding planes, the imaginary conics
and 2, v and o, are certainly different. If either w or 2 is an imagi-
nary circle, the other is so too; for if 2 and 2 have a common chord,
w and ¢ must also have a common chord, and vice versdé. We shall,
however, for the present, exclude this important particular case, and
shall suppose that neither w nor 2 is an imaginary circle. Let O, o’ be
the centres of 2 and w respectively (these conics have no real tangents,
and therefore are not parabolas); X, Y, ', ' the points at an infinite
distance on their principal axes; Z, 2’ the points at an infinite distance
on the normals to their planes; 2, 2,, w,, w, the asymptotic points of
3, w, lying on the lines XY, 2", which are the lines at an infinite
distance in the planes of the two conics, and which we shall suppose to
meet the imaginary circles 2 and ¢ in the points 2,2, and oys;. The
lines XY, 2’y are evidently corresponding lines; and becaunse the poles
of XY, with regard to 2 and 2, correspond to the poles of @’y with
regard to w and o, the points Z, ¢’ and the points O, 7 are correspond-
ing points. The anharmonic equation [Z,, Z,, ), Q,] = [0, 63, &, w,],
which is implied by the homographic relation of the figures, may also
be written [Q), Q,, 3, 5,] = (7, o3, w, w,], and expresses, in this
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form, that the imaginary angles 2,03, w0'w, are superposable; i.e.,
that the imaginary conics % and o are similar. Again, because X, Y
are harmonic conjugates of 2,0, and 3,3,, while #, y are harmonic con-
Jjugates of ww, and 6,05, 2,y correspond to X, Y ; and we may suppose
the correspondence fixed by the equation

[Qh Q,, 2“h 3, X, Y] = [“’la Wy, 0y, Oy @, y]-
This equation implies one or other of the equations

[Ql, 02’ zl’ 22, X, Y] = [”l, 0y W), Wy T, y],
or [Qh 0, 2, 2 X, Y] = [”l) O3 Wy Wy Y, .’L‘].
Of these, the former is inadmissible, as it would imply that [e), v, =, 7]
= [wy, 0,2, ¥], which is impossible, since w;, and not ¢,, is the har-
monic conjugate of w, with regard to xy. We infer, therefore, that tho
point at infinity on the major axis of = corresponds to the point at in-
finity on the minor axis of v, and vice versd. Let A,/(—1), B/(-1),
ay/(—1), b/(—1) be the principal semi-axes of = and w; A, B aro
the parameters of S, and 4, b of s; they are connected by the equation
Aa = Bb, which results from the similarity of = and w.

(40.) The Correspondence of Directions—the Principal Axes.

From the homographic relation of the two figures, it follows that to
each direction on any straight line in either figure there corresponds a
definite direction on the corresponding line. And again, to each direc-
tion of rotation round any line there corresponds a definite direction of
rotation round the corresponding line. It is easily shown (by con-
sidering in each figure two infinitesimally near positions of a straight
line in relation to a line at a finite distance) that the two figures are
either similar in respect of all rotations, or dissimilar in respect of all
rotations; 4.e., that corresponding rotations round corresponding direc-
tions are either always similar, or else always dissimilar. For clearness
we may suppose that corresponding rotations in the two figures are
similar. We shall call the lines 0X, 0Y, OZ, o'z, o%, oz the prin-
cipal axes of the two figures; and the planes 0YZ, 0XZ, OXY, o'yz,
0'zz, o'zy the principal planes; the axes OZ, o'z, which alone are cor-
responding lines, we shall call the focal axes; and the planes of XY, zy
the vanishing planes.

Each space is divided by its three principal planes into eight octants,
corresponding respectively to the eight octants of the other space.
Considering these octants as tetrahedra, of which the plane at an in-
finite distance is one boundary, and observing that in either space the
plane at an infinite distance corresponds to the vanishing plane of the
other space, we find that to adjacent octants on the same side of the
vanishing plane in cither space there correspond in the other space
adjacent octants on the same side of the vanishing planc, but that adja-
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cent octants on opposite sides of the vanishing plane in either space corre-
spond to octants diametrically opposite in the other space; so that if the
correspondence of two octants is given, that of the remaining octants is
immediately ascertained. Again, if P, Q are any two points on the
same side of the vanishing plane of S, and if p, ¢ are the points corre-
sponding to P, Q, the directions PQ, pg are corresponding directions
in the two spaces; and similarly the corresponding directions of rota-
tion round any two corresponding lines may be ascertained. We may
add that if V is any closed figure in S, which lies wholly on one
side of the vanishing plane, points in the interior of V will corre-
spond to points in the interior of a closed figure v corresponding in the
space 8 to V,

(41.) Determination of the Principal Axes and Parameters.

The geometrical construction for the determination of the principal
axes in each figure, and of the parameters A, B, a, b, is as follows. We
first obtain the vanishing plane of each figure; ¢.¢., we determine in
each figure three points corresponding to three points at an infinite
distance in the other figure; the points at an infinite distance in the
directions normal to the vanishing planes are the points Z and #, and
the points corresponding to these are the centres o' and O of the
imaginary conics w and 3 ; thus the focal axes OZ, and 02’ are known.
At the point O, in the vanishing plane of 8, take two pairs of lines cor-
responding to two pairs of rectangular lines intersecting at z’ in the
plane at an infinite distance in 5. The axes OX and OY are the pair
of lines at right angles to one another in the involution determined by
the two pairs so constructed ; # and 7, which determine o'z and oy, are
the points corresponding to X and Y. Lastly, to find the parameters,
we observe that if in any two corresponding planes the chords inter-
cepted by 2 and w are 2D ,/(—1), and 2d ,/(—1) respectively, the para-
meters of the two homographic plane figures are D and d; their homo-
graphic centres are the points of bisection of the chords, and their
focal axes are thn perpendiculars to the chords at their points of
bisection. Hence we obtain the four parameters A, B, a, b by con-
structing the homographic foci of the principal planes XZ, YZ, vz, y2.

(42.) The Confocal Quadrics.

The imaginary conic Z, in which we may suppose A >B, determines
o system of confocal quadrics, of which it is the imaginary focal conic.
The two real focal conics are an ellipse in the plane of YZ, of which
the foci (in the axis of Z) are the homographic foci of the plane YZ, and
of which the vertices, in the same axis, are the homographic foci of the
plane XZ. The focal hyperbola lies in the plane of XZ, and has of course
the vertices of the ellipse for foci, and its foci for vertices. The system
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of confocal quadrics of which » is the imaginary focal conic, cor-
respond homographically to the confocal quadrics of the system S. For
since the conics o and w correspond to the conics 2 and @, the imaginary
developable circumscribing the two former conies corresponds to the
imaginary developable circumscribing the two latter conics, and there-
fore the quadries inscribed in these corresponding developables are
themselves corresponding surfaces. Tn particular, to the focal ellipse
of S there corresponds the focal hyperbola of s, and wice wersd;
the extremities of the focal axes of the ellipses being transformed into
the extremities of the focal axes of the hyperbolas, and the extremities
of the minor axes of the ellipses into the asymptotic points of the
hyperbolas. Again, the ellipsoids of either confocal system are
changed into the hyperboloids of two sheets of the other system ; and
the hyperboloids of one sheet into the hyperboloids of one sheet. And
by considering the two pairs of homographic planes XZ, z2, YZ, yz, we
sce immediately that the eccentricities of the sections of corresponding
confocals made by corresponding principal planes are reciprocal, and that
the rectangle of their major semi-axes is equal to the rectangle of the para-
meters A Xa or BXb. Again, to the normals of any confocal there corre-
spond the normals of the corresponding confocal; the lines of curvature of
the two surfaces, their umbilics, the two systems of orthogonal develop-
ables formed by the normals of each of them, their centres of curvature,
and the surfaces which are the loci of those centres, all correspond
homographieally ; the cuspidal lines of the normal developables are
corresponding geodesic lines upon the surfaces of centres, aud the lines
of contact of two corresponding developables with those sheets of the
surfaces of centres upon which their cuspidal lines do not lie, are in
like manner corresponding lines. Further, since the normals of cor-
responding confocals are corresponding lines, the geodesics of either
surface correspond to the geodesics of the other; and the confocals en-
veloped by the developables of two corresponding geodesics are cor-
responding confocals, and the lines of contact are corresponding lines.
To the various modes of description of the lines of curvature of either
system of confocals by means of a thread stretched upon surfaces of
the system, there will correspond similar modes of description of the
lines of curvature of the other system of confocals. For an example,
we may take the general theorem of M. Chasles,

“ If an inextensible thread, of which the extremities are fastened to
two fixed points upon one of two confocal surfaces of different kinds,
is strained by the point of a pencil which moves upon the second
surface, so that the thread consists (in general) of six portions, two
of which are geodesics of the first surface, two are geodesics of the
sccond surface, while the other two are the.portions of common tan-
gents to the two surfaces included between the points of contact, the



Focal Properties of Homographic Figures. 237

point of the pencil will describe a line of curvature of the sccond
" surface.”

While an inextensible thread moves in either space in the manncr
described in this enunciation, an inextensible thread will move in
the same manner in the other space ; and the six portions of the first
thread will correspond homographically -to the six portions of the
second. But it is to be observed that the constant lengths of the
two threads will be related transcendentally to one another; as also
will the lengths of the corresponding curvilinear portions of the two
threads. )

We may add that to two geodesic arcs of which the difference is
rectifiable, there will correspond two geodesic arcs of which the differ-
ence is rcctifiable. And when the difference of two arcs of a hne of
curvature can be expressed by geodesic lines in either figure, the cor-
responding difference can be similarly expressed in the other figure.

(43.) The Point-Figures at Corresponding Points—their Focal Lines.

‘We shall next consider any two corresponding points P and p in the
two spaces. At these two points we have two homographic point-
figures, of which the relations to one another are readily ascertained.
To the cones which from P envelope the conics 2 and T, there will
correspond the cones which from p envelope w and ¢. Thus the prin-
cipal axes of the point-figures at P and p are the normals to the surfaces
of the confocal system which pass through P and p; and the focal
lines of the figures are the generators of the hyperboloids of a single
sheet which pass through P and p. We thus have the theorem :

“ Any two corresponding generators of two hyperboloids of the two
confocal systems are the axes of pencils of planes of which the corre-
spondence is equiangular.”

If the points P and p be taken on corresponding focal conics, the
two generators coincide. Thus, *“the focal conics are the loct of
points at which the correspondence of the homographic point-figures is
spheroidal.” .

It is evident that, given in one of the two spaces a point and three
generators (of the same or different hyperboloids), and the corresponding
things in the other space, we can immediately, by means of the equi-
angular pencils of planes, determine the point p in either space which
corresponds to a given point P in the other. We might take for the
three generators in each space any three tangents to a focal conic ;
the simplest construction being perhaps that in which the tangents
at the vertices of the focal conics are employed as the axes of equi-
angular pencils.

We thus obtain the following rule, which is well adapted to the
methods of descriptive geometry : — ¢ Project the given point P
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orthogonally on the planes of XZ, YZ, and using the focal radii
vectores of the projections, as in Art. 5, determine the points corre-
sponding to them in the planes of 2 and y#: these points are the
orthogonal projections of the point p.”

(44.) The Strain Ellipsoid—ats Cyclic Planes and Focal Asymptotes.

The position of the cyclic planes of the homographic figure at P
may be ascertained by means of the focal lines of the figure at p. But
these cyclic planes are also the cyclic planes of the “strain ellipsoid *
at P; i.e., of the evanescent ellipsoid which has its centre at P, and
corresponds to an evanescent sphere having its centre at p. For this
evanescent ellipsoid has for its asymptotic cone the imaginary cone
which from P envelopes Z, and is thus concentric, similar, and similarly
situated with the auxiliary ellipsoid of M. Chasles, .., with the
ellipsoid of which the principal axes are equal to the axes major of
the three confocal surfaces passing through P, and are normal to those
three surfaces respectively (Apergu historique des Méthodes en
Géométrie, Note 25). It appears at the same time that the asymptotes
of the focal conic of the auxiliary ellipsoid, or of the strain ellipsoid,
coincide with the focal lines of the point P.

The cyclic planes at P and p are the “planes of no distortion” at
those corresponding points ; %.e. (1) evanescent lines passing through
P and lying in either cyclic plane, are altered in a constant ratio; (2)
angles in a cyclic plane at P are transformed into equal angles in the
corresponding cyclic plane ; so that P, p are homographic foci of either
pair of cyclic planes. The second property is analogous to the
property that the focal lines are the axes of equal homographic pencils
of planes. If we observe that the focal asymptotes of a gquadric are
the axes of its circumscribing right cylinders, we may enunciate a
property of the focal lines analogous to the first property of the cyclic
planes :—

“ Planes parallel to either focal line, and infinitely near to P, are
transformed into planes, which may ultimately be regarded as parallel
to the corresponding focal line, and of which the distances from p are
in a constant ratio to the distances of the first planes from P.”

We may express this by saying that a generating line of a confocal
hyperboloid is, at any point of it, a line of equal transverse elongation.
And since the right cylinder, of which the focal line at P is the axis,
and which circumscribes the strain ellipsoid at P, is transformed into a
right cone of which the vertex lies on the vanishing plane of s, we see
that if the point P vary its position on a given hyperbolic generator,
the ratio of transverse clongation varics inversely as the distance of p
from the vanishing plane of s, or directly as the distance of P from
the vanishing plane of S.
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(45.) The Canonical and Elliptic Equations.

If we represent by X, Y, Z, x,9, 2, the coordinates of corresponding
points in the two spaces referred to their principal axes, the canonical
equations of the homography will be

Zz=Aa=Bb )
Xz = Az aZ = aX
TomBy| o ST (B,

If, again, we denote the elliptic coordinates of corresponding points
in either space (veferred to the corresponding confocal systems) by
Ay, A,y Ay, N, Ay, A, the homographic equations are

AM=AN=AN=Aa=Bb.....cce.c....... (B);

so that every general homographic transformation may be represented
as a transformation of the elliptic coordinates of a point into their
reciprocals.

(46.) Determination of the Strain Ellipsoid.

Either of these sets of formulm will serve to determine the ratios of
the axes of the strain ellipsoid at P to the radius of the evanescent
sphere at p. The rectangular formule show that the ratio of an eva--
nescent volume at P to the corresponding volume at p is that of Z* to
Aaxab; whence, if 6A,, 07, 0A; are the semi-axes of the strain
ellipsoid at P, and ¢ the radius of the evanescent sphere at p,

A AL A, VA
6 — = )
3 Aaxal

or, since ANAA; = ABZ, and Zz=Ae, 0= :

P
%

Or again, transforming by the equations (B) the elliptic formula

(A1 — A7) (A = 4 )]
13, = 3 . = 1A
ey \/ (A; — Az) (A: — B') WLy,
. _AaxAB dz,
we find doy = AL, A
or 4%, _ de
A, Tz ’

which agrees with the preceding determination of 6, the symbols dZ,
and do, representing corresponding elementary ares, normal to (4,)
and (A).

Our limits prevent us from applying these formulwe to the determina-
tion of the loci corresponding to those considered in Arts. 17—19. For
the same reason, we omit the clementary theorems relating to the cur-
vature and torsion of curve lines, and the curvature of curve surfaces.
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(47.) The Parameters of the Confocal and Concyclic Cones,
at any Point.

The equation of the imaginary cone which from the point P en-
velopes 3 is

v z_,
AY A AT

and the cone which from the same point envelopes the confocal surface,
of which ¥ is the semi-axis major, is
x? Y? z
2 + 2 2 + 2 =
Al_\l‘-ﬂ Az—'q'- Aa—'\l’g

so that the coefficients (designated by A, B, T, a, 8, y in Art. 30),
which determine the homography of the point-figures at P and p,
are, in fact, the elliptic coordinates of those points; and the para-
meters of the confocal cones of the point-figures ave the same as the
parameters of the confocal quadrics which they envelope. Thus, the
formulme of Arts. 30, 31 are immediately applicable to the figurcs at P
and p. And, if ® is the parameter of a concyclic cone at P, so that

= A—’;%, where ¥, ¥, are the parameters of two confocal quadrics

1 %12
touching any line of (®), the elongation at P in the direction of any
line of (®) is given by any one of the formule
T_AdA o AMA, 1 _Z6_B 7' @
T AaxAB  AsxAB ¥V, Az a V¥, 1z

T and r representing corresponding elements at P and p. It will be
observed that, at equal distances from the vanishing plane, the elon-
gation is the same on all lines touching the same two confocal
quadrics.

.
b

(48.) Lines Tangent to two Confocal Quadrics.

Let L, and L; be two straight lines in the space S, each of which
touches the two confocals (¥,) and (¥3) ; let also 1, L, (Y1), (¥») be the
corresponding lines and confocal quadrics in the space s. The tan-
gent planes L,¥,, I,,'¥, (i.e., the tangent planes to (¥,), (¥,), at their
points of contact with L,) are at vight-angles to one another, and ave
transformed into two planes which are at right-angles to one another.
Again, the pair of planes, tangent to any third confocal surface (¥;),
which intersect in L, muke the same angles with the bisccting planes
L, ¥, L)Y, that the pair of planes, tangent to the same confocal surface
(¥,), and intersecting in L., make with the bisccting planes L,¥,, L,¥,.
For the involutions of pairs of planes determined by the confocal
system at the lines Ly and L, are necessarily equiangular in respect of
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all their corresponding pairs, because they are equiangular in respect of
the coincident pairs of planes determined by (¥,) and (¥,), and of the
imaginary pair of cyclic planes determined by the imaginary circle at
an infinite distance. From this theorem (of which M. Chasles has
given a different demonstration ; see Liouville, Vol. XI., First Series,
p- 109) we infer that equal dihedral angles, similarly placed in the
pencils of planes at Ly and L,, are transformed into dihedral angles
equal to one another, and placed similarly to one another, in the pencils
of planes at 7, and I, Or again, if 1 and ¢ are the angles made with
1,¥, and L, by corresponding planes passing through L; and /;, and
if we denote the major semi-axes of the surfaces (¥,), (¥.), (¥1), (¢=)
by ¥, ¥, ¢1, ¥, we shall have the equation

tan T W Y,

tand ¥, ¥
which results immediately from a formula given by M. Chasles (loc. cit.
p- 106), combined with the equations of transformation (B) ; and which
shows, in conformity with our theorem, that the ratio of tanI to tan:
is the same, whatever common tangent of (¥,) and (¥,;) we consider.
‘We have, in fact, the still more general theorem :

“All pencils of planes, of which the axes are touched by two con-
focals having their major semi-axes in a given ratio, have that ratio for
their modulus of transformation ; and in all such pencils, the involu-
tions which are transformed into equiangular involutions, are equi-
angular with one another,” which is an immediate consequence from
Art. 47, and 30, e. ,

Since a generating line of a confocal hyperboloid may be regarded as
a line of which the two tangent confocals coincide, this enunciation in-
cludes, as a particular case, the equiangular property of the generating
lines.

We have seen that the focal conics are the loci of points at which the
transformation is spheroidal. We may now add, that at any one of these

points the modulus of transformation (Art.38) is % , if Q is the semi-axis

major (A or B) of the focal conic on which the point is taken, and P is
the semi-axis major of the confocal quadric which passes through the
point.

(49.) Iwory’s Theorem.

If on two confocal surfaces of the same kind in the space S we con-
sider two points which correspond to one another in the sense in which
that term is employed in Ivory’s theorem, these two points will be
transformed into two others in the space s, which will also correspond
to one another in the same sense. This principle, which is immediately
verified by means of the equations (A), may serve to transform some

T
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geometrical, and even physical, propositions. For example, we see
that to every focal generation of a quadric according to Jacobi's
method, there corresponds homographically a similar focal generation
of another quadric.

(50.) Equi-Segmental Azes and Planes.

The equi-segmental axes of all planes in the space S, which cut the
vanishing plane in straight lines parallel to a given straight line, (or,
which is the same thing, of all planes which pass through a given
point at an infinite distance on the vanishing plane,) lie on two planes
at equal distances from the vanishing plane and parallel to it.

For, in the first place, parallel planes in the space S have their equi-
segmental axes at one and the same distance from the vanishing plane,
since to parallel planes in the space S there correspond planes in the
space s, which intersect the vanishing plane of that space in the same
straight line, and of which the foci are consequently at a constant dis-
tance from one another; this constant distance being equal to the dis-
tance of the equi-segmental axes of the planes in the space S. Again,
planes in the space S, which intersect the vanishing plane in the same
straight line, have their equal axes situated at equal distances from the
central plane. For to these planes correspond parallel planes in the
space s; and, by what has just been proved, the equi-segmental axes of
these planes lie in two planes parallel to the vanishing plane ; therefore
the equi-segmental axes of the planes in S lie in two corresponding
planes, i.e. intwo planes parallel to the vanishing plane. The theorem
itself results from the combination of these two particular cases of it.

It may be worth while to verify the theorem analytically. If
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is the equation of any plane of S, the equation of the corresponding
plane of s is
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which meets the vanishing plane of s in the line
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The square of the semichord determined on this line by the imaginary

conic w, or ai:+"£+1=0
a b2 ?
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is _ (@ +F) (P4 0+ P
@+
and this square, multiplied by the square of the sine of the angle be-
tween the given plane and the vanishing plane of S, becomes
‘12}72'*’ b'lq'l
———
g
an expression of which the value depends only on the ratio of p to ¢.
It follows from this theorem, that to ascertain the position in the space
S of the equi-segmental axes of any plane whatever, it will suffice to
attend to the principal equi-segmental axes, i.e. to the equi-segmental
axes of planes which pass through the focal axis. Let P be such a
plane, and let D,/(—1) be the semi-diameter of the imaginary focal
conic lying in that plane, d.,/(—1) the semi-diameter of the imaginary
focal of s, determined by the corresponding plane. It will be found
that Dd=Aa ; so that we have for the semi-distance d of the equi-

A
segmental axes of the plane P, the expression d = -—]-)3 . Thus all the

planes, loci of real equi-segmental lines, or, as we shall term them, all the
equi-segmental planes of S, are comprised between two planes, at dis-
tances @ and b on the positive side of the vanishing plane, and between
two planes symmetrically situated on the negative side of the same
plane. Again, since the semi-diameters of S, which are equally inclined
to its principal axes, are equal to one another, each equi-segmental
plane contains two distinct series of equi-segmental parallels, the two
series bamg equally inclined to the plane of ZX, or ZY ; in the two
extreme pairs of equi-segmental planes these two series coincide with
one another, and their common direction is that of one of the principal
axes OX or OY.

If we consider two planes intersecting in the axis of Z, and inclined
at an angle I to the plane of ZX, we have for the square of the semi-
distance of their equi-segmental lines the expression,

d* = a’cos’ I + V?sin’ I
The corresponding inclination i is given by the equation

tan] = i tanz zta.n 1

and the corresponding value of D? is

D? = A?cos®i + B?sin®e.
These equations show that if we imagine the spaces S and s so placed
that their focal axes coincide, while the axes of X and Y lie in the
axes of y and z respectively, the principal equi-segmental axes ot either
space will be those generating lines of hyperboloids of tho other space,
which lie in plancs parallel to the central plane.
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The homographic relation of any two corresponding equi-segmental
planes is very simple. If we conceive of the points of each plane as
referred to its principal equi-segmental axes, the corresponding co-
ordinates of corresponding points will be equal, and only the angle
between the axes will be different in each plane. These angles are never
equal to one another (except in the excluded case A=B, a=b); they
are, however, supplementmy to one another in the principal equi-seg-
mental planes, t.e. in the planes defined by the equations Z = =+ /(ab),
z = % ,/(AB), since in these planes we have

tan’I — B, tan’s = Zi, tan I tan ¢=1.
A «

To obtain the straight line in s, which corresponds to any given
straight line in S, we may either determine its projections on the two
focal planes, by means of the equi-segmental axes in those planes; or
we may, instead, consider the interscctions of the given straight line
with any pair of equi-segmental planes of S, and obtain the corre-
sponding points in the corresponding equi-segmental planes of 5. We
have, however, in every case to measure the equal corresponding
segments in corresponding directions ; and these can always be ascer-
tained by inspection, if we have first fixed the correspondence of the
eight octants of each space to the eight octants of the other.

(5L.) DIroperties of the Hyperbolic Generators.

The gencrating lines of the confocal hyperboloids possess a metrical
property with regard to the equi-segmental planes, which may be very
variously expressed, according to the equi-segmental planes considered.
Thus :

“The intercept made in the space S upon any generator of a confocal
hyperboloid by the tangent planes to that hyperboloid, which are
parallel to the vanishing plane, is to the corresponding intercept in
the space s in the constant ratio of /(AB) to /(ab).”

Or, again:

“ The intercept made on any hyperbolic generator of S by the two
equi-segmental planes Z = == ./(«ab), is to the corresponding intercept in
the space s in the inverse ratio of the major-axes of the hyperboloids
to which the two generators belong.”

In connexion with this property we may mentlon the following
which, however, docs not depend on the general homographic tlans-
formation we are considering +—

“If one of two confocal hyperholoids be transformed into the other
by the transformation of Ivory, scgments on any generator of the one
are transformed into equal segments on the generator of the other.”
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(52.) Homographic Spaces placed Symmetrically.

Tt is in general impossible to place two homographic spaces S and
s in the same space, so that any given point of that space shall have
the same corresponding point, to whichever of the two spaces it is
considered to belong. The conditions that thisreciprocal relation of tho
two spaces should be possible are, that corresponding rotations in the
two figures should be similar, and that

: ©)...... A=}, B=a,
either of these equations, of course, implying the other. For, if these
equations be satisfied, and if corresponding rotations be similar, we
may place the axes of OZ, OX, OY upon the axes of 0z, £oy, *oz,
inasmuch as the positive directious of OZ and oz are not corresponding
directions. Writing, as we may then do, &= X for Y and £ Y for X
in the equations (A), we find
22 = ab, 2X = & by, 2Y = =+ av,

and these equations are not altered by interchanging simultaneously
X,z; Y,y; 4,2 The points which coincide with their conjugatcs
are the points of the lines

e=+J/@), y==v(5)a
2= —/(ab), 'y==FJ(§) @;

i.¢., the principal equi-segmental planes of S coincide with their corres-
ponding planes, and in each of these planes the points of one of the
principal equi-segmental axes coincide with their corresponding points.
Every plane which passes. through either of these lines, corresponds
to itself, and so does every line which meets both of them. Again,
we may also place the axes of 0Z, OX, OY upon the axes of —oz, %oy,
= oz ; in this case, the equations (A) become .
2= —ab, X=-=:fby, 2Y=az,

which are still symmetrical, but which give imaginary loci of coincident
points. Either the uppcr signs, or else the lower signs, may be taken
in each case; so that the two spaces admit of four different symme-
trical positions.

‘We may arrive at the preceding results without using the equations
(A); for it is readily seen that the necessary and sufficient conditions
for the reciprocity of the two homographic systems are that the imaginary
conics 2 and w should coincide, and that those points on the two conics
should be coincident, which correspond to the same points of the .
imaginary circle at an infinite distance. The cquations (C) arc the
conditions that the two conics shonld be equal in all respects; if these
equations are satisficd, the two conics can be brought into eoincidence
in four different ways, and in each of these four ways the points which
ought to coincide will coincide, if corresponding rotations in the two
spaces arc similar,
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(83.) Cuse of a Spheroidal Homography.

It is hardly necessary to do more than mention the case of a
spheroidal homography, in which A=B, a=b. All meridian planes of
the space S have the same foci at a distance = A from the equatorial
(or vanishing plane), and their equi-segmental axes lie in the same two
parallel planes at a distance =a from the equatorial plane.

The angle contained by any two meridian planes is unchanged in
the transformation; and the homographic relation is the same for all
puirs of corresponding meridian planes. Thus, all angles between
planes and lines intersecting at either focus remain unchanged in
the transformation, and the pencils in space at corresponding foci are
superposable.  Similarly, each equi-segmental plane is superposable
upon the plane corresponding to it. The two spaces may, in fact, be
conccived as generated by the equiangular rotation of two homo-
graphic plancs round their focal axes. The condition that they should
be capable of occupying a reciprocal position, is that the distances
between the foci in each space should be equal.

(54.) Historical Note.

The existence of two pairs of parallel equi-segmental axes in any two
homographic plane figures was established by M. Moebius in 1827.
(“ Barycentrische Calcul,” p. 320, sect. 230.) M. Moebius also
showed that, if the corresponding points of two corresponding equi-
segmental axes coincide in the line of intersection of two homographic
planes, the two planes are in perspective. Magnus (* Sammlung von
Aufgaben und Lehrsitzen aus der Analytischen Geometrie,” Berlin,
1833, p. 41, sect. 12) proved that in two homographic plane figures
there exists a pair of corresponding points at which the corresponding
pencils are equiangular; and that, if the figures be placed in the
same plane with these * centres of collineation ” coincident, and either
of them rotate in its own plane round the centre of collineation, it will
become homological with the other in two diametrically opposite posi-
tions, in one of which positions one pair of equi-segmental axes will
coincide, while the other pair will coincide in the other position.
Magnus expressly says that * of two collinearly-related systems” [i.e.,
two homographic plano figures in which thestraight lines at an
infinito distance are not corrcsponding lines] “each has, in general,
only one centre of cullineation.” As Magnus tacitly supposes that the
figures are not in any position whatever with regard to one another, but
are already placed in the same plane, this statement is not untrue ; but
it i only part of the truth, and the analysis by which Magnus obtains
one centro of collineation in each figure, will also supply a second pair,
if we change the sign of the constunt p in the cquations (1) of p. 42
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loc. cit. Tt is of course quite true that if the two figures are once placed
in the same plane, there is only one point in each which can be regarded
as a centre of collineation ; and this, which Magnus has proved ana-
lytically, Dr. Salmon has also shown geometrically (* Higher Plane
Curves,” Art. 230, p. 246). But it is to be remembered that two
planes can be made to coincide in two different ways according as they
are placed face to face, or both facing the same way, and, in one of
these positions of coincidence, one of the pairs of foci are the centres of
collineation, and the other pair in the other position. It is worth while
to add that though, as Dr. Salmon has observed, the position of the
imaginary circular points at an infinite distance is unaffected by any
motion of translation or rotation of a plane figure in its own planoc,
those two imaginary points are interchanged with one another if the
figure be rotated, through an angle of 180° round any axis in its own
plane. And the change of the centre of collineation, which takes place
when one of two homographic figures, of which the planes are coinci-
dent, is thus rotated, is a necessary consequence of the interchange of
the imaginary cyclic points in the rotated figure.

In the “Traité de Géométrie Supérieure,” only one pair of equi-
segmental axes and one pair of foci are expressly mentioned. But the
omission is only accidental, as the methods by which one pair of foci
and one pair of equi-segmental axes are obtained wonld equally supply
the other pair. The theorem, that “if two planes are in perspective, the
foci are the points in which they are intersected by the perpendiculars
let fall from the centre of perspective on the planes bisecting the angles
contained by the two planes,” is an immediate inference from a prin-
ciple, first given by M. Chasles (*‘ Aper¢u de I'Histoire des Mdéthodes
en Géométrie,” note iv.), and subsequently employed by Mr. Mulcahy
(* Principles of Modern Geometry,” cap. VIIL, art. 115).

Subsequently to the communication of this memoir to the London
Mathematical Society, but (it is unnecessary to say) quite indepen-
dently of it, three papers have appeared, relating in part to the samo
subject. (1) In the May number of the “Nouvelles Annales de Mathémas«
tiques,” M. Abel Transon obtains the theorem of the two pair of foci
by the application of & very gemeral analytical method ; he accurately
describes the similarity and dissimilarity of the foci, and speaks of the
theorem itself as *une propriété de ’homographie qui n’avait peut-
étre pas encore été remarquée.” (2) M. Richelot, of Kénigsberg, in a
paper dated Oct. 29, 1868, and published in the second part of the
70th volume of Crelle’s Journal, has considered the analytical theory
of homographic figures in space, and has been led to the consideration
of their focal properties. It would seem, however, that M. Richelot
supposes the tangents of the focal conics to be the only axes of
equiangular pencils of planes; whereas, as we have shown, tliis pro-
perty is possessed by every generating line of any confocal hyperboloid.
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The cause of the oversight (if it is one) appears in the words : “ s
muss, in der That, eine Axe im obigen Sinne [ie., if we understand
M. Richelot correctly, a line which is the axis of a pencil of planes
equiangular with its corresponding pencil] die Eigenschaft besitzen,
dass unter den unendlich viclen auf ihr senkrechten Ebenen eine ex-
istirt,deren entsprechende Ebene auf der der Axe entsprechenden Gerade
senkrecht steht ” (p. 141). This property, however, is not possessed
by every axis of a pencil of planes equiangular with its corresponding
pencil, but only by those which lie in one of the principal planes. M.
Richelot speaks of a forthcoming work of a pupil ofhis own, M. Maegis,
as intended to contain a complete analytical theory of homography in
space. (3) In the November number of the Nouvelles Annales de Ma-
thématiques, M. Housel enuntiates the theorem: “En deplagant sans
déformation deux figures homographiques dans I'espace, on peut les
rendre homologiques.” This theorem is not in accordance with Art. 50
of the present Paper, becanse in that article we have in effect shown
that corresponding equi-segmental planes are never superposable cxcept
in the case of a spheroidal homography. DBut the analysis of M. Houscl
seems insufficient to establish his conclusion, since it is not shown that
the values ultimately obtained of the ten unknown quantities of Art.
XIIIL. of M. Housel’'s Memoir actually satisfy the twelve equations of
that article. [The values of the unknown quantities are not obtained in
an explicit form, and there are only ten of them, and not eleven, because
p depends on X, Y, Z.] And, considered in itself, the conclusion is
inadmissible; for any homological transformation of space must
change the imaginary circle, in which all spheres intersect, into a circle,
whereas in general that circle is changed into an imaginary ellipse by
a homographic transformation. Again, the homographic relation de-
pends on fifteen constants, the homological relation on seven, and the
six constants of displacement can only reduce the fifteen constants to
nine. Thus it. would seem & priori that two conditions must be
satisfied in order that two homographic spaces should be capable of a
homological position. And the equation A=B (or a=0J) of Art. 50
is equivalent to two independent relations connecting the fifteen con-
stants of the homography, since that equation is equivalent to the two
conditions that a certain conic should be a circle.

Note.—The focal properties of homographic point-figures might bo obtained by
simple considerations of perspective (sceArts. 21 and 37). 'Wo havo, however, pre-
ferred to deduce these properties from their genuine source—the propertics of the
imaginary circle in which all spheres intcrsect one another at an infinite distance.
In the case of homographic plane figures, we have ventured to employ both methods
successively (Arts. 1—4, and Art. 6). This has been done at some risk of repeti-
tion; but it secmed desirablo to cxhibit this part of tho theory in its most ele-
mentary and practical, as wcll as in its most abstract form, in the hope that some
of the simpler results may be found of use in the actual practice of perspective.



APPENDIX.

IN accordance with the wishes of the Council, the second volume of
the Socicty’s Proceedings closes with the present Number. An attempt
has beecn made to rccover the shorter, and in many cases very inter-
esting, communications which have from the outset been given in the
course of discussions on the main papers of the Evening Meetmgs A
few of these are appended below, and references are, in some cases,
given to the works in which others subsequently appeared.

Taking these communications in the order in which they were made,
we have * The regular Hypocycloidal Tricusp,” by M. Jenkins, B.A.,
(read June 19th, 1865) ; a portion of this paper is given in the “ Edu-
cational Times” for Septeruber, 1865.* A proof of Euclid i. 47 not
involving the definition of a parallelogram,” communicated by A. De
Morgan, F.R.A.S., (Nov. 20th, 1865). This proof, which is given in
many German editions of Euclid, is now also to be met with in Cassell’s
Elements. *“On Motion in a Circle, and its relation to Planetary
Motion,” communicated by Prof. Sylvester, (Dec. 18th, 1865,) has
since been given in “ Nuge Mathematice,” extracted from the ¢ Phi-
losophical Magazine for 1866.”

At the samo meeting, Prof. Cayley gave the following simple method
for finding the volume of a Tetrahedron. “If a,) be the lengths of
two opposite sides, A their inclination, A the length of their shortest
distance ; the section by a plane perpendicular to the line %, at a distance
@ from the side 0, is a parallelogram, angle A and sides %a, h—2 b;

whenco eloment of volume is
4.2 "bsinnde = absin . (h—2) de;
h h I}
whence integrating from # = 0, to # = %, the whole volume is
ab sin A (ha ha)
W \373
“The Centres of Algebraical Curves and Surfaces,” by S. Roberts,
M.A, (read March 19th, 18G6,) was subsequently printed in the
“Quarterly Journal of Mathematics,” Vol. IX., No. 33, p. 25.
A fuller account of Prof. Sylvester’s paper, read at the samo meeting,

* Mathematical Reprint, Vol. IV., p. 68.

=} abh sin \.”
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of which an abstract is given in No. VI., appears in the * Proceedings
of the Royal Society,” No. 84, 1866, whero it is entitled, * On the
Motion of a Rigid Body moving freely about a fixed point.”

At the meeting held April 16th, 1866, Prof. Cayley called attention
to the theorcm, that the differenco between two consecutive prime
numbers may exceed any given number N—1 whatever. For if
a, b, ¢ ... I:are the prime numbers not greater than N, then abc . ..%k+1,
and abc . .. k+14+N may be one or both of them prime, but all the
intermediate numbers are composite; that is, the difference of the two
successive primes is = N at least. Mr. A. J. Ellis, at the same
meeting, communicated the following constructions :—* From a pair of
conjugate diameters in an ellipse, to find the foci and the axes.” Let
CP, CD be the conjugate semi-diameters. Through P draw MPN,
bisected in P, twice the length of CD, and perpendicular to it. Draw
CS bisecting the angle MCN, and a mean proportional between the
lengths of CM, CN. S is one focus, whence H the other, and direc-
tious of the axes are given. Draw PN, DR perpendicular to CS, then
CA, CB being the semi-axes, their lengths are given by the equations

CA? = CN?+ CR?, CB?= PN*+ DR

If, by the conjugate diameter CD in an hyperbola, we mean the
diameter of the conjugate hyperbola which is parallel to the tangent at
the extremity P of the first diameter, and preserve the same letters,
the construction is the same, with these differences; MPN must be
parallel to CD (instead of being perpendicular to it), and CA’=
CN?w» CR?, CB? = PN?»» DR?  This construction is casier and more
complete than that given for the ellipse only, in Chasles’ ¢ Sections
Coniques, art. 205.” The demonstration depends upon Proceedings of
the Royal Society, 14th June, 1866, vol. 15, p. 200, equations d, e,
(where in equation d, read o’e for o'¢’), first given by Mr. Ellis, and
having a much wider application. A solution of the problem, * Given
a pair of conjugate diameters of an ellipse, to find any number of points
on the curve,” by R. Tucker, M.A., (communicated Nov. 22nd, 1866,)
has since appeared in the “Mathematical Reprint,” vol. VIL, p. 28.
¢ Proof of the Rectangle of Forces,” by J. J. \Valker, M.A., (communi-
cated March 28th, 1867,) was given subsequently in the ¢ Qualterly
Journal of Mathematies,” Vol. IX., No. 34, p. 173.

It remains only to add a few words of explanation about the two
Indices. They are intended to be mutually exclusive. The first gives
the names of all the authors of papers, and nearly all their communi-
cations; the second is concerned with points which turn up in the
communications themseclves.

A short list of the Errata which have been detected follows; doubt-
less others exist. The Sccrctaries will be glad to receive a list of any
which have escaped their notice, for insertion in a future Volume.

R.T.





