Report Open Access

Benchmarking Machine Learning in HEP

Sabina Manafli

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CERN openlab</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">summer student programme</subfield>
  <controlfield tag="005">20200120172933.0</controlfield>
  <controlfield tag="001">1967555</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">316337</subfield>
    <subfield code="z">md5:39cc8555b5169f03a66a72e868880c74</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-12-05</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-cernopenlab</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERN openlab summer student</subfield>
    <subfield code="a">Sabina Manafli</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Benchmarking Machine Learning in HEP</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-cernopenlab</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The interest on machine learning workloads in the HEP community has increased exponentially in the last years, making more and more important the need of a thorough benchmarking of the most relevant/significant workloads that are going to run on the experiments. The purpose of this project is to build a set of techniques to benchmark deep neural networks on different&lt;br&gt;
hardware. By using different tools and methodologies we make several important observations and conclusions based on the performance of deep learning application running on GPUs which have different compute capabilities.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.1967554</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.1967555</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">report</subfield>
All versions This version
Views 157156
Downloads 136135
Data volume 43.0 MB42.7 MB
Unique views 147146
Unique downloads 134133


Cite as