Report Open Access

Benchmarking Machine Learning in HEP

Sabina Manafli


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/cd2748d5-53da-473f-a2aa-6783cd79a496/Report_Sabina_Mana%EF%AC%82i.pdf"
      }, 
      "checksum": "md5:39cc8555b5169f03a66a72e868880c74", 
      "bucket": "cd2748d5-53da-473f-a2aa-6783cd79a496", 
      "key": "Report_Sabina_Mana\ufb02i.pdf", 
      "type": "pdf", 
      "size": 316337
    }
  ], 
  "owners": [
    31739
  ], 
  "doi": "10.5281/zenodo.1967555", 
  "stats": {
    "version_unique_downloads": 134.0, 
    "unique_views": 146.0, 
    "views": 156.0, 
    "version_views": 157.0, 
    "unique_downloads": 133.0, 
    "version_unique_views": 147.0, 
    "volume": 42705495.0, 
    "version_downloads": 136.0, 
    "downloads": 135.0, 
    "version_volume": 43021832.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.1967555", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.1967554", 
    "bucket": "https://zenodo.org/api/files/cd2748d5-53da-473f-a2aa-6783cd79a496", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.1967554.svg", 
    "html": "https://zenodo.org/record/1967555", 
    "latest_html": "https://zenodo.org/record/1967555", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.1967555.svg", 
    "latest": "https://zenodo.org/api/records/1967555"
  }, 
  "conceptdoi": "10.5281/zenodo.1967554", 
  "created": "2018-12-05T10:46:27.293005+00:00", 
  "updated": "2020-01-20T17:29:33.649451+00:00", 
  "conceptrecid": "1967554", 
  "revision": 8, 
  "id": 1967555, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1967555", 
    "description": "<p>The interest on machine learning workloads in the HEP community has increased exponentially in the last years, making more and more important the need of a thorough benchmarking of the most relevant/significant workloads that are going to run on the experiments. The purpose of this project is to build a set of techniques to benchmark deep neural networks on different<br>\nhardware. By using different tools and methodologies we make several important observations and conclusions based on the performance of deep learning application running on GPUs which have different compute capabilities.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Benchmarking Machine Learning in HEP", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1967554"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1967555"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "cernopenlab"
      }
    ], 
    "keywords": [
      "CERN openlab", 
      "summer student programme"
    ], 
    "publication_date": "2018-12-05", 
    "creators": [
      {
        "affiliation": "CERN openlab summer student", 
        "name": "Sabina Manafli"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "report", 
      "type": "publication", 
      "title": "Report"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1967554", 
        "relation": "isVersionOf"
      }
    ]
  }
}
157
136
views
downloads
All versions This version
Views 157156
Downloads 136135
Data volume 43.0 MB42.7 MB
Unique views 147146
Unique downloads 134133

Share

Cite as