Report Open Access
Sabina Manafli
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.1967555</identifier> <creators> <creator> <creatorName>Sabina Manafli</creatorName> <affiliation>CERN openlab summer student</affiliation> </creator> </creators> <titles> <title>Benchmarking Machine Learning in HEP</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2018</publicationYear> <subjects> <subject>CERN openlab</subject> <subject>summer student programme</subject> </subjects> <dates> <date dateType="Issued">2018-12-05</date> </dates> <resourceType resourceTypeGeneral="Report"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1967555</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.1967554</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/cernopenlab</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The interest on machine learning workloads in the HEP community has increased exponentially in the last years, making more and more important the need of a thorough benchmarking of the most relevant/significant workloads that are going to run on the experiments. The purpose of this project is to build a set of techniques to benchmark deep neural networks on different<br> hardware. By using different tools and methodologies we make several important observations and conclusions based on the performance of deep learning application running on GPUs which have different compute capabilities.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 157 | 156 |
Downloads | 136 | 135 |
Data volume | 43.0 MB | 42.7 MB |
Unique views | 147 | 146 |
Unique downloads | 134 | 133 |