Sharing Time and Code in a Browser-Based Live Coding

Environment
Charlie Roberts Karl Yerkes
University of California at Santa Barbara University of California at Santa Barbara
charlie@charlie-roberts.com yerkes@mat.ucsb.edu
Danny Bazo Matthew Wright
University of California at Santa Barbara University of California at Santa Barbara
dannybazo@mat.ucsb.edu matt@create.ucsb.edu

JoAnn Kuchera-Morin
University of California at Santa Barbara
jkm@create.ucsb.edu

ABSTRACT

We describe research extending the live coding environment Gibber with affordances for ensemble, networked, live
coding performances. These include shared editing of code documents, remote code execution, an extensible chat system,
shared state, and clock synchronization via proportional-integral control. We discuss these features using the framework
provided by Lee and Essl in their 2014 paper Models and Opportunities for Networked Live Coding.

1. Introduction

Collaborative editing of documents has been a staple of browser-based authoring tools for many years, with operational
transforms (Ellis and Gibbs 1989) enabling writers to freely edit documents with other authors concurrently. Concur-
rent editing of shared documents is especially promising for ensemble live-coding performance, as it offers performers
the ability to view and edit the work of their fellow performers, but it also creates a variety of challenges. Having
implemented concurrent editing of code in two different environments for live coding performance, we share lessons
learned and outline feedback mechanisms to help inform ensemble members when code is executed during performance
and who executed it. In addition, we describe research that automatically synchronizes Gibber instances to a master
rhythmic clock via PI control structures, even with the inherent jitter imposed on communications by the TCP-based
WebSocket protocol.

Our research enables a group of performers to sit in a room with their laptops, join a network, execute a single line of
code, and immediately enter an ensemble performance where each performer’s code is freely available for editing by
every member and all clocks are synchronized. We call this system Gabber; it works inside of the browser-based live
coding environment Gibber (Roberts and Kuchera-Morin 2012).

2. Strategies for Networked Ensemble Performance

Lee and Essl survey strategies enabling networked live coding performances in (Lee and Essl 2014a). Gibber incorporates
many of these strategies; this section builds off their work by describing Gibber’s networked ensemble affordances using
their terminology.

2.1. Time Sharing

The first strategy discussed by Lee and Essl is time sharing, which concerns synchronizing events between performers. Al-
though Gibber initially had no methods for sharing time, we have addressed this problem by phase-syncing all schedulers

mailto:charlie@charlie-roberts.com
mailto:yerkes@mat.ucsb.edu
mailto:dannybazo@mat.ucsb.edu
mailto:matt@create.ucsb.edu
mailto:jkm@create.ucsb.edu

in ensemble performances as described in Section 3. Despite the research outlined here on temporal synchronization, we
note that there is a rich terrain of performance possibilities that can be explored without synchronization; three authors
on this paper have successfully given a number of such performances (Roberts et al. 2014).

2.2. Code Sharing

Gibber implements code sharing at a number of different levels. For asynchronous collaboration, Gibber provides a
centralized database enabling users to save and retrieve the programs (aka giblets) they create. This database is searchable,
and users can provide a variety of metadata about giblets to aid in the search process. Giblets can be easily iterated and a
versioning system enables users to examine changes throughout a giblet’s development. Most importantly, every giblet
can be accessed via a unique dedicated link, providing an easy mechanism for users to distribute their work to others.

Gibber’s initial synchronous affordances enable any registered Gibber user to start collaboratively editing a code docu-
ment with a remote user (who can be located anywhere with internet access) by simply clicking their name in one of
Gibber’s chatrooms; this feature also enables users to remotely execute code across the network if permission is granted.
In this instance, users can either find each other through happenstance by joining the same chat room, or users who know
each other can agree to meet in a particular chat room to participate in a shared editing session together. We envision
the second instance being particularly useful for classes taught in computer labs or via distance learning; a teacher can
have all students meet her/him in a particular chat room and then assist students as needed via the collaborative editing
features.

Although performances consisting of a single, shared code editor initially seemed promising, in practice they proved
problematic (Wakefield et al. 2014), as program fragments frequently shifted in screen location during performances
and disturbed the coding of performers. A better strategy is to provide a dedicated shared editor for every member of
the performance; this strategy was adopted in the Lich.js live coding environment (McKinney 2014) with read-only code
editors. In other words, with N players there are N collaboratively editable documents, along with a social convention
that each document uniquely “belongs to” or is somehow primarily associated with a single person. Our implementation
of Gabber provides this capability, enabling everyone to code in their own personal editor and also read and edit the code
of other users as necessary.

Although Gibber’s original code-sharing model allowed this, quadratic growth of managing code sharing permissions
made it too cumbersome for N > 2. We subsequently implemented a much simpler method for beginning networked
ensemble performances in Gibber. After performers agree upon a unique name for a Gabber session, they begin the
session with a single line of code:

Gabber.init('uniqueSessionName’)

Executing this either creates (if necessary) or joins (if already existing) a named networked live coding session on the
worldwide Gibber server, and triggers the local browser to:

1. Open a Gibber chatroom named identically to the Gabber session that contains all the session participants.

2. Create a new user interface column containing everybody else’s shared code editors (and updating dynamically
as people join or leave).

3. Share the code editor where the call to Gabber.init was executed with all members of the session.

After these actions are carried out, the user interface of the Gibber environment will resemble Figure 1. Clicking on a
tab in the shared editing column reveals the associated user’s code editor.

2.3. State Sharing

There are two modes of state sharing in a Gabber session. The default local mode is designed for physically co-located
performances: each user explicitly selects code (from anybody, as described in Section 2, although performers will com-
monly execute code they authored) and triggers execution on their own computer to generate a unique audio stream
which renders only their personal actions. Users can also explicitly execute code on the machines of other ensemble
members using specific keystroke macros. If the executed code is contained in personal editor of the executing per-
former then it is broadcast and run on all machines on the network. If instead the code is contained in the shared editor

gibber browse publish chat/collaborate console code help forum/mailinglist credits feedback preferences welcome welcome, peter. logout

x| id #: 0 language javascript #[? x| Gabber : puff [paul mary x| Chat lobby

Gabber.init(chord = Synth2()
schard asaal LEQ 2 411 2 0

a = Drums ()
b = FM() chord. fx.add(Reverb(
.note.seq([0,7], 1/8) EEERA : hi. can we start?
Gabber.init () FED : I'm ready

peter : hello

Master.fx.add(Schizo()) peter : OK, let's go

Master.fx.remove()

enter msg :

Master.fx removed.

Figure 1: A screenshot of the Gabber interface in a networked performance with three performers: Peter, Paul and Mary. The
screenshot shows what Paul is seeing. Note the two highlighted code fragments; the blue highlight indicates code that the
performer (Peter) has sent over the network to be executed. The red highlight indicates code that another member (Paul) of
the ensemble has remotely executed on Peter’s machine.

of another performer it is only executed on the associated performer’s computer, enabling, for example, a user to lower
the amplitude of a particular ugen they find to be too loud.

In contrast, remote mode assumes performers are in physically disparate locations; this in turn means that each computer
must locally render the entire performance. Executing any code in remote mode automatically also sends it across the
network for execution by all ensemble members. Although prior research has streamed audio between ensemble mem-
bers (Wang et al. 2005), remotely executing code offers a much lower bandwidth footprint, but comes with potentially
higher CPU usage for each computer and the inability to share stochastic or interactive components of a performance.

In order to mitigate this, Gabber provides an easy mechanism for sharing arbitrary JavaScript data, drawing inspiration
from the tuple approach adopted by Impromptu (Sorensen 2010) and the shared namespace used in urMus (Lee and Essl
2014b). The main Gabber object contains a shared data object which is distributed among all members of a Gabber
performance. Defining a shared variable consists of a single method call; after executing this method any changes to
the variable are distributed to all ensemble members. An example of defining a shared variable and changing it is given
below:

Gabber.shared.add(‘pattern’, [‘c4’,’d4’,’g4’ 1)
Gabber.shared.pattern = [“‘d4’,’d#4’, g#4’]

Importantly, properties of the PI controller used to synchronize the clocks of Gibber instances (discussed in Section 4)
are all properties of this shared object, enabling users to easily tune the controller and automatically propagate changes
to all participants.

2.4. Access Control and Catching Them Red Handed

Although various strategies for limiting code execution on the machines of other ensemble members have been explored
(Lee and Essl 2014b), Gibber uses a simpler, fully permissive scheme similar to the Republic quark for SuperCollider
(Rohrhuber et al. 2007). Remote code execution, while presenting powerful opportunities for spatialized code execution,
also has great potential for misuse and mischief. In performances by the CREATE Ensemble at UC Santa Barbara, one
notorious user named killbot would routinely start algorithms running on remote machines that would gradually kill
off running unit generators. As a result, designing killbot-proof algorithms became a game for the ensemble. A call
to Gabber.block('userNameToBlock') blocks remote execution by a particular performer, removing the challenge of
blocking killbot but perhaps making for less stressful ensemble dynamics.

Even assuming that ensemble members have each others’ best interests at heart, there is a need for performers to under-
stand when (and by whom) code is remotely executed on their computers, e.g., so performers understand sudden changes
in the sounds they are generating. For this reason we have added a number of simple visual annotations to Gibber to

indicate remote code execution in local mode, as shown in Figure 2. When code is executed and sent to all members
of a performance, it is highlighted in red in all editors. When code is remotely executed on the computer of a single
performer it is highlighted in blue.

2.5. Communication Facilitation

Each Gabber session has an associated chatroom for coordinating performance structure, discussing code, and banter.
There are also programmatic hooks enabling users to detect when chat messages arrive and take action based on their
content and/or author. These hooks have been used in summer camps for high school students to explore generative
music-making in a program run by the Experimental Music and Digital Media program at Louisiana State University,
and in classes at UC Santa Barbara.

3. Centralized and Decentralized Network Structures

Lee and Essl define a centralized performance network as one where clients submit code to a server for rendering. The first
ensemble Gibber performance, performed in April of 2012, adopted this model (Roberts and Kuchera-Morin 2012; Roberts
et al. 2014): a single server computer drove both the audio and visual projection systems, with scrolling displays of all
code sent from clients and of the performers’ chatroom. As Lee and Essl describe, this model automatically synchronizes
time and state according to when the server executes each received code block. One additional benefit is the potential
to preview code changes before submitting them to the server. Gibber’s different keystroke macros to execute code
locally vs. remotely enable performers to audition code for execution on headphones before sending it to the server
for projection through the house speakers. This style of previewing only works in performances where each ensemble
member is submitting code that does not rely on the state of the master computer; accordingly, in our first Gibber
performance each member had particular ugens that they were responsible for creating and manipulating. Gabber can
easily mimic these early performances. Ensemble members can use headphones on their personal laptops while a single,
central, computer is connected to the audiovisual projection systems. Users target their personal computer (to audition)
or the central computer (to present to the audience) for code execution as described in Section 2.3

Research presented in this paper extends Gibber to support the other two network models discussed by Lee and Essl. The
remote mode of performance, described in Section 2.3, supports the decentralized model, where every machine runs all ele-
ments of the performance concurrently. The local mode of performance supports decentralized programming with central
timing, enabling users to have personal control over state on their computers while providing temporal synchronization.

4. Network time synchronization

Many network time synchronization solutions exist (e.g., GPS, NTP, PTP), but most are implemented at the system level,
requiring software installation and careful configuration of each machine in the network. Furthermore, these common
solutions only maintain synchronization of system clocks (which Gibber does not use), not audio clocks (which Gibber
does use). By implementing network time synchronization entirely within Gibber, we free users from the need to run
external software to achieve synchronization. In effect, setting up a shared performance requires nothing more than an
internet connection enabling users to connect to the worldwide Gibber server. The Gibber server is freely available on
GitHub if users need to run their own local instance; this could be useful in a performance where an internet connection
is unavailable or unreliable.

4.1. Synchronization with a Hybrid Proportional Controller

The Gabber server broadcasts its time (in samples) to all Gibber instances (clients) on the network via TCP/WebSockets
once per audio buffer (typically 1024 samples). Upon receiving the server’s time (now out-of-date because of network
latency), each client subtracts its local time. Controller code within each client uses this difference (aka error) to decide
how to correct the client’s local time such that the client’s timer converges to synchronize with that of the master.

We use a hybrid controller (Lygeros and Sastry 1999) with two modes: coarse and fine. The coarse mode operates when the
client is out of sync beyond a particular threshold, and immediately sets the client’s time to the most recently received
master’s time, disregarding any discontinuities this causes. For example, the first time a Gibber instance receives the
server’s time (when someone joins a performance already in progress), the coarse mode takes effect immediately, getting

the new performer roughly in sync with the rest of the group. Audio dropouts caused by spikes in CPU usage in the
client can also cause this type of correction.

The fine mode, which operates when the error is below the threshold, uses a proportional controller to make small, smooth
adjustments to the client’s time. The default proportional constant was chosen empirically following experimentation and
observation but can be freely edited by users; as described in Section 2.3 such changes to the controller are immediately
propagated to all members of a performance. The controller acts on a low-passed version of the error signal due to the
relatively low rate at which the error calculation and control is performed (typically 44100/1024 Hz, once per audio block
callback). Changing the length of the running mean involves a tradeoff between fast response (short mean length) and
smooth operation but long convergence time (long mean length).

Our nominal value of the threshold for switching control modes was also determined empirically through consideration
of the minimum amount of time that a client would have to be out of sync for the coarse correction to be more aestheti-
cally pleasing (approximately 100 ms for 120bpm 44100Hz sample rate group performance, varying according to musical
features such as tempo). The threshold used for coarse correction is exposed to the user via Gabber’s shared data object.

The code below is our controller implementation in JavaScript pseudocode:

Kp = .05

coarseThreshold = .1 x sampleRate
runningMean = RunningMean(50)
localPhase = 0

function onMessageFromServer(masterPhase) {
error = masterPhase - localPhase
if(abs(error) > coarseThreshold) {

localPhase = masterPhase
Gibber.setPhase(localPhase)
runningMean.reset()

Yelse{

var phaseCorrection = K_p * runningMean(error)
localPhase += phaseCorrection
Gibber.adjustPhaseBy(phaseCorrection)
}
}

(Brandt and Dannenberg 1999) presents a method of “Forward-synchronous” audio clock synchronization using PI-
control. Their implementation accounts for noisy error measurement using a second PI controller that takes advantage
of local, low-jitter system clocks on clients. We use signal conditioning (moving average) instead. Their system makes
control adjustments much less often than ours.

(Ogborn 2012) describes EspGrid, a protocol/system for sharing time and code, as well as audio and video among players
in networked laptop orchestras. EspGrid uses Cristian’s algorithm (Cristian 1989) to present a synchronized system clock
to each user so that s/he might schedule the playing of shared beat structures. We implemented Cristian’s algorithm in
Gibber, but found the results unsatisfying compared to our current solution. EspGrid has the benefit of using UDP while
Gibber is limited to TCP/WebSockets (and the jitter associated with its error correction) for network messages. This
could be one reason for our comparatively subpar results with Cristian’s algorithm.

4.2. Results

In tests, clock synchronization in Gibber has produced aesthetically satisfying results. Sound events feel like they happen
“in beat” even on a WiFi network, with users experiencing quickly fixed audio glitches. However in unfavorable WiFi
conditions (i.e., heavy traffic, many overlapping networks, interference) the controllers in Gibber instances may exhibit
thrashing and/or non-convergent correction. By adjusting the proportional control constant, coarse mode threshold time,
and error signal low-pass length, the system can be made more tolerant of various differing conditions, but as a general
rule it is best to use a wired LAN in performances where wireless conditions are less than ideal.

When a Gibber instance becomes “out of beat” for whatever reason (i.e. network problems, jitter, high CPU load, etc), it
typically heals within the coarse mode threshold time. In our tests, measurements of the steady-state error for clients

on a WiFi network had a mean of 13.5 samples with a standard deviation of 39.2 samples. For comparison, the measured
network jitter was approximately 2ms (~88 samples).

5. Conclusions and Future Work

We have described an extension to Gibber, named Gabber, that significantly eases setup of networked live coding per-
formances. Joining a Gabber performance requires only a single line of code to be executed, and provides clock synchro-
nization, code and state sharing, remote execution of code, and an extensible chat system for networked performances.

In the future, we are particularly interested in additional visual indicators documenting the actions of individual perform-
ers to their fellow ensemble members. For example, given that a performer is responsible for creating and manipulating
a particular set of ugens, a waveform and/or spectral visualization of their summed output could be displayed in the as-
sociated tab of their shared editor on remote machines. This would enable users to, at a glance, see the overall spectrum
and amplitude contributions of each member, potentially giving them an idea of who is responsible for each instrument.

Further future work will be informed by performances given using Gabber. Although the CREATE Ensemble has suc-
cessfully performed a number of networked pieces using Gibber (as has the Laptop Orchestra of Louisiana) we have yet
to perform with Gabber in its current incarnation. We are excited about the introduction of a shared clock for ensemble
performances, and the resulting possibilities for networked algorave participation.

6. Acknowledgments

We’d gratefully acknowledge the Robert W. Deutsch foundation, who made this research possible.

References

Brandt, Eli, and Roger B Dannenberg. 1999. “Time in Distributed Real-Time Systems.”
Cristian, Flaviu. 1989. “Probabilistic Clock Synchronization” Distributed Computing 3 (3): 146—158.

Ellis, Clarence A, and Simon J Gibbs. 1989. “Concurrency Control in Groupware Systems” In ACM SIGMOD Record,
18:399-407. 2. ACM.

Lee, Sang Won, and Georg Essl. 2014a. “Models and Opportunities for Networked Live Coding.” In Proceedings of the
Live Coding and Collaboration Symposium.

———. 2014b. “Communication, Control, and State Sharing in Networked Collaborative Live Coding” In Proceedings of
the 2014 Conference on New Interfaces for Musical Expression, 263—268.

Lygeros, J., and S. Sastry. 1999. “Hybrid Systems: Modeling, Analysis and Control” UCB/ERL M99/34. Electronic
Research Laboratory, University of California, Berkeley, CA.

McKinney, Chad. 2014. “Quick Live Coding Collaboration in the Web Browser.” In Proceedings of the 2014 Conference on
New Interfaces for Musical Expression, 379-382.

Ogborn, David. 2012. “EspGrid: a Protocol for Participatory Electronic Ensemble Performance” In Audio Engineering
Society Convention 133. Audio Engineering Society.

Roberts, C., and J.A. Kuchera-Morin. 2012. “Gibber: Live Coding Audio in the Browser.” In Proceedings of the International
Computer Music Conference.

Roberts, Charles, Matthew Wright, JoAnn Kuchera-Morin, and Tobias Hollerer. 2014. “Gibber: Abstractions for Creative
Multimedia Programming.” In Proceedings of the ACM International Conference on Multimedia, 67-76. ACM.

Rohrhuber, Julian, Alberto de Campo, Renate Wieser, Jan-Kees van Kampen, Echo Ho, and Hannes Hoélzl. 2007. “Pur-
loined Letters and Distributed Persons.” In Music in the Global Village Conference (Budapest).

Sorensen, Andrew C. 2010. “A Distributed Memory for Networked Livecoding Performance” In Proceedings of the
ICMC2010 International Computer Music Conference, 530-533.

Wakefield, Graham, Charles Roberts, Matthew Wright, Timothy Wood, and Karl Yerkes. 2014. “Collaborative Live-
Coding Virtual Worlds with an Immersive Instrument” In Proceedings of the 2014 Conference on New Interfaces for Musical
Expression.

Wang, Ge, Ananya Misra, Philip Davidson, and Perry R Cook. 2005. “CoAudicle: a Collaborative Audio Programming
Space” In In Proceedings of the International Computer Music Conference. Citeseer.

	Introduction
	Strategies for Networked Ensemble Performance
	Time Sharing
	Code Sharing
	State Sharing
	Access Control and Catching Them Red Handed
	Communication Facilitation

	Centralized and Decentralized Network Structures
	Network time synchronization
	Synchronization with a Hybrid Proportional Controller
	Results

	Conclusions and Future Work
	Acknowledgments

