
SuperCopair: Collaborative Live Coding on SuperCollider through
the cloud

Antonio Deusany de Carvalho Junior
Universidade de São Paulo

dj@ime.usp.br

Sang Won Lee
University of Michigan
snaglee@umich.edu

Georg Essl
University of Michigan

gessl@umich.edu

ABSTRACT

In this work we present the SuperCopair package, which is a new way to integrate cloud computing into a collaborative
live coding scenario with minimum efforts in the setup. is package, created in Coffee Script for Atom.io, is developed
to interact with SuperCollider and provide opportunities for the crowd of online live coders to collaborate remotely on
distributed performances. Additionally, the package provides the advantages of cloud services offered by Pusher. Users
can share code and evaluate lines or selected portions of code on computers connected to the same session, either at the
same place and/or remotely. e package can be used for remote performances or rehearsal purposes with just an Internet
connection to share code and sounds. In addition, users can take advantage of code sharing to teach SuperCollider online
or fix bugs in the algorithm.

1. Introduction

Playing in a live coding ensemble oen invites the utilization of network capability. Exchanging data over the network
facilitates collaboration by supporting communication, code sharing, and clock synchronization amongmusicians. ese
kinds of functions require live coding musicians to develop additional extensions to their live coding environments. Due
to the diversity of the live coding environment and the collaboration strategies seled for performances, implementing
such a function has been tailored to meet some ensemble’s requirements. In addition, networking among machines oen
requires additional configuration and setup, for example, connecting to specific machines using an IP address. In order
to overcome these constraints, our goal is to realize a platform that facilitates the collaboration among live coders with
minimal efforts of configuration, utilizing cloud computing.

ere are many advantages to replacing a traditional server-client system with a cloud server. First of all, the collabo-
ration scenario could be extended to the live coding ensemble whose members are distributed over different locations,
enabling a networked live coding performance. Not only does this enable telematic performances, but it will also make a
live coding session take place in a distributed manner, which will change the rehearsal process of live coding ensembles,
whether it is remote or co-located. In addition, using the cloud server minimizes the amount of setup needed for net-
working as long as each computer is connected to the Internet. e amount of setup required is equivalent to creating a
shared document in a Google Drive.

To that end, we present SuperCopair, a package for the Atom text editor, that offers code sharing and remote execution
over the Internet. In this paper, we introduce the background that the idea is built upon, articulate our motivations for us-
ing cloud computing, and describe the implementation of the system. Finally, we suggest multitudes of new performance
practices enabled by the system.

2. Networked collaborative live coding

Networked collaboration in live coding was present from the inception of live coding where multiple machines are
clock-synchronized exchanging TCP/IP network messages (Collins et al. 2003). Many live coding ensembles also uti-
lize network capability to share data and communicate within the ensemble (Collins et al. 2003; Rohrhuber et al. 2007;
Brown and Sorensen 2007; Wilson et al. 2014; Ogborn 2014a). However, most of the time, they are based on the local net-
work communication and not designed for remote collaboration aempted in the tradition of Network Music. Remotely
connected music systems not only create a number of unique challenges and aesthetic opportunity as a performance in
public, but also provide a base for musicians in different localizations to collaborate over the network synchronously.

mailto:dj@ime.usp.br
mailto:snaglee@umich.edu
mailto:gessl@umich.edu


Telepresence performance recently emerged as a new collaboration practice in live coding. Swi, Gardner, and Sorensen
(2014) conducted networked performance between two live coders located in Germany and United States using an SSH
server located in Australia. Extramuros, a language-neutral shared-buffer, is a web-browser based system to share code
among connected machines (Ogborn 2014b). Gibber, a live coding environment on a web browser, supports collaborative
editing and remote execution similar to Google Docs (Roberts and Kuchera-Morin 2012). Commodity sowares (such
as Google Docs, CollabEdit, or DropBox) can be useful for remote collaboration and are convenient since users do not
need to perform any configuration. However, these systems were either not designed or offer at best limited support for
remote music performances.

3. Designing a collaborative solution

Although in the past it was difficult to think of thousands of people interacting at the same time on a musical system,
the actual situation is in the quest of the best way to use the services and technologies offered day aer day. For the
last several years, we have witnessed an impressive advancement in the quality of services of cloud computing systems.
Cloud servers distributed worldwide are connected through fiber optic broadband, and its cloud services have many
advantages for computer music and collaborative works. We are taking some benefits from these characteristics in this
study.

e cloud computing suggests itself as the next logical step in network capability, ready to be used for musical applica-
tions and performances. ‘CloudOrch’ is one of the first aempts to utilize the advantages of cloud computing in musical
ways (Hindle 2014). e idea was to deploy virtual machines for client and server users, create websockets for intercom-
munication, and stream audio from cloud instruments to both desktop computers and mobile devices using web browsers.
e author dubbed his idea ‘a sound card in the cloud’ and presented latency results from 100 to 200~ms between the Cy-
bera cloud and the University of Alberta, Canada using the HTTP protocol. Using cloud computing as opposed to using
server-client option has multiple advantages. Once an online instance is configured, a user can connect to or disconnect
from the cloud at any time and can share the same resources within a group of connected users and take advantage of
the reliable and scalable resources provided. Indeed, this solution can be useful for live coding network music.

e authors had already discussed models and opportunities for networked live coding on a past work (Lee and Essl
2014). e paper introduces diverse approaches in networked collaboration in live coding in terms of the type of data
shared: code sharing, clock synchronization, chat communication, shared control and serializable data (such as audio).
We draw upon ideas of existing systems that enable ‘code sharing’ and ‘remote execution’ re-rendering program state
by evaluating code fragments in both the local machine and the remote machines in many live coding environments and
extensions (Brown and Sorensen 2007; Rohruber and Campo 2011; McKinney 2014; Roberts and Kuchera-Morin 2012).
ese systems are similar in the sense that they need a separate server installed and configured by their users.

It is a general trend to have soware application distributed over the Internet. Cloud computing is the central tool to
realize the distributed sowares. However, the use of cloud computing is underdeveloped in computer music and we
believe that it is the next logical step to put computer music applications in the cloud as a mean to realizing network
music. e cloud computing provides a set of services that are beneficial to scale the computer music performance. For
example, we can imagine a small scale ensemble co-located in the performance space, in which case the cloud computing
will create a virtual machine based on the data center nearby the performance location. In the opposite case where large-
scale participants are expected on a collaboration session, the cloud service will easily scale its computational power,
network traffic bandwidth and storage space automatically to meet the spontaneous needs, although it will have some
monetary cost.

In terms of network latency, we have achieved, an average round-trip time of 230~ms between Brazil and United States,
and a minimum of 166~ms (Carvalho Junior, eiroz, and Essl 2015). ese tests were done using mobile devices con-
nected to Pusher, a cloud service described below, but it can be extended to almost any device connected to the Internet.
e strategy of transferring code (textual data) and re-rendering the program state remotely instead of streaming audio
makes the latency less critical particularly for the scenario of live coding. However, it should be noted that the sound
outcome from local machines and remote machines may not have exactly the same sound for many reasons (e.g., latency,
randomness, asynchronous clock, packet loss).

e use of cloud computing resources became easier aer the introduction of some cloud services that create an abstrac-
tion of the cloud computing set up and offer simple APIs for users, as we can find on Pusher. Pusher offers a cloud
computing service that delivers messages through web sockets and HTTP streaming, and support of the HTTP Keep-
Alive feature. e service has a free plan with some daily limitations such as 100,000 messages and a maximum of 20
different clients connected. Another limitation of the free plan is that we can only exchange messages through the US-
East cluster server situated in Northern Virginia. e paid plans are more flexible and they make possible to have more
users connected, send more messages, and use other clusters. In spite of that flexibility, all plans have a hard limit of 10

https://pusher.com/


messages per second for each user. is limitation is due to the overhead of message distribution among a thousand users,
but it really suits most needs to common use cases. Every message has a size limit of 10 kilobytes, but one can request
an upgrade if larger messages are needed. Although it has limitations, we do not need to set up any cloud instance to
benefit from the cloud computing infrastructure provided by this service.

e service works with push notifications, so every message sent is going to be received by all devices assigned to the
same channel. A SuperCollider programmer can evaluate the whole code, a selected part, or just a line using keyboard
shortcuts. SuperCollider programming language supports real time audio synthesis and is used extensively by live coders.
ese characteristics turn the language very suitable to be used with a push notification cloud service.

4. SuperCopair

e solution presented in this paper was created as a package to the Atom.io IDE. Defined as ‘a hackable text editor for
the 21st Century’ on its site¹, Atom is a text editor created using web technologies and has its development powered by
the github community. is IDE has numerous packages for many programming languages and presents some solutions
for coding, debugging, and managing projects. Atom packages are programmed in CoffeeScript, which is a programming
language that can easily be converted to Javascript and can also integrate its libraries. e developers can install Atom
packages to enable various functionalities in the IDE such as: communicate through chats, use auto-complete in certain
programming language syntax, interact with desktop and web applications, integrate with the terminal command line,
and havemany options based on other packages. ese features havemotivated the development of SuperCopair package
for Atom.

SuperCopair is based on two Atom packages: atom-supercollider and atom-pair. e first package turns Atom.io as an
alternative SuperCollider IDE and permits users to openly communicate locally with SuperCollider audio server through
OSC in the same way we can do on SC-IDE. Moreover, the users can take advantage of other Atom packages additionally
to quarks packages. e laer package is used for pair programing through the Internet. e atom-pair package is based
on Pusher cloud service and its default configuration is based on the community free plan, but a user can modify the
seings and use the user’s own keys within the personal free or paid plan.We decided to merge both packages to add
new features for collaborative live coding, and finally had dubbed it the SuperCopair package.

e main idea is that all participants have the opportunity to evolved into a collaborative performance.

e IDEs for SuperCollider have, by default, shortcuts to evaluate a line, a block, and to stop all sound process that is
running. In addition to these options, the SuperCopair package includes methods and shortcuts to broadcast these events
and execute them on all users connected at the same pairing session. rough the shortcuts, one can decide to evaluate
selected code either only in the local machine, or in all computers of the session. One can also turn on and off a broadcast
alert option in the seings in order to be asked or not before evaluating every broadcast event sent by another user in
the same session. is allows each individual has control over which code to be evaluated in the local machine.

e broadcast events are diffused through the cloud service and are expected to be evaluated as soon as each device
receives the event message. e message includes the code to be evaluated and the user identification. A representation
of a session using SuperCopair package is shown at Figure 1.

4.1. Paage installation and use

One can have the package properly installed and ready to be used in two different ways. Via the Seings View in Atom.io,
the user can search and install the package. It is also possible to install the shell commands during Atom.io setup and
use the line below to install the package:

apm install supercopair

Aer the installation, the user needs to start a new session before inviting others. An instructional step-by-step setup is
presented on the package page. en one can get initiate a performance by opening a SuperCollider file and starting a
pairing session. e session ID string needs to be shared with collaborators so they can use the string to join the same
session.

e shared session ID is based on the channel created at the cloud service and it contains application keys. It is recom-
mended to change the app keys aer each session. As the keys are linked to the account used during the performance,
other participants can use the keys for other activities and the number of events will deducted from the main account.

¹Atom.io website: hp://atom.io/

https://supercollider.github.io/
http://atom.io
coffeescript.org


Figure 1: Example of a session using SuperCopair and the architecture of interactions. e central bullet is the localization of
the cluster server in Northern Virginia, and the other bullets represents users connected to the cloud server. e screen has the
code on the le and SuperCollider post window on the right. e architecture presents only two users but it can be replicated
to many, with diffusion on Pusher cloud service.



e users who joins later will see the most recent version of the shared code. e users are identified by different
color markers, and they can identify what each member is writing on the file based in these colors. A pop up provides
information about users joining or leaving the session. Furthermore, a message including the identification of the user
and also the code evaluated is shown at SuperCollider post window right aer each broadcast event is evaluated. In case
the broadcast alert option is on, a dialog will appear whenever an event message is received from another and ask if the
user would accept or reject the code evaluation. e alert dialog will have the sender’s id and the code sent via broadcast.
When a live coder leaves the session, he or she can keep the most recent updated file to save or edit offline.

e delay achieved on the free plan depends on the distance between every member and the US East Coast cloud server.
is free plan from Pusher cloud service allow 20 different clients per day on the same session and 100 thousandmessages
per day, however we have higher limits on paid plans. e session will stop aer reaching the daily limit of messages for
all plans, but the daily quota is reset aer midnight UTC. It is important to keep these details in mind while facing any
problem or high latency. e user may want to try a paid plan to have distributed data center, clients more than 20, and
larger sized messages.

4.1.1. Shortcuts

eusers have some special shortcuts depending on the operating system, and they are related to these specific functions:

• Compile library (open post window if needed)
• Clear post window
• Evaluate selection or current line locally
• Panic ! Stop all music
• Broadcast a code evaluation to everyone (including onesel) in the session
• Broadcast a code evaluation to others (excluding onesel).
• Broadcast stop command to everyone (including onesel) in the session
• Broadcast stop command to others (excluding onesel).

ese shortcuts can be used to interact with other participants during a performance. e broadcast methods will only
be shared with users on the same session, so it is also possible to create multiple sessions and interact with different
crowd teams at the same time using a distinct Atom.io window on the same computer.

4.1.2. Practices and performances

e authors aempted to test the application multiple times in the co-located setup and also tried remote sessions by
recruiting SuperCollider users. From one of our practices, there were live coders from Ann Arbor, MI, and San Francisco,
CA, in U.S., and also São Paulo, SP, and Fortaleza, CE, in Brazil. During the session, participants (including the author)
shared the session ID using an Internet Relay Chat (IRC) channel and we had a brief discussion about the package before
starting to code. Some users reported that it could be dangerous to use headphones if we had switched off the alert for
broadcast events, because some user may send a louder code to be synthesized. In the end, the session is successfully
carried out without many problems and we are on the improvement of the package based on comments and suggestions
from the participants. Atom.io installation was cumbersome for some users of Linux due to recompilation requirements
at some distributions, and a step-by-step guide is under construction. Additionally, Mac users need the newest versions
of the system in order to install Atom.io, but the users can also use a virtual machine with Linux and get rid of this
limitation.

e practice addressed above is to simulate a networked live coding performance where multiple remote performers join
a SuperCopair session from each one’s our location, that may not be the concert space. In the local concert space where
the audience is, a laptop connected in the session is placed without a performer on stage. Each performer would evaluate
code in broadcast mode so that the computer on the stage will generate the collection of sound that remote live coders
make via the Pusher. At this performance, the spectators at the local concert hall may have a wrong impression about
the performance in the beginning because there is no one on stage except the laptop. As the audience will watch the
video projection of the laptop screen, they will understand the main idea of remote performers live coding locally, from
the multiple concurrent edits and some live coders’ explanatory comments shown on the editor.



5. Discussion and conclusions

Here we present advantages and opportunities enabled with SuperCopair in network live coding: remote collaboration,
telematic performance, and crowd-scale networked performance. One interesting advantage of the application is that
it supports remote pair programming. We have witnessed that users can teach the basics of a language each other or
help in bug fixing using online pair programming. Beginners can invite someone from anywhere in the world for a
pairing session and start coding together on the same file and also synthesize the same code in real time while learning
some tricks about live coding. Additionally to the forums and mailing lists, one can invite professionals to help on fixing
algorithms for audio synthesis and have another kind of experience like pair or group programming on the same code
to come up with a solution collaboratively. is package supports only SuperCollider namespace, but in the near future
we can have similar packages for Csound, Chuck, or any other computer music programming language.

SuperCopair also offers novel forms of networked performances based on message streaming. e work of Damião
and Schiavoni (2014) is a recent aempt to use network technologies in order to share contents among computers for
a musical performance. e authors send objects and strings through UDP using OSC and can control other machines
running the same external on Pure Data. ey opted for UDP andMulticast to get beer results onmessage distribution if
compared to TCP and broadcast, which usually include three way handshaking and relay server. Although their decision
has been based on solid arguments, our solution takes advantages of HTTP persistent connections using a single TCP
connection to send and receive messages, and we also bring a reliable option for broadcast delivery using cloud services
capabilities.

e package presented in this paper can be extended as an alternative for other networked live coding APIs. One can
cite the Republic quark package that is used to create synchronized network performances. and the extramuros (Ogborn
2014b), a system for network interaction through sharing buffers of any kind of language. e last solution needs to
be configured depending on the language andit does not present any easy way to share control (e.g. stop synthesis on
SuperCollider) at the moment. Another constraint of both solutions is the need to create and configure a server on one
computer to receive connections from clients, and additionally it would be necessary to open network ports or change
firewall seings before starting any interaction with remote users.

SuperCopair realizes accessible configuration of network music performances, utilizing the cloud services. ere is
no need to configure a server or manage any network seing, e.g. routing, firewall, and port. We expect that even
inexperienced users will be able to create a session with lots of people. As long as one can install the Atom editor and
the SuperCopair package, the creation and participation at remote performances become an easy sequence of one or two
shortcuts. Eventually, SuperCopair will simplify the steps to create a collaborative performance and remote rehearsals,
and be used by people without network knowledge.

6. References

Brown, Andrew R, and Andrew C Sorensen. 2007. “Aa-Cell in Practice: an Approach to Musical Live Coding.” In
Proceedings of the International Computer Music Conference, 292–299. International Computer Music Association.

Carvalho Junior, Antonio Deusany de, Marcelo eiroz, and Georg Essl. 2015. “Computer Music rough the Cloud:
Evaluating a Cloud Service for Collaborative Computer Music Applications.” In International Computer Music Conference.

Collins, Nick, Alex. McLean, Julian. Rohrhuber, and Adrian. Ward. 2003. “Live Coding in Laptop Performance.” Organ-
ised Sound 8 (03): 321–330.

Damião, André, and Flávio Luiz Schiavoni. 2014. “Streaming Objects and Strings.” Live Coding and Collaboration Sympo-
sium.

Hindle, Abram. 2014. “CloudOrch: a Portable SoundCard in the Cloud.” In New Interfaces for Musical Expression, 277–280.

Lee, Sang Won, and Georg Essl. 2014. “Models and Opportunities for Networked Live Coding.” Live Coding and Collabo-
ration Symposium.

McKinney, Chad. 2014. “ick Live Coding Collaboration in the Web Browser.” In Proceedings of New Interfaces for
Musical Expression (NIME). London, United Kingdom.

Ogborn, David. 2014a. “Live Coding in a Scalable, Participatory Laptop Orchestra.” Computer Music Journal 38 (1): 17–30.

———. 2014b. “Extramuros.” https://github.com/d0kt0r0/extramuros.

Roberts, C., and J.A. Kuchera-Morin. 2012. “Gibber: Live Coding Audio in the Browser.” In Proceedings of the International
Computer Music Conference (ICMC). Ljubljana, Slovenia.

http://puredata.info/
https://github.com/supercollider-quarks/Republic
https://github.com/d0kt0r0/extramuros
https://github.com/d0kt0r0/extramuros


Rohrhuber, Julian, Alberto de Campo, Renate Wieser, Jan-Kees van Kampen, Echo Ho, and Hannes Hölzl. 2007. “Pur-
loined Leers and Distributed Persons.” In Music in the Global Village Conference (Budapest).

Rohruber, J., and A. de Campo. 2011. “e Republic ark.” https://github.com/supercollider-quarks/Republic.

Swi, Ben, Henry Gardner, and Andrew Sorensen. 2014. “Networked Livecoding at VL/HCC 2013.” In Visual Languages
and Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on, 221–222. IEEE.

Wilson, Sco, Norah Lorway, Rosalyn Coull, Konstantinos Vasilakos, and Tim Moyers. 2014. “Free as in BEER: Some
Explorations into Structured Improvisation Using Networked Live-Coding Systems.” Computer Music Journal 38 (1):
54–64.

https://github.com/supercollider-quarks/Republic

	Introduction
	Networked collaborative live coding
	Designing a collaborative solution
	SuperCopair
	Package installation and use
	Shortcuts
	Practices and performances


	Discussion and conclusions
	References

