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314 Lord Rayleigh on Conduction of Iteat in a Splterieal 

thermal capacity of unit volume. This thermal capacity is 
to be taken with volume constant, and it will be less than the 
thermal capacity with pressure constant in the ratio of 7 : 1. 
Accordingly v/./in (6) represents the latter thermal capacity, 
of which the experimental value is "00128x'239, the first 
factor representing the density of air referred to water. 
Thus, if we take the calorimetric conductivity at "000056. we 
have in c.G.s, measure 

v----'258, v/~/='183 ; 
and thence 

t_-.102a 2. 

In the present apparatus a, determined by the contents, is 
16"4 centim., whence 

t =  27'4 seconds. 

The agreement of the observed and calculated values is 
quite as close as could have been expected, and confirms the 
view that the transfer of heat is due to conduction, and that 
the part played by radiation is insensible. From a com- 
parison of the experimental and calculated curves, however, 
it seems probable that the effect of gravity was not wholly 
eliminated, and that the later stages of the phenomenon, at 
any rate, may still have been a little influenced by a downward 
movement of the central parts. 

XXV. On the Conduction of Heat in a Spherical Mass of Air 
confined by Walls at a Constant Temperature. By Lord 
RAYLEIGH, ~T,R.s-~.* 

I T is proposed to investigate the subsidence to thermal 
equilibrium of a gas slightly disturbed therefrom and 

included in a solid vessel whose walls retain a constant 
temperature. The problem differs from those considered by 
Fourier in consequence of the mobility of the gas, which 
may give rise to two kinds of complication. In the first 
place gravity, taking advantage of the different densities 
prevailing in various parts, tends to produce circulation. In 
man.)' cases the subsidence to equilibrium must be greatly 
modified thereby. But this effect diminishes with the amount 
of the temperature disturbance, and for infinitesimal dis- 
turbances the influence of gravity disappears. On the other 
hand, the second complication remains, even though we limit 
ourselves to infinitesimal disturbances. When one part of 
the gas expands in consequence of reception of heat by 

* Communicated by the Author. 
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.][ass of Air confined by Walls at Constant Temperature. 315 

radiation or conduction, it compresses the remaining parts, 
and these in their turn become heated in accordance with the 
laws of gases. To take account of this effect a special 
investigation is necessary. 

But although the fixity of the boundary does not suffice to 
prevent local expansions and contractions and consequent 
motions of the gas, we may nevertheless neglect the inertia of 
these motions since they are very slow in comparison with 
the free oscillations of the mass regarded as a resonator. 
Accordingly the pressure, although variable with lime, may 
be treated as uniform at any one moment throughout the mass. 

In the usual notation*, if s be the condensation and 0 the 
excess of temperature; the pressure p is given by 

p=kp( l  +s+~,O) . . . . . . .  (1) 

The effect of a small sudden condensation s is to produce an 
elevation of temperature, which may be denoted by/3s. Let 
dQ be the quantity of heat entering the element of volume in 
the time dt, measured by the rise of temperature which it 
would produce; if there were no " condensation." Then 

dO ds dQ . 
~ =/3d7 + d t '  . . . . . .  (2) 

and, if. the passage of dQ be the result of radiation and con- 
duction, we have 

~ = v V 2 0 - 7 0  . . . . . . .  ( 3 )  

In (3) v represents the " thermometric conductivity" found 
by dividing the conductivity by the thermal capacity of the 
gas (per uni~ volume), at constant volume. Its value for a~r 
at 0 '~ and atmospheric pressure nmy be taken to be "26 
cm~./sec. Also q represents the radiation, supposed to depend 
only upon the excess of temperature of the gas over that of 
the enclosure. 

If  dQ=0,  O=Bs, and in (1) 

p=kpli+(l +~)s}; 
so that 

1+./~=~,, . . . . . . .  (4) 
where T is the well-known ratio of specific heats, whose value 
for air. and several other gases is very nearly 1"41. 

In general from (2) and (3) 
dO ds 
d--~ = ~3~ -+ ~,7~e-qO . . . . . .  (5~ 

* 'Theory of Sound,' § 247. 
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316 Lord Rayleigh on Condttction of" Heat in a Spherical 

In order to find the normal modes into which the most 
general subsidence may be analysed, we are to assume that s 
and 0 are functions of the time solely through the factor e -hr. 
Since p is uniform, s+ a0 must by (1) be of the form H e -ht, 
where H is some constant ; so that if for brevity the factor 
e -at be dropped, 

s + ~ 0 = H  ; . . . . . . .  (6) 
while from (5) 

t y p e +  ( h - q ) 0 = / , ~ s  . . . . . .  (7)  

Eliminating s between (5) and (7), we get 

v " 0 + m ~ ( o - c )  =0 ,  . . . . .  (s) 
where 

m~ = h~- -q  C =  l~flH 
v ' h ~ , - q  . . . . .  ( 9 )  

These equations are applicable in the general case, but when 
radiation and conduction are both operative the equation by 
which m is determined becomes rather complicated. I f  there 
be no conduction, v=0 .  The solution is then very simple, 
and may be worth a momenffs attention. 

Equations (6) and (7) give 

O= h~n ( h - - q ) H  (10) 
h T _ q  , s =  hT--q  . . . .  

Now the mean value of s throughout the mass, which does 
not change with the time, must be zero ; so that from (10) we 
obtain the alternatives 

(i.) h = q ,  (ii.) /-l=O. 

Corresponding to (i.) we have with restoration of the time- 
factor 

O=(H/a)e-q  t, s-----O . . . . .  (11) 

In this solution the temperature is uniform and the condensa- 
tion zero throughout the mass. By means of it any initial 
mean temperature may be provided for, so that in the 
remaining solutions the mean temperature may be considered 
to be zero. 

In the second alternative H--0 ,  so that s=- -nO.  Using 
this in (7) with v evanescent, we get 

(7~r -q )0=0  . . . . . . .  (1~) 
The second solution is accordingly 

O--dp(x, y, z)e-q~l~, s =  --adp(x,.y, z)e-qt/~, (13) 
where ~b denotes a function arbitrm T throughout the mass, 
except for the restrict!on that its mean value must be zero. 
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~lass o f  A i r  confined by Walls  at Constant "l"emperat~o'e. 317 

Thus if O denote the initial value of /9 as a function of 
x, y ,  z, and ~0 its mean value, the complete solution may be 
written 

0 =  Ooe -q~ + ( 0 - 0 o ) e  -~,'~' ) 

s = - ~ ( O - O 0 )  e-~/~ ~_} (14) 

giving 
s+~O=~Ooe-q~ . . . . . .  (t5) 

I t  is on (15) that the variable p~rt of the pressure depends. 
When the conductivity u is finite, the solutions are less 

simple and involve the tbrm of th~ vessel in which the gas is 
contained. As a first example we ,nay take-the ease of gas 
bounded by t~vo parallel pla¢ias perpendicular to x, the 
temperature and condensation beiug even functions of x 
measured from the mid-plane. In this c a s e  V~--=d~/dx ~, and 
we get 

0 = C  + A cos rex, - - s / a =  D + A cos rex, (16) 

s + a / 9 = a C - - a D = H  . . . . . .  (17) 
By (9), (17) 

c =  :,~H (q-],)H (is) h ~ / - q '  D =  ~ ( h ~ / - q )  . . . .  

There,remain two conditions to be satisfied. The first is 
simply that 0 = 0  when x =  +__a, 2a being the distance between 
the walls. This gives 

C + A  cos m a = 0  . . . . . .  (19) 

The remaining condition is given by the consideration that 
the mean value of s, proportional to ~sdx ,  must vanish. 
Accordingly 

m a . D +  sin m a . A = 0  . . . . .  (20) 

From ,(!8), (19), (20) we have as the equation for the 
t~dmissible values of m, 

.tan ma a~q --  u m ~ . (21) 
ma ~'~ tq +-~m~) ' 

reducirig for the case of evanescent q to 

tan ma 1 . . . . .  (22) 
~/~a ~ ° 

The general solution may be expressed in the series 

19= Ale-h, t/91 + A2 e-~t/9~ + . . .  
(23) 

s -----A~e-a~tsl + A~e-h'ts~+. • .  f 
@ $ 

Phil .  Mag. S. 5. Vol. 47. No 286. March 1899. Z 
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318 Lord Rayleigh on Conduction of Heat in a Spherical 

where hi, hs , . . ,  are the values of h corresponding according 
to (9) with the various values of m, and 81, O~... are of the 
form 

81 ~" COS m i x  ~ COS mla "I 

sl = --a( c°s mlx--sin mla/mla) ~ . . . .  (24) 

It  only remains to determine the arbitrary constants A1, 
A~,. . .  to suit prescribed initial conditions. We will limit 
ourselves to the simpler case of q=0,  so that the values 
of m are given by (22) .  With use of this relation and 
putting for brevity a = l ,  ~e find from (24) 

~o 1 aB + 1 8,8~ dx= ~ cos m I cos ms, 

fo aB + 1 8182 d,~ " -  " -~  c o s  m 1 c o s  m~ $ 

so that j, jl 810sdx+ ~/a. sls~dx=O, . . . .  (25) 
o o 

81, 02 being any (different) functions of the form (24). Also 

fo18#d~+fl/= folSl, dx= l+'~B { c°s'ml } • - - y - -  1 + ~  . (26) 

There is now no difficulty in finding A D A2,.. .  to suit 
arbitrary initial values of 8 and its associated s, L e. so that 

O--A~81+A.~Ss+ . . .  } 

S = A l s l + A s s ~ + . . .  • . • . ( 2 7 )  

Thus to determine A,, 

[~ (@81 + f~/~t. Ss l )dx= A1~ol (81' + f~/ot.sl')dx 

A, Jo'~ (8,e, + ~/~. ~i~) d~ + . . . . . . . .  + 

in which the coefficients of As, A3 . . .  vanish by (25) ; so that 
by (26) 

c o s  9-. m i  1 

Ai{  1+ tt~ }---- 1~a~Jo (~8i-t-~/~t. Ssl)dx. . (28) 

An important particular case is that in which @ is constant, 
and accordingly S = 0. Since 

~o 1 sinml l a~Bcos  ml ' 01 dx--~ cos m i  = 
flli  
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Mass of Air  co~fined by Walls at Constant Temperature. 319 

we have 
A I _  _ 20  cos mt (29) 

a/~ + cos%n x . . . . . .  
For  the pressure we have 

( 
0 + s/~ = Ale -~t \ - -  cos ml + + . . .  

a ~ +  1 
- -  aB cos m I . Ale-*, t + . . . . . . .  , 

or in the particular case of (29), 

2 0  l + a ~  cos~tmle -~'t 
o+s/a = ~ ~ +co¢,,it + . . . .  ( a0)  

I f  fl----0, we fall back upon a problem of the Fourier type. 
By (22) in that case 

ma- -~ r (1 ,  3, 5 , . . . )  

and cos ~ ma = a~ fl2 /m~ a ~, 

so that (30) becomes 
- e-Pat ) 

+ + . . .  , • ( 3 1 )  
kin |  a m~a ~ 

or initially 
so /1  1 1 ) - ~ - \  ~ + .~ + 3~ + . . . , i. e. O. 

The values of h are given by 
~ r  ~ h= 4-~(1 ,  a,, 5,,...) . . . . .  (32) 

We will now pass on to the more important practical case 
of a spherical envelope of radius a. The equation (8) for 
(8--C)  is identical with that which determines the vibrations 
of air * in a spherical cas% and the solution may be expanded 
in Laplace's series. The typical term is 

e - C  = (mr ) -~  J ~ + ~ ( m r ) .  Y~, . (33) 

Y~ being the surface spherical harmonic of order n where 
n = 0 ,  1, 2, 3 . . ,  and J the symbol of Bessel's functions. In  
virtue of (6) we may as before equate - - s / a - D ,  where D is 
another constant, to the righL-hand member of (33). The two 
conditions yet to be satisfied are that 8 = 0  when r = a ,  and 
that the mean value of s throughout the sphere shall vanish. 

• t Theory of Sound,' vol. II. ch. xvii. 
Z 2  
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320 Lord Rayleigh on Conduction of Heat in a Spherical 

When the value of n is greater than zero, the first of these 
conditions gives C---0 and the second D - - 0 ;  so that 

O= - - s / a =  (mr)-'~ J,+i(mr) . Y,, (34) 

and s+aO=O.  Accordingly these terms contribute nothing 
to the pressure. I t  is further required that 

J,+~(ma) = 0, . . . . . .  (35) 

by which the admissible values of m are determined. The 
roots of (35) are discussed in ' Theory of Sound,' § 2 0 6 . . .  ; 
but it is not necessary to go further into the matter 'hers, as 
interest centres rather upon the case n = 0. 

I f  we assume s3~nmetry with respect to the centre of the 
d ~ 

sphere, we may replace X7 ~ in (8) by 1 ~ r, thus obtaining 

d%.(O-- C) + m~ r (0-- C) = 0, (36) 
d~ a 

of which the general solution is 

sin mr 0 = C + A  cos ~ r  + B  

But  for the present purpo.~e the term r -1 cos mr is excluded, 
so that we may write 

0----C+B sin mr sin mr 
m,r ' - - s / a = D + B - - ,  (37) 

?~t?" 

giving 
s + a8 = a(C- D) = H. (37 bis) 

The first special condition gives 

ma C + B sin ma = 0 . . . . . . .  (38) 

The second, that the mean value of s shall vanish, gives on 
integration 

~m3aaD Jr B(sin m a - - m a  cos ma) = 0. (39) 

~Equations H8), delayed from (9) and (37his), giving C 
~nd D in terms of I-I, hold good as before. Thus 

D q- -h  cq3q-vm ~ 
= 1- B = . . . . .  ( 4 0 )  

Equat ing this ratio to that derived from (38)~ (39), we find 

3 ma cosma--s in  m a _  vm~--ci~q 
m~a ~ sin ma a~(vm ~ + q). (41) D
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Mass of Air  confined by Walls at Constant Temperature. 321 

This is the equation from which m is to be found, after which 
h is given by (9). 

In the filrther discussion we will limit ourselves to the case 
of q:=O, when (41) reduces to 

m~ = 3~f~ (m oot , n -  1), . . . .  (42)  

in which a has been put equal to unity. Here by (40) 

D = - Clot3. 

~hus we may set as in (23), 

8= B~e-h,t81 + B2e-h~tt?2 + . . . . . . .  } . (43) 

S ~-~-Ble-htts 1 --[-~B~e-h~t82 -~- ....... 

in which 

O1-- sin mar 
?niT-  

and by (9) 

sin mla sin nhr 1 sin nha (44) 
m l a  ~ s l ~ - - a - -  ?}~1 ?" /~  m l a  

hl=vm~/7. Also 

1 + a/9 sin mla. . . . . (45) 
81/~ "]- ~I ~ - - "  ~17,~ mla 

The process for determining B1, B2, . . . .  follows the same 
lines as before. By direct integration from (44) we find 

2rnlm~ 

i + ~ f l  0 

_-- sin (m 1 --m2) _ sin (ml-J- m2) + 2 sin mi sinm~ 
mi-- m~ ml + m2 3a/3 ' 

a being put equal to unity. By means of equation (4f~) 
satisfied by ml and ~n 2 we may show that the quantity on t]~o 
right in the above equation vanishes. For the stun of the 
first two fractions is 

2me sin m 1 cos m~--2ml sin m~ cos ml 
2 2 

~H 1 ~ ?D2 

of which the denominator by (42) is equal to 

3a/3(ml cot ml--m~ cot m~). 

Accord-ingly (0~0~ + fl/~ . s~s~)Cdr=O. . . -(46) D
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322 Lord Rayleigh on Conduction of  Heat in a Spherical 

Also 

2ml~t fo 1 l + a t B  ( S t ~ + B / a t . s ~ ) r ' d r = l - -  s in2ml  2sin~mt . (47) 
2m---~ "t-" 3atB " 

To determine the arbitrary consf~ants B1 . . . .  fi'om the given 
initial values of 0 and s, say ® and S, we proceed as usual. 
We  limit ourselves to the term of zero order in spherical 
harmonics, i. e. to the supposition that 0, s are functions of r 
only. The terms of higher order in spherical harmonics, if 
present, are treated more easily, exactly as in the ordinary 
theory of the conduction of heat. By  (43) 

O=BI0~+B202+ . . . .  } 
S = Btsl + B~s~ + .  ; . . . .  (48) 

and thus 

f (O 01 + B/at. Ss 1)r~dr = ]31 o (ot~ + B/a"  s12) redr 

+ 13, (0~0, +B/at .  s~ ) r edr  + . . . .  , 
, . l  O 

in which the coe~eients of B2, Ba, . . . .  vanish by (46). The 
coefficient of Bx is given by  (47). Thus 

{ sin 2ml 2 s i n ' m l }  2m1' f01 

by which Bl i sde te rmined .  . • . . (49) 
An important particular case is that where O is constant 

and accordingly S vanishes. Now with use of (42) 

Io 
' sin m 1 -  ml cos m x sin m I (1 + aB) sin ml Odadr = = - -  

mta 3m t 3afire t ; 

so that 

B l ( 1  sin 2m, $ sin~mt } 2raisin m~.O 
2ml + 3atB - 3atB . .  (50)  

B1, B2, . . . .  being thus known, 0 and s are given as functions 
of' the time and of the space coordinates by (43), (44). 

To determine the pressure in this case we have from (45) 

0 + s / a t  l+atB'~ ,  sin~m, e -ht 
O -- t,B z_~: 

sin s m + 1 2m / 
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Mass of Air confined @ Walls at Constant Temperature. 323 

the summation extending to all the values of m in (4"2). 
Since (for each term) the mean value of s is zero, the right- 
hand member of (51) represents also -0/0, where U is the 
mean value of 0. 

If  in (51) we suppose /3=0, we fall back upon a known 
Fourier solution, relative to the mean temperature of a 
spherical solid which having been initially at uniform tempe- 
rature 0 throughout is afterwards maintained at zero all over 
the surface. From (42) we see that in this case sin m is small 
and of order ft. Approximately 

sin m = 3ttB/m ; 

and (51) reduces to 

g 6 ( e - h ,  * e-'~ ~ e-".' ~ =  ~ \ - W  + - ~ - - +  - g r - +  . . . .  ) ,  (53) 

of which by a known formula the right-hand member iden- 
tifies itself with unity when t = 0 .  By (9) with restoration 
of a, 

/~= (1~, 35 5 ~, . . . .  ) r x~ /~  . . . . .  (5~) 

In the general case we may obtain from (42) an approxi- 
mate value applicable when m is moderately large. The 
first approximation is m=i~r, i denoting an integer. Suc- 
cessive operations give 

m =  i~" + 3.¢,f~ _ 18,~B ~ + 9~,~¢~ ~ 
~r i~r 3 . . . .  (54) 

In like manner we find approximately in (51) 

sin~rn (l+af~)/af~ _ 6 ( i + a B )  ~ 1 1 5 a / ~ + 9 a ~  l ,  
^ 3a/~ {. sin 2m\ -- i%r ~ ( i%r ~ ) 

s i n " ~ + - V ( )  ' ~  ) . . . .  05)  

showing that the coefficients of the terms of high order in (51) 
differ from the corresponding terms in (52) only by the factor 
(1 + a/3) or 7. 

In the numerical computation we take 7--1"41, a~-- '41.  
The series (54) suffices for finding m when i is greater than 2. 
The first two terms are found by trial and error with trigo- 
nometrical tables from (42). In like manner the approximate 
value of the left-hand member of (51) therein given suffices 
when i is greater than 3. The results as far as i--12 are 
recorded in the annexed table. 
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324 On the Conduction of Heat in a Spherical Mass of Air. 

- -  m 

1 . . . . . .  , ,  

2 . . . . . . . .  

3 . . . . . . . .  

4 . . , ,  . . . .  

6 . . . . . . . .  

m / r , ' .  

1 '0994 

2"0581 

3"0401 

4'0305 

5"0246 

6 0 2 0 6  

L e ~ - h a n d  
m e m b e r  

L °2(55) 
"4942 

'1799 

"0871 

"0510 

"0332 

'0233 

i .  

t~ . . . . . .  

8 . . . . . .  

9 . . . . . .  

10 . . . . . .  

11 . . . . . .  

12 . . . . . .  

7"0177 

8-0156 

9 0 1 3 8  

10'0125 

11.0113 

12 0104 

Le f t -hand  
]nember 
of (55). 

'0175 

"0134 

"0106 

'0086 

"0071 

"0060 

Thus the solution (51) of our problem is represented by 

O/O----"4942 e-(v°0°4)~t' + "1799e-(* °~sl)w + . . . . .  (56) 

where by (9), with omission of 7 and restoration of a, 

t ' l t = ~ , , l v a  ~ . . . . . . .  (57) 
The numbers entered in the third column of the above 

table would add up to unity if continued far enough. The 
verification is best made b y  a comparison with the simpler 
series (52). i f  with t zero we call this series Z ~ and the 
present series Z, both E and ~ have unity for their sum, and 
accordingly 7Z ~ --E = ~/-- 1, or 

6 ~ / 1  I 1 ) 
6a-k ia  + ~ +~ + . . .  -Z=v-1 = 4 1 .  

Here 6~/~r2='8573, and the dit%rence between this and the 
first term of Z, i. e, "4942, is "3631. The dii%rences of the 
second, third~ &c. terms are "0344~ "0082, "0026~ "0011, "0005, 
'0000, &c, making a total of "4099. 

t'. ( :6) .  r.  (56). 

" 0 ~  . . . . . . . . .  

• 05 . . . . . . . . .  

"10 . . . . . . . . .  

' 2 0  . . . . . . . .  

• 3 0  . . . . . . . . .  

• 4 0  . . . .  . . . . .  

" 5 0  . . . . . . . . .  

1 0 0 0 0  

-7037 

"6087 

",I811 

"4002 

"3401 

'2926 

• 6 0  . . . . . . . . .  

• 70 . . . . . . . . .  

• 80 . . . . . . . . .  

• 9 0  . . . . . . . . .  

1'00 . . . . . . . . .  

1 5 0  . . . . . . . . .  

2"00 . . . . . . . . .  

"2538 

"2215 

"1940 

"1705 
"1502 

~ 0 9  

'0441 

We are now ill a position to compute the right-hand 
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Notices respeetin.q New Books. 325 

member  of  (56) as a function of t:. The annexed table con- 
tains sufficient to give an idea of the course of  the function.  
I t i s  plotted in the figure.  The second en t ry  ( t / = ' 0 5 )  requires 

the inclusion of' 9 terms of the series. After  t / = ' 7  two terms 
suffice; and af ter  t / = 2 " 0  the first te rm represents the series 
to fbur places Gf decimals. 

By interpolation we find that  the series at tains the value "5 
when 

t '= "184 . . . . . . .  ( 5 8 )  

X X V  l. Notices respectin.q New t3ooks. 

.An Elementary Course in the Iateyral Calculus. B~! Dr. D. A. 
MtrRRAV, Co,'nell Universlty. Longmaus, 1898. Pp. x + 28S. 

D R. M U B R A ¥  states his obiect to be to p resen t"  the subject- 
matter, which is of an elementary ch~wacter, in a simple 

manner." This he has succeeded in doing, aI~d the work is well- 
arranged and the expl~mations given are exceedingly clear. In 
Chapter I. he treats integration as a process of summ'ttion, and in 
Chapter 1[. as the inverse of differentiation. The author's object 
herein is to give the student a clear idea of what the Integral Calcuh s 
is, "rod of t he uses to which it may be applied. The first ten chapters 
are devoted to a treatment of the matters handled in such works as 
Williamson's, Edwards's, and other well-kno~'n treatises. C, hap- 
ter XI.  treats of approximate integration, and the application of 
the Calculus to Ilm measurement of areas. Here  we bave clear 
slatements and proofs of the trapezoidal rule, Simpson's one- 
third rule, and Durand's rule. To this latter gentleman the 
tmthor is indebted for valuable suggestiotls of use to engineering 
students. Prof. Durand has also put at Dr. 3 l u r r a f s  disposal 
his article on " In tegra l  Curves" (iu the 'Sibley Journal of 
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