Dataset Open Access
Kaluba, Marek;
Nowak, Piotr W.;
Ozawa, Narutaka
This is the dataset accompanying Aut(𝔽₅) has property (T) paper (https://arxiv.org/abs/1712.07167). See Section 4 thereof for a detailed description of the content of the included files:
tar --list -f ./oSAutF5_r2.tar.xz
oSAutF5_r2/
oSAutF5_r2/1.3/
oSAutF5_r2/1.3/full_2018-01-26T12:29:58.143.log
oSAutF5_r2/1.3/solver_2018-01-26T12:29:58.143.log
oSAutF5_r2/1.3/SDPmatrix.jld
oSAutF5_r2/1.3/lambda.jld
oSAutF5_r2/U_pis.jld
oSAutF5_r2/pm.jld
oSAutF5_r2/delta.jld
oSAutF5_r2/orbits.jld
oSAutF5_r2/preps.jld
To replicate the computation of the spectral gap clone 1712.07167
repository first
git clone https://git.wmi.amu.edu.pl/kalmar/1712.07167.git
Then unpack the content of oSAutF5_r2.tar.xz
into 1712.07167
folder.
You need julia-1.1.0
or above. In julia
s REPL run
using Pkg
Pkg.activate("1712.07167")
Pkg.instantiate()
Pkg.test("PropertyT")
Finally, to verify that the Laplace operator on SAut(𝔽₅) (associated to the standard generating set) has spectral gap of at least 1.3
run from within 1712.07167
folder
julia check_SAutF5.jl
If You want to generate the multiplication table and other files on Your own delete all *.jld
files from the oSAutF5_r2
folder (but the ones in 1.3
folder) and run the same command again. Note: You need at least 20
GB of RAM and spare a few hours of Your CPU.
We reproduce the content of check_SAutF5.jl
script below.
using Pkg
Pkg.activate(".")
using Groups
using GroupRings
using PropertyT
using SparseArrays
using LinearAlgebra
using IntervalArithmetic
using JLD
@show Threads.nthreads()
BLAS.set_num_threads(Threads.nthreads());
G = SAut(FreeGroup(5))
pm = load("oSAutF5_r2/pm.jld", "pm");
RG = GroupRing(G, pm)
@info RG
S_size = 80
# due to technical problems we are no longer able to load delta.jl on julia-1.0
Δ_coeff = SparseVector(maximum(pm), collect(1:(1+S_size)), [S_size; -ones(S_size)])
Δ = GroupRingElem(Δ_coeff, RG);
Δ² = Δ^2;
@info "Loading solution"
λ₀ = load("oSAutF5_r2/1.3/lambda.jld", "λ")
P₀ = load("oSAutF5_r2/1.3/SDPmatrix.jld", "P");
@info "Taking square root of P"
@time Q = real(sqrt(P₀));
Q_aug, check_columns_augmentation = PropertyT.augIdproj(Interval, Q);
@show check_columns_augmentation
if !check_columns_augmentation
@warn "Columns of Q are not guaranteed to represent elements of the augmentation ideal!"
end
@info "Computing SOS decomposition"
@time sos = PropertyT.compute_SOS(RG, Q_aug);
residual = Δ² - @interval(λ₀)*Δ - sos;
@show norm(residual, 1)
This research was supported in part by
Name | Size | |
---|---|---|
oSAutF5_r2.tar.xz
md5:00b12d0a0f5051e2ce70e77a629412c7 |
92.2 MB | Download |
All versions | This version | |
---|---|---|
Views | 433 | 300 |
Downloads | 43 | 33 |
Data volume | 4.0 GB | 3.0 GB |
Unique views | 364 | 267 |
Unique downloads | 38 | 31 |