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XXXIV.  On t]~e Theory of Surface Forces. 
By Lord R~YLnma, Sec. R.S.* 

S INCE the time of Young the tendency of a Hquid surface 
to contract has always been attributed to the mutual 

attractioa of the parts of the liquid, acting through a very 
small range,--to the same forces in fact as those by which the 
cohesion of liquids and solids is to be explained. It is some- 
times asserted that Laplace was the first to look at the matter 
from this point of view, and that Young contented himself 
with calcula, tions of the consequences of superficial tension. 
Such an opinion is entirely mistaken, although the authority 
of Laplace himself may be quoted in its favour t. In the 
introduction to his first paper $, which preceded the work of 
Lap]ace, Young writes : - -"  It will perhaps be more agreeable 
to the experimental philosopher, although less consistent with 
the strict course of logical argument, to proceed in the first, 
place to the comparison of this theory [of superficial tension] 
with the phenomena, and to inquire afterwards for its founda- 
tion in the ultimate properties of matter." This he attempts 
to do in Section ¥ I ,  which is headed P]lysical Foundation of' 

• Communicated by the Author. 
# Mde. Cdl. Suppldment au X e livre, 1805:--"Mais il n'a pas teat@, 

comme Segner, de d@river ces hypoth~ses~ de la lol de l'attraction des 
mol~cules, decroissante avec une extreme ~apidit~; ce qui 6tait indispen- 
sable pour les r~aliser." 

"On the Cohesion of Fluids," Phil. Trans. 1805. 
_Phil. Mug. S. 5. Vol. 30. No. 185. Oct. 1890. X 

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
] 

at
 0

0:
30

 2
2 

Ju
ne

 2
01

2 



286 Lord Rayleigh on the 

tl~e Law of  Superficial Cohesion. The argument is certainly 
somewhat obscure ; but as to the character of the "physical  
foundation" there can be no doubt. " W e  may suppose the 
particles of liquids, and probably those of solids also, to possess 
that power of repulsion, which has been demonstrably shown 
by ~ewton to exist in a~riform fluids, and which varies in the 
inverse ratio of the distance of the particles from each other. 
In air and vapours this force appears to act uncontrolled ; but 
in liquids it is overcome by a cohesive force, while the par- 
ticles still retain a power of moving freely in all directions . . . . .  
I t  is simplest to suppose the force of cohesion nearly or per- 
fectly constant in its magnitude, throughout the minute dis- 
tance to which it extends, and owing its apparent diversity to 
the contrary action of the repulsive force which varies with 
the distance." 

Although nearly a century has elapsed~ we are still far from 
a satisfactory theory of these reactions. We know now that 
the pressure of gases cannot be explained by a repulsive force 
varying inversely as the distance, but that we must appeal to 
the impacts of colliding molecules*. There is every reason 
to suppose that the molecular movements play an important 
part in liquids also ; and if we leave them out of account, we 
can only excuse ourselves on the ground of the difficulty of 
the subject, and with full recognition that a theory so founded 
is probably only a first approximation to the truth. On the 
other hand, the progress of' science has tended to confirm the 
views of Young and Laplace as to the existence of a powerful 
attraction operative at short distances. Even in the theory of 
gases it is neeessary~ as Van der Waals has shown, to appeal 
to such a force in order to explain their condensation under 
increasing pressure in excess of that indicated by ]3oyle's law~ 
and explicable by impacts. Again, it would appear that it is 
in order to overcome this attraction that so much heat is 
required in the evaporation of liquids. 

I f  we take a sLatieal view of the matter, and ignore the 
molecular movementst~ we must introduce a repulsive force 
to compensate the attraction. Upon this poin~ there has been 
a good deal of confusion~ of which even Poisson cannot be 
acquitted. And yetthecase seems simple enough. For con- 
sider the equilibrium of a spherical mass of mutually attracting 
matter, flee from external tbrc% and conceive it divided by 

The argument is clearly set forth in Maxwell's lecture "On the 
Dynamical Evidence of the Molecular Constitution of Bodies" (Nature~ 
vol. xi. p. 357, 1875). 

t Compare Worthington~ " On Surface Forces in Fluids~" Phi]. 5Iag. 
xviii. 1 ). 334 (1884). 
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T]~eory of Surface t~orces. 287 

an ideal plane into hemispheres. Since the hemispheres are 
at rest, their total action upon one another must be zero~ that 
is~ no force is transmitted across the interface. I f  there be 
attraction operative across the interface, it must be precisely 
compensated by repulsion. This view of the matter was from 
the first familiar to Young, and he afterwards gave calcula- 
tions, which we shall presently notice, dependent upon the 
hypothesis that there is a constant attractive ibrce operative 
over a limited range and balanced by a repulsive force of 
suitable intensity operative over a different range. In La- 
place's theory~ upon the other hand, no mention is made of 
repulsive forces, and it would appear at first as if  the attractive 
forces were left to perform the impossible feat of balancing 
themselves. But in this theory there is introduced a pressure 
which is really the representative of the repulsive forces. 

I t  may be objected that if the attraction and repulsion must 
be supposed to balance one another across any ideal plane of 
separation, there can be no sense, or advantage, in admitting 
the existence of either. This would certainly be true if the 
origin and law of action of the forces were similar~ but such is 
not supposed to be the case. The inconclusiveness of the 
objection is readily illustrated. Consider the case of the 
earth, conceived to be at rest. The two halves into which it 
may be divided by an ideal plane do not upon the whole act 
upon one another ; otherwise there could not be equilibrium. 
Iqevertheless no one hesitates to say that the two halves 
attract one another under the law of gravitation. The force 
of the objection is sometimes directed against the pressure, 
denoted by K, which Laplace conceives to prevail in the 
interior of liquids and solids. How, it is asked, can there be 
a pressure, if the whole ibrce vanishes ? The best answer to 
this question may be found in asking another--Is there a 
pressure in the interior of the earth? 

I t  must no doubt be admitted that in availing ourselves of 
the conception of pressure we are stopping short of a com- 
plete explanation. The mechanism of the pressure is one of 
the things that we should like to understand. But Laplace's 
theory, while ignoring the movements and even the existence 
of molecules, cannot profess to be complete ; and there seems 
to be no inconsistency in the conception of a continuous, 
incompressible liquid, whose parts attract one another, but are 
prevented from undergoing condensation by forces of infi- 
.nitel.y small range, into the nature of which we do not further 
lnqmre. All that we need to take into account is then covered 
by the ordinary idea of pressure. However imperfect a theory 
developed on these lines may be, and indeed must be, it pre- 

X 2  
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~8~ Lord Rayleigh on the 

seats to the mind a good picture of capillary phenomena, and, 
as it probably contains nothing not needed for the further 
development of the subject, labour spent upon it can hardly 
be thrown away. 

Upon this view the pressure due to the attraction measures 
the cohesive force of the substance, that is the tension which 
must be applied in order to cause rupture. I t  is the quantit~r 
which Laplace denoted by K, and which is often called rife 
molecular pressure. Inasmuch as Lap]ace's theory is not a 
molecular theory at all, this name does not seem very appro- 
priate. Intrinsic pressure is perhaps a better term, and will 
be employed here. The simplest method of estimating the 
intrinsic pressure is by the force required to break solids. As 
to liquids, it is often supposed that the smallest force is 
adequate to tear them asunder. If  this were true, the theory 
of capillarity now under consideration would be upset from 
its foundations, but the fact is quite otherwise. Berthetot* 
found that water could sustain a tension of about 50 atmo- 
spheres applied directly, and the well-known phenomenon of 
retarded ebullition points in the same direction. For if the 
cohesive forces which tend to close up a snmll cavity in the 
interior of a superheated liquid were less powerful than the 
steam-pressure, the cavity must expand, that is the liquid 
must boil. By supposing the cavity infinitely small, we see 
that ebullition must necessarily set in as soon as the steam t 
pressure exceeds that intrinsic to the liquid. The same method 
may be applied to form a conception of the intrinsic pressure 
of a liquid which is not superheated. The walls of a mode- 
rately small cavity certainly tend to collapse with a ibrce 
measured by the constant surface-tension of the liquid. The 
pressure in the cavity is at first proportional to the surface- 
tension and to the curvature of the walls. If  this law held 
without limit, the consideration of an infinitely small cavity. 
shows that the intrinsic pressure would be "infinite in all 
liquids. Of course the law really changes when the dimen- 
stuns of the cavity are of the same order as the range of the 
attractive forces, and the pressure in the cavity approaches a 
limit, which is the intrinsic pressure of the liquid. In this 
way we are forced to admit the reality of the pressure by the 
consideration of experimental facts which cannot be disputed. 

The first estimate of the intrinsic pressure of water is doubt- 
less that of Young. It  is 23,000 a~mosphercs, and agrees 

* Ann. de Chimie, xxx. p. 232 (1850). See also Worthington, Brit. 
Assoc. Report, 1888, p. 583. 

f If there be any more volatile impurity (e. g. dissoh, ed gas) ebullition 
must occur much earlier. 
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Theory of Surface Forces. 289 

extraordinarily well with modern numbers. I propose to 
return to this estimate, and to the remarkable argument which 
Young founded upon it. 

The first great advance upon the theory of Young and 
Laplace was the establishment by Gauss of the principle of 
surfi~ce-energy. J=[e observed that the existence of attractive 
forces of the kind supposed by his predecessors leads of neces- 
sity to a term in the expression of the potential energy pro- 
portional to the surface of the liquid, so that a liquid surface 
tends always to contract, or, what means precisely the same 
thing, exercises a tension. The argument has been put into 
a more general form by Boltzmann*. I t  is clear that all 
molecules in the interior of the liquid are in the same con- 
dition. Within the superficial layer, considered to be of finite 
but very small thickness, the condition of all molecules is the 
same which lie at the same very small distance from the surface. 
I f  the liquid be deformed without change in the total area of 
the surface, the potential energy necessarily remains unaltered ; 
hut if there be a change of area the variation of potential 
energy must be proportional to such change. 

A mass of liquid, left to the sole action of cohesive forces, 
assumes a spherical figure. We may usefully interpret this 
as a tendency of the surface to contract ; but it is important 
not to lose sight of the idea that the spherical form is the 
result of the endeavour of the parts to get as near to one 
another as is possiblet. A drop is spherical under capillary 
forces for the same reason that a large gravitating mass of 
(non-rotating) liquid is spherical. 

In the following sketch of Laplace's theory we will com- 
mence in the manner adopted by Maxwell$. I f  f be the 
distance between two particles m, m t, the cohesive attraction 
between them is denoted in Laplace's notation by r~ m' ¢ ( f ) ,  
where ~)(f) is a function of f which is insensible for all 
sensible values of f ,  but which becomes sensible and even 
enormously great, w h e n f i s  exceedingly small. 

" If  we next introduce a new function o f f  and write 

/ t ( / )  d / =  I I ( / ) ,  . . . . .  (11 

then m m~H(f)  will represent (1) the work done by the 

* Pogg. Ann. cxli. p. 582 (1870). See also Ma~xwell's 'Theory of 
tIeat, 1870; and article Capillarity, Enc. Brit. 

t See Sir W. Themson's lecture on Capillary Attraction (Prec. Roy 
Inst. 1886), reprinted in ' Popular Lectures and Addresses.' 

.Nnc. Brit., "Capillarity." 
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290 Lord Rayleigh on the 

attractive force on the particle m, while it is brought from an 
infinite distance from m / to the distance f from m~; or (2) the 
attraction of a particle m on a narrow straight rod resolved 
in the direction of the length of the rod, one extremity of the 
rod being at a dis tancef  from m, and the ether at an infinite 
distance, the mass of unit of length of the rod being mq The 
function I I ( f )  is also insensible for sensible values of f ,  but 
for insensible values of f i t  may become sensible and even very 
great." 

" I f  we next write 

Z I I ( f ) f d f = a k ( z ) ,  . . . . .  (2' 

then 2~'m¢~(z) will represent (1) the work done by the 
attractive force while a particle m is brought from an infinite 
distance to a distance z from an infinitely ~hin stratum of the 
substance whose mass per unit of area is o" ; (2) the attraction 
of a particle m placed at a distance z from the plane surface 
of an infinite solid whose density is a . "  

The intrinsic pressure can now be found immediately by 
calculating the mutual attraction of the parts of a large mass 
which lie on opposite sides of an imaginary plane interface. 
I f  the density be ¢, the attraction between the whole of one 
side and a layer upon the other distan~ z from the plane and 
of thickness dz is 2~ra2~(z)dz: reckoned per unit of area. 
The expression for the intrinsic pressure is thus simply 

q,&-) & . . . . . .  (3) 

In Laplaee's investigation ~r is supposed to be unity. We 
may call the value which (3) then assumes K0, so that 

The expression for the superficial tension is most readily 
found with the aid of the idea of superficial energy, intro- 
duced into the subject by Gauss. Since the tension is con- 
stant, ~he work that must be done to exgend the surface by 
one unit of area measures ~he tension, and the work required 
for the generation of any surface is the product of the tension 
and the area. From this consideration we may derive La- 
place's expression, as has been done by Dupr6* and ThomsoM. 
For imagine a small cavity go be formed in the interior of the 

* Thgorie M~canique de la Chaleur (Paris, 1869). 
~f "Capillary Attraction," Pro,c. Roy. Inst. Jan. 1886. Reprinted, 

Popular Lectures and Addresses, 1889. 
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Theory of Surface Forces. 291 
mass and to be gradually expanded in such a shape that the 
walls consist almost entirely of two parallel planes. The dis- 
tance between the planes is supposed to be very small compared 
with their ultimate diameters~ but at the same time large 
enough to exceed the range of the attractive forces. The 
work required to produce this crewtsse is twice the pro- 
duct of the tension and the area of one of the faces. If we 
now suppose the crevasse produced by direct separation of its 
walls, the work necessary must be the same as before, the 
initial and final configurations being identical ; and we recog- 
nize that the tension may be measured by half the work that 
must be done per unit of area against the mutual attraction 
in order to separate the two portions which lie upon opposite 
sides of an ideal plane to a distance from one another which 
is outside the range of the forces. It only remains to calcu- 
late this work. 

If  ~1, ~ represent the densities of the two infinite sollds~ 
their mutual attraction at distance z is per unit of area 

Y; 2~-~1~ ~ ( ~ ) & ,  . . . . .  (5) 

or 2~ro-vr.~ O(z), if we write 

f ~(,~) dz=O(~) (6) 

The work required to produce the separation in question is 
thus 

f° ~-o-~o-~ 0(~)d~;  . . . . .  (7) 

and for the tension of a liquid of density ~r we have 

f" T = ~  ~ O(z)& . . . . . . .  (8) 
, dO 

The form of this expression may be modified by integration 
by parts. For 

Since 8(0) is finite, proportional to K, the integrated term 
vanishes at both limits, and we have simply 

and 

;/ T = ~ '  z ~ ( , )  d ,  . . . . . . .  (101 
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292 Lord Rayleigh on the 
In Lap]ace's notation the second member of (9), multiplied 
by 2% is represented by tI. 

As Laplace has shown, the values for K and T may also be 
expressed in terms of the function ~b, with which we started. 
Integrating by parts, we get by means of (1) and (2), 

q, (~) dz = ~,t,(~) + 1 ~"H (..) + ~ ~ ~-~4~ (~) dz, 

]~,l,(z) d~= ½ ~,(~) + ~ ~*H (~.) + ~ S z*4~(~) d~. 

In all cases to which it is necessary to have regard the inte- 
grated terms vanish at both limits, and we may write 

yo®~(z)dz=l yo®z3dp(z)dz, yo®zqf(z)dz=~ yoz4dp(z)dz;(ll) 
so that 

Ko= z3d?(z) dz, To= g z4¢(z) dz. (12) 

A few examples of these formulm will promote an intelli- 
gent comprehension of the subject. One of the simplest 
suppositions open to us is that 

~b(/) =e-~¢ . . . . . . .  (13) 
From this we obtain 

I I ( z )=~- l e -~ ,  4F(z ) =/9-3(/9z + 1)e -¢", (14) 

K 0 = 4 ~ Z - ' ,  To=3~ -~ . . . . . .  (15) 

The range of the attractive force is mathematically infinite, 
but practically of the order/9-', and we see that T is of higher 
order in this small quantity than K. That K is in all cases 
of the fourth order and T of the fifth order in the range of the 
forces is obvious fi'om (12) without integration. 

An apparently simple example would be to suppose ¢ (z) = z". 
From (1), (2), (4) we get 

zn+l z.+a 
II(z)= n+l' 4F(Z)=n+3.n+l' 

2~r z.+4 
I ® . . . . . .  (16) K° ---- n+4:n~.n+l o 
m 

The intrinsic pressure will thus be infinite whatever n may 
be. I f  n + 4 be positive, the attraction of infinitely distant 
parts contributes to the result ; while if n + 4 be negative, the 
parts in immediate contiguity act with infinite power. For 
the transition case, discussed by Sutherland*~ of n + 4 =  0, 

* Phil. Mag. xxiv. p. 113 (1887). 
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Theory of Surface Forces. 293 

Ko is also infinite. I t  seems therefore that nothing satisfac- 
tory can be arrived at under this head. 

As a third example we will take the law proposed by Young, 
v iz .  

4 ( z ) = l  from z = 0  to z = a ,  -~ (17) ] ~b(z) = 0  fl'om z = a  to z=~v ; 

and corresponding therewith, 

I I ( z ) = a - - z  from z = 0  to z = a ,  -I~ 
(18)  J YI(z)=0 from z = a  to z=ov ,  

,/,(.) = a (a s- 8) ] 
from z=O to z----a, ~- . (19) 

(z) = 0 from z = a to z =  ~ .  ] 

Equations (12) now give 

K o =  3 3 ,  z d z =  6 '  . . . .  (20) 

77" f a  . ,B.a 5 
To= ~ z*dz= - ~  . . . . .  (21) 

do 

The numerical resnlts differ from those of Young*, who finds 
that "the contractile force is one-third of the whole col, esive 
force of  a stratum of particles, equal in thickness to the interval 
to which the primitive equable cohesion extends," viz. T---~ aK ; 
where~s according to the above calculation T=~o-aK. The 
discrepancy seems to depend upon Young having treated the 
attractive force as operative in one direction only. 

In his Elementary Illustrations of the Celestial Mechanics 
of Laplacet~ Young expresses views not in all respects con- 
sistent with those of his earlier papers. In order to balance 
the attractive force he introduces a repulsive force, following 
the same law as the attractive except as to the magnitude of 
the range. The attraction is supposed to be of constant inten- 
sity C over a range c, while the repulsion is of intensity R, 
and is operative over a range v. The calculation above given 
is still applicable, and we find that 

{* ~Ene. Brit. ; Collected Works, vol. i. p. 461. 
¢ 189L Collected Works, vo]. i. p. 485. 
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294 Lord Rayleigh on the 

In these equations, however, we are to treat K as vanishing, 
the specification of the forces operative across a plane being 
supposed to be complete. Hence, as Young finds, we must 
take 

c~C=r4R ; . . . . . . .  (23) 
and accordingly 

T =  ~c'C(c--r)  (24) 
40 . . . . . .  

At this point [ am not able to follow Young's argument, for 
he asserts (p. 490) that " the  existence of such a cohesive 
tension proves that the mean sphere of' action of the repulsive 
force is more extended than that of the cohesive : a conclusion 
which, though contrary to the tendency of some other modes 
of viewing the subject, shows the absolute insu~ciency of all 
theories built upon the examination of one kind of corpuscular 
force alone." According to (24) we should infer, on the con- 
trary, that if superficial tension is to be explained in this way, 
we must suppose that c > r. 

My own impression is that we do not gain anything by this 
attempt to advance beyond the position of Laplace. So long 
as we are content to treat fluids as incompressible there is no 
objection to the conception of intrinsic pressure. The repul- 
sive forces which constitute the macbiu.ery of this pressure 
are probably intimately associated with actual compression, 
and cannot advantageously be treated without enlarging the 
foundations of the theory. Indeed it seems that the view of 
the subject represented by (23), ('24), with c greater than r, 
cannot consistently be maintained. For consider the equili- 
brium of a layer of liquid at a free surf'ace A of thickness AB 
equal to r. I f  the void space beyond A were filled up with 
liquid, the attractions and repulsions across B would balance 
one another;  and since the action of the additional liquid 
upon the parts below B is wholly attractive, it is clear that in 
the actual state of things there is a finite repulsive action 
across B, and a consequent failure of equilibrium. 

I now propose to exhibit another method of calculation, 
which not only leads more directly to the results of Laplace, 
but allows us to make a not unimportant extension of the 
formulae to meet the case where the radius of a spherical 
cavity is neither very large nor very small in comparison with 
the range of the forces. 

The density of the fluid being taken as unity, let V be the 
potential of the attraction, so that 

v=SSSrt(f)a ava , . . . .  (25) 
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Theory of Surface Forces. 295 

f denoting the distance of the element of the fluid dxdydz 
from the point at which the potential is to be reckoned. The 
hydrostatic equation of pressure is then simply 

dT=dV ; 
or, if A and B be any two points, 

pB--pA=VB--VA . . . . . .  (26) 

Suppose, for example, that A is in the interior, and B upon a 
plane surface of the liquid. The potential at B is then exactly 
one half' of that at A, or V~ = ½ VA ; SO that 

pA--p~ = ½ VA --  2,r I I  ( f ) f  dfs in  0 dO 

Now pA--pu is the intrinsic pressure Ko ; and thus 

Ko=2~r H(f) f 'd f= 3 A ~b(f)f'af, 
as belbre. 

Again, let us suppose that the fluid is bounded by concen- 
tric spherical surfaces, the interior one of radius r being either 
large or small, but the exterior one so large that its curvature 
may be neglected. We may suppose that there is no external 
pressure, and that the tendency of the cavity to collapse is 
balanced by contained gas. Our object is to estimate the 
necessary internal pressure. 

Fig. 1. 

I B ]4 F 

In the figure B D C E represents the cavity, and the pres- 
sure required is the same as that of the fluid at such a point 
as B. Since pA=O, p~=VB--VA. Now VA is equal to that 
part of VB which is due to the infinite mass lying below the 
plane B F. Accordingly the pressure required (pB) is the 
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'296 Lord Rayleigh on the 

potential at B due to the fluid which lies above the plane B F. 
Thus 

p =SSSrlff) a*dv  , 
where the integrations are to be extended through the region 
above the plane B F which is external to the sphere B D C E. 
On the introduction of polar coordinates the integral divides 
i~self into two parts. In the first fl'om f = 0  to . /=  2r the 
spherical shells (e. g. D H) are incomplete hemispheres, while 
in the second part from f =  2r to f =  ¢c the whole hemisphere 
(e. g. I G F) is operative. The spherical area D H, divided 
b y p ,  

= 2rr i o~.sinr. 8 dO = 27r cos 8 

The area GF =2rrf  2. 
Thus, dropping the suffix B, we get the unexpectedly simple 

expression 

If 2r exceed the range of the force, the second integral 
vanishes and the first may be supposed to extend to infinity. 
Accordingly 

:f. ;f.%(<> " - x dr, (28) T =  n ( f ) p  d f  = r 

in accordance with the value (12) already given for To. We 
see then that, if the curvature be not too great, the pressure 
in the cavity can be calculated as if it were due to a constant 
tension tending to contract the surface. In the other extreme 
case where r tends to vanish, we have ultimately 

p = 2~r I I ( f ) p  dr= K 0. 

In these extreme cases the results are of course well known; 
but we may apply (27) to calcula~;e the pressure in the cavity 
when its diameter is of the order of the range. To illustrate 
this we may take a case already suggested, in which sb(f) = e-~f 
I I ( f ) = f l - l e  -~. Using these, we obtain on reduction, 

:From (29) we may fall back upon particular cases already 
considered. Thus, if r be very great, 

P =  2_ x a~.B_~ ; 
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Tfieory o f  Surface Forces. 297 

and if r be very small, 
p=4,r~ -4, 

in agreement with (15). 
In a recent memoir ~ Fuchs investigates a second approxi- 

mation to the tension of curved surfaces, according to which 
the pressure in a cavity would consist of two terms ; the first 
(as usual) directly as the curvature, the second subtractive, 
and proportional to the cube of the curvature. This conclu- 
sion does not appear to harmonize with ('27), (29), which 
moreover claim to be exact expressions. It may be remarked 
that when the tension depends upon the curvature, it can no 
longer be identified with the work required to generate a unit 
surface. Indeed the conception of surface-tension appears to 
be appropriate only when the range is negligible in comparison 
with the radius of curvature. 

The work required to generate a spherical cavity of radius v 
is of course readily found in any particular case. It is ex- 
pressed by the integral 

~o ' p . 4~rr ~. dr. (30) g 

As a second example we may consider Young's supposition, 
viz. that the force is unity from 0 to a, and then altogether 
ceases. In this case by (18), I I ( f )  absolutely vanishes, if 
f > a ; so that if the diameter of the cavity at all exceed a, 
the internal pressure is given rigorously by 

2 ~f074 ~a5 
x ¢(f)  dr= - - x - - .  (31) P= r r 40 

When, on the other hand, 2r < a, we have 

~--f"(a--f)ffdf+2~rf2 ~ r do ( a - - f ) f f d f  
p =  

- - ~ a r  + 5 . . . . . .  

coinciding with (31) when 2 r = a .  I f  r - -0,  we fall back 
upon Ko= ~ra4/6. 

We will now calculate by (30) the work required to form a 
cavity of radius equal to ~a. We have 

~'2a7 ( 1 

, y o  

The work that would be necessary to form the same cavity, 

Wien. Ber. Bd. xcviii. Abth. II. a, Mat 1889. 
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298 Mr. S. H. Burbury on some _Problems 

supposing the pressure to follow the law (31) applicable when 
2r > a, is 

~o t~2_ v a  ~ 47rr~ d r =  ~r~a7 
r "  40 " 40 

The work required to generate a cavity for which 2r> a is 
therefore less than if the ultimate law prevailed throughout 
by the amount 

~r~a7 [ 1 1 1 ~ ~ a  7 (33) 
\1-0 18 35]---- 4..9: 7' 

[To be continued.] 

XXXV. On some _Problems in the Kinetic T/,eory of  Gases. 
By S. tL B~RBUaY, F . R . S 2  

Maxwell's Law of  Distrlbution. 
1. " ~ - ~ E ~  a gas or mixture of gases is at rest in the 

¥ ¥ normal state, the distribution of velocities among 
the molecules may be defined thus :--Take an origin O, and 
let the vector velocity of each molecule be represented by a 
line drawn from O. Then the number per unit of volume of 
molecules of mass M, whose velocities arc represented by lines 
from the origin to points within the element of volume dQ 
at P~ is 

where ~ is the number of molecules of mass M in unit of 

volum% and ~ is the mean kinetic energy of a molecule. 

2. I shall employ two other variables : -  
Let V denote the vector velocity of the common centre of 

gravity of two molecules whose masses are M and m. Call 
this their commo, velocity. 

Let R denote the velocity of M, r that of m, relative to this 
common centre of gravity. Then the velocity of M is the 
resultant of V and R, that of m is the resultant of V and r. 

The relative ~:eloeity of hi and m is • + % and stlall be 
denoted by p, so that 

R m M + m  M T m  
r M' P= m M 

3. The molecules whose velocities are represented by lines 

* Communicated by the Author. 
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