Conference paper Open Access

Prediction of mechanical properties of nanocrystalline materials using Voronoi FE models of representative volume elements

Panagiotis Bazios; Konstantinos Tserpes; Spiros Pantelakis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20190409162425.0</controlfield>
  <controlfield tag="001">1882930</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="a">8th EASN-CEAS International Workshop on Manufacturing for Growth &amp; Innovation</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras</subfield>
    <subfield code="a">Konstantinos Tserpes</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras</subfield>
    <subfield code="a">Spiros Pantelakis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">458484</subfield>
    <subfield code="z">md5:1cf1c0acdb2366523769495932b92d0c</subfield>
    <subfield code="u">https://zenodo.org/record/1882930/files/Prediction of mechanical properties of nanocrystalline materials using Voronoi FE models of representative volume elements.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-11-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">openaire</subfield>
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-icarus-alloys</subfield>
    <subfield code="o">oai:zenodo.org:1882930</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras</subfield>
    <subfield code="a">Panagiotis Bazios</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Prediction of mechanical properties of nanocrystalline materials using Voronoi FE models of representative volume elements</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-icarus-alloys</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the present work, a numerical model is developed to predict the mechanical properties of nanocrystalline materials using a Finite Element Analysis. The model is based on Representative Volume Elements (RVE) in which the microstructure of the material is described using the Voronoi tessellation algorithm. The use of the Voronoi particles was based on the observation of the morphology of nanocrystalline materials by Scanning Electron and Transmission Electron Microscopy. In each RVE, three-dimensional modelling of the grain and grain boundaries as randomlyshaped sub-volumes is performed. The developed model has been applied to pure nanocrystallline copper taking into account the parameters of grain size and grain boundary thickness. The mechanical properties of nanocrystalline copper have been computed by loading the RVE in tension. The numerical results gave a clear evidence of grain size effect and the Hall-Petch relationship, which is a consequence of macroscopic strain being preferentially accumulated at grain boundaries. On the other hand, for a given grain volume fraction, the results for elastic moduli showed no effect of the grain size. The model predictions have been validated successfully against numerical results from the literature and predictions of the Rule of Mixtures and the Mori-Tanaka analytical model.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1051/matecconf/201823300029</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
29
37
views
downloads
Views 29
Downloads 37
Data volume 17.0 MB
Unique views 26
Unique downloads 37

Share

Cite as