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1.

The cause of decay of vibratory motion which is to be considered
here is the communication of a disturbance from the vibrator to the
surrounding medium. The energy of the vibrator is gradually trans-
mitted to the distant parts of the medium by wave-motion. When the
vibrator is a solid elastic body and the medium is air there are customary
certain processes for estimating the rate of decay of the vibrations. In
one of these processes the vibrator is assumed to have its natural free
period, the motion of the air is assumed to be that progressive wave-
motion of simple harmonic type in the same period which would be forced
if the free motion in question were maintained for an indefinitely long
time in opposition to the reaction of the air, the rate of transmission of the
energy across a surface surrounding the vibrator is calculated, and this is
taken to be the rate at which the energy of the actual vibratory motion is
diminishing owing to the presence of the air. In another process it
is assumed that waves of simple harmonic type are propagated in air
outwards from the vibrator, the reaction of the air on the vibrator is
calculated in accordance with this assumption, the equation of motion of
the vibrator subject to this reaction is formed, and, with a certain inter-
pretation of symbols, it is found to be of the ordinary type of damped
harmonic vibrations.* The rate of decay of the actual vibratory motion
is taken to be that indicated by this equation. These two processes lead
to the same result when the rate of decay is slow, and when this is
the case there can be no doubt of their correctness as regards the
motion of the vibrator; but it is manifest that they do not give a
complete account of the motion of the medium. This motion cannot be
a progressive wave-motion of simple harmonic type because in the
neighbourhood of the vibrator its amplitude is continually diminishing.
Further, the motion of the vibrator must have a beginning in time, and

* See Lord Rayleigh, Theory of Sound, Vol. n. , § 302, and other Article*.
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consequently the waves that are generated must have a front or boundary
at any instant; beyond this moving boundary there is no disturbance.
The existence of such a boundary implies conditions which the disturbance
must satisfy, but the processes which are indicated above take no account
of any such conditions. So far as I am aware, the only problems concern-
ing such motions which have been solved completely relate to systems in
one dimension,* and it will be found that three-dimensional systems
present new features.

Even in their application to the motion of the vibrator it is clear that
the success of the above described methods depends upon the possibility
of free vibrations of the vibrator when isolated from the medium, and upon
the smallness of the part played by the medium in the actual motion. In
the case of a sounding body the density of the body must be much greater
than that of the air. Otherwise the vibrations of the body in air will not
be approximately the same as in a vacuum. This remark becomes of great
importance when it is sought to extend the methods to electrical vibra-
tions. In this case the essential phenomenon is the wave-motion excited
in the aether, and there is in general no meaning in electrical vibrations
independent of the surrounding medium. Exceptional cases are the
vibrations of a condenser with or without a small aperture,+ and vibra-
tions within an insulating body of enormous specific inductive capacity. +
These are examples of systems in which electrical vibrations that approxi-
mate to free vibrations are possible.§ The nearly dead-beat oscillations
of a Hertzian vibrator differ essentially from those that occur in the above
mentioned exceptional cases. The vibrator is not in any sense isolated
from the medium; and the disturbance that takes place is much more
accurately described as a change of state of the medium than as a change
of state of the vibrator.

The fundamental tone of acoustical resonators is given out by a mode
of vibration which depends essentially upon the neck making communica-
tion with the external medium. Air contained in a cavity within a rigid
boundary having no aperture has definite modes of free vibration, but
none of them is the same as the mode of vibration that is characteristic
of the resonator made by producing an aperture in the boundary. The
system acquires through the existence of the aperture a new mode of

* H. Lamb, Proceedings, Vol. xxxn., p. 20S (1900).
t J. Larmor, Ibid., Vol. xxvt. (1895).
X H. Lamb, Cambridge Phil. Soc. Trans., Vol. xvm. (1900).
§ A conductor outside which the space is doubly or multiply connected—e.g., an infinite

cylinder or a ring—admits, when thin, of electrical oscillations which are very nearly free oscilla-
tions.
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vibration, which decays through the transmission of energy to the external
air. A system with a permanent vibration of nearly the same period and
type, which shall differ from the system consisting of the air in the cavity
only by having an additional degree of freedom, can be devised by
imagining a piston in the aperture to be held nearly in position by a
constant force equal to that exerted upon it by the pressure of the air
inside when at rest, and neglecting the air outside. The mode of vibra-
tion characteristic of the resonator is that in which the piston oscillates
to and fro within the walls of the aperture. When the external air is
present and there is no piston a slightly damped harmonic vibration with
nearly the same period is possible, and such vibrations are excited by any
causes which vary the pressure over the aperture, just as the oscillation of
the piston would be excited by varying the force applied to it. The
electrical analogue of the air in the cavity would appear to be the dielectric
plate of a condenser of which the conducting surfaces are closed. Making
an aperture in the outer conductor appears in this case not to introduce
any new electrical degrees of freedom, and the analogue of the aperture in
the acoustical problem appears to be a wire joining the two conducting
surfaces.* But the analogue is imperfect, inasmuch as opening a com-
munication with the external medium is no longer the process by which
the new degree of freedom is introduced.

In what follows there will be investigated some problems concerning
the generation of sound waves in air and of electrical vibrations in free
aether. It will be seen that the customary methods represent well the
motion of a sounding body, but that the nature of the sound waves
generated by the body is in general different from that assumed in
these methods. For electrical vibrations the case chosen will be that
of a spherical conductor over which a surface distribution of electricity
variable from point to point is produced. For the sake of simplicity the
sphere will be taken to be a perfect conductor.

In the ordinary method of treating this problem,! the disturbance is
assumed to be of exponential type, and the possible exponents are determ-
ined by the condition that the electric force at the surface of the conductor
is normal to the conductor. The exponents may be real and negative or
complex with negative real parts. Thus the solutions that are found

• H. M. Macdonald, Electric Waves (Cambridge, 1902), p. 57.

t J . J . Thomson, Recent Researches, pp. 361 et seq. The problem was treated by the same
author in Protcedings, Vol. xv. (1884), and by H . Lamb in Phil. Trans. Roy. Soc, Vol. oxxxrv.
(1883).



1904.] SOME ILLUSTRATIONS OF MODES OF DECAY OF VIBRATORY MOTIONS. 91

contain factors of the forms

o diii ci & s i n el \c o ' f I ^ ) .

which tend to become infinite with r. These solutions cannot represent
unlimited trains of waves propagated outwards. The waves that are
actually propagated have a boundary which moves outwards with the
velocity c. The effects due to the boundary of the waves are usually left
out of account, and the disturbances of exponential type are also ignored.
They will be found to represent an essential part of the disturbance.
Whenever they can occur they are necessary to the continued advance of
the wave-boundary.

In addition to problems of the decay of vibrations that are conse-
quences of an initial state, some examples will be discussed of vibrations
that are maintained for a time and are then left to decay when the cause
that maintains them ceases to operate. These examples bring out the
result that there is no essential difference in the modes of subsidence that
are exhibited in the two cases.

2. Introduction of Arbitrary Functions.

In Prof. Lamb's paper* to which reference has been made there is
given an illustration of the decay of vibratory motion by transmission of
the energy to a distance. The system considered is a massive body
attached to an infinitely long stretched string and capable of vibrating
transversely under the action of a spring. The waves that are propagated
along the string must be expressible by a function of the form f(at—x).
The initial state of the system being one of equilibrium, the body is struck
transversely to the string, and the initial conditions together with the
equation of motion of the body suffice to determine completely the value
of the function / for all values of x and t. It appears that / is of the
form Ae~p{fU~x) ^in q{at—x) when x < at, but f — 0 when x > at. The
step by which we can advance beyond the more customary and less satis-
factory method of assuming that the waves in the string are of simple
harmonic type is the substitution of an arbitrary function f{at—x) for a
function of the form Asinn{t—x/a). The solutions of problems con-
nected with spherical boundaries which will be discussed below contain
arbitrary functions of t—r\a, where r denotes distance from the centre of
the sphere and a is the velocity of wave-propagation. In the case of
sound waves the velocity potential $ satisfies the equation

* Proceedings, Vol. xxxil., p. 20S.
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and the most general solution that can express waves travelling outwards
and be proportional to a spherical surface harmonic Sn is of the form

In the case of electric waves, we take c for the velocity of radiation
and obtain solutions of equal generality* by assuming a vector (£ rj, f) to
be given by means of equations of the form

in which wn is a spherical solid harmonic of order n, and 17, £ are obtained
from £ by cyclical interchanges of the letters x, y, z, while con and x remain
unaltered. Then we may write at pleasure either

(X, Y,£) = c cur

or (X, 7, Z) = | (£„,£) 1

(a, /?, y) = — c curl {£, >?, £).

Here (X, Y, Z) represents electric force measured electrostatically, (a, /3, y)
represents magnetic force measured electromagnetically, and the axes of
(x, y, z) are a right-handed system. In the case expressed by (1) and
(2) the normal component of (X, Y, Z) at the surface of a sphere of
radius r can be shown to be

— r ) fAy,

L; (4)
) — — -5-

r \r or)

so that this form is suitable for representing oscillating electric charges on
a sphere, the distribution of surface density being proportional to the
surface harmonic contained in wn.

3. Conditions to be satisfied at Wave-Fronts.\

For the determination of the arbitrary functions x which occur in such
solutions as the above we may have, in addition to the conditions which

• These solutions were given by the author in Phil. Trans. Roy. Soe., Vol. cxcvn. (1901), as
generalizations of the well-known forms in which x is &11 exponential function of its argument.

t The results here stated for the case of waves advancing into a previously undisturbed
portion of the medium have been given by the author in Proceedings (Ser. 2), Vol. 1, p. 37, and
the extensions to cases in which the medium beyond the advancing wave-front is disturbed can be
made without any difficulty.
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must hold near to the vibrating nucleus, certain conditions which must be
satisfied at the fronts of waves. In the case of a sound wave advancing
into still air the wave-front advances with velocity a, and the velocity
potential just behind the front must satisfy the condition

(d<pldt)+a(d<pldN) = 0,

where N denotes the direction of the normal to the front in the sense of
advance of the front. If there is motion in the region into which the
waves advance, we may denote by <f>' the velocity potential just behind the
wave-front and by <p" that just ahead of the same surface, and then
the condition to be satisfied is

= (pf'/dt) +a (d<p"/dN). (5)

The conditions <p' — <j>" = const, in this case and ^ = const, in the previous
case also hold at the wave-front, but they will be found to be satisfied of
themselves in the problems that we shall consider.

When a train of electric waves advances into a region in which the
electric and magnetic forces are null the wave-front advances with the
velocity c of radiation, and the electric force (X, Y, Z) and magnetic force
(a, /3, y) just behind the advancing front are connected by the equations

X = cos {z, N)/3—COB (y,N)y

— a = cos (z, N) Y—cos (y,N) Z
(6)

where N is the normal to the wave-front drawn in that direction in which
this front advances. If the magnetic and electric forces in the region into
which the waves advance are not null, we may denote by (X1, Y', Z') and
(a', j9', y') the forces just behind the advancing front and by (X", Y", Z")
and (a", /3", y") the forces just ahead of the same surface. Then the
process by which equations (6) are established in the case where
X", ..., a", ... are zero leads to two systems of equations, viz., three
of the type

(X'-X") = cos (z, JV)(|8'-/3")-cos {y, N) (y '-y") (7)

and three of the type

_{a'-a") = cos(z, N)(Y'-Y")-cos(y, N){Z'-Z"). (8)

The equations of types (7) and (8) are not independent. For example, the
three equations of (8) show that

{a'-a") cos (x, N) + (P'-P") cos (y, N) + (y'-y") coa(z, N) = 0;
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and, if this condition is satisfied, the three equations of (8) can be deduced
from (7). The geometrical interpretation of the conditions is given in my
paper already cited.

4. Sphere Vibrating Radially in Air.

The sphere will be treated as an elastic membrane of mass M and
surface density <r, which is maintained nearly at a definite radius ?*0 by
springs. It will be supposed that, in the absence of the air, the frequency
of vibration of the sphere would be n/^ir. If p is the density of the air,
r0 the radius of the sphere when in equilibrium under the pressure of the
air, ro4-£ its radius at time t, Sp the excess of pressure above that in
equilibrium, the equation of motion of the sphere is

where dots denote differentiation with respect to t.

With the ordinary approximations the velocity of the air and Sp can be
expressed in terms of the velocity potential <p. The above equation may
be written

The velocity of sound in air being denoted by a, <j> must satisfy the equa-
tion d^(f>fdf = a2vV outside the sphere and the condition

= £ (10)
r=r0

The conditions of the problem being symmetrical about the centre of the
sphere, 0 must have the form r~\{at—r), where x l& a n unknown func-
tion. Equations (9) and (10) may be written

i 1

where accents denote differentiation of the function x(#£—ro) w ^ n respect
to its argument. The system of differential equations (11) is of the third
order, and we may solve it by eliminating (• and forming a differential
equation for x or vice versa. We should get a linear differential equation of
the third order with constant coefficients. The three arbitrary constants
of the solution of the equation for x are definite multiples of the constants
of the solution of the equation for £ Instead of proceeding in this way, we
can obtain the complete primitive of the system of equations by assuming

the forms x(at-r) = A^at'r+r'\ i = Be™, (12)
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the constant factor eKr° being inserted in the form of x- Then

(n*+\*a*)B = 2£\A, \aB = - 2-AQ + XrJ. (13)

It follows that X satisfies the equation

(•«2+XV)(l + \r0) + ^ XV = 0, (14)
<T

and that, if Xlt X2, X3 are the roots of this equation, the complete primi-
tive of the system of equations (11) leads to the following forms for <j>
and £:—

(15)

rlaXi r'iaX2 r%aX3

5. Symmetrical Sound Wave produced by Initial Impulse.

In the simplest case the system is set in motion by an impulse
delivered at the instant t = 0. Then <f> vanishes when t is negative, and

£ vanishes when t = 0, but £ has a given value £0 when t = 0. The
condition that <j> vanishes for all negative values of t requires that
x(£) = 0 for all values of £ which are less than — ?•„. Hence the solution
expressed by (15) holds only for values of r which are less than at-\-r0.
For greater values of r, x^~7') = 0- Hence we have a wave with a
boundary r = at-\-rQ travelling outwards with velocity a. The values of
d<p/dr and d<p/dt at the front of the wave must satisfy the condition
expressed in § 3, viz.,

Ator
r

a , A2\a . A9X3a _ f^i^i _j_ ^2^2 1 ^3^3 1 ^i+-^a+-^3"l— a 1 r 1 "1 5 I'r r L r r r r J

or Ay+Az+As — 0.

The initial conditions in regard to $ and £ give the equations
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To determine the constants Ax, A2, As we have therefore the equations

2,4=0, 2A/\ = 0, Ŝ X = - r o 4 (17)

and the complete solution of the problem is expressed by the equations

1 A f ( 1 + V o ) e ^ ( I + V Q ) ^ . ( I + V Q ) ^ )

of which the latter holds when at+r0>r>r0. When r > at+r0 we
must put 0 = 0. Here X1} X2, X3 are the roots of the equation (14).

The solution represents a composite system of waves. To interpret it
we consider the case where the ratio pro/<r is small. The roots of equation
(14) are to a first approximation

\ = — l/r0, X2 = in/a, X3 = — inja.

To this order of approximation the first term in £ vanishes and £ becomes

n~l £Q sin nt. To the same order of approximation 0 becomes

rz^o) . VZ> Binn it- r-=*)\ (20)

Hence, to this order of approximation, the motion of the sphere is the
same as it would be in the absence of the air, and the motion of the air
consists of two wave-motions : one of simple harmonic type which would
be forced by the maintenance for an indefinite time of this motion of the
sphere, the other of exponential type. Near the sphere the latter is
damped rapidly, but near the front of the wave it is of the same degree
of importance as the simple harmonic wave. The wave of exponential
type is practically confined to a small region near the front of the
advancing wave, but, in this region, it is comparable with the simple
harmonic wave and the coexistence of the two is required for the continued
advance of the front.

When we proceed to a second approximation we find that, to the first
order in Xro/<r,

, (21)

n -SIS na \

and X3 is the imaginary conjugate to X2. It follows that the motion of
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the sphere consists of a motion of exponential type which decays very
rapidly, compounded with a motion of the ordinary damped harmonic
type. Since the coefficient of eKial in (18) is small of the order PrQja,
the former motion is small compared with the latter, and, since this
coefficient is negative, the effect of this component of the motion is to
make the maximum displacement of the surface slightly less than it would
be in the absence of the air. The modulus of decay of the damped har-

monic oscillations is —^ ! l , r% ,., which is the value that would be found

by the customary methods. In the motion of the air the simple harmonic
wave-trains obtained by the first approximation become damped harmonic
wave-trains, so that the motion near the sphere subsides gradually in the
same way as the motion of the sphere; but, since all the exponentials in
(19) have the value unity at the wave-front, there is no damping at the
front, and the motion at the front of the wave is subject to diminution
through the law of spherical divergence only. As before, the co-existence
of the exponential wave-train and the slightly damped harmonic wave-
train is necessary to the continued advance of the wave-front.

When there is initial displacement as well as initial velocity the
problem is but slightly more complicated. The second of equations (17)
must then be replaced by 2^4/X = — r2

0aiQ. *Keeping the first approxi-
mation only, we find that when t is positive and r is less than at+r0 the
forms for £ and $ are

i = iQ cos nt-\-?i~1 £0 sin nt,

<j> = ^r [sin {n (t- ^ p ) -fa} - s in a e-<«*-'+'«^],

where A and a are given in terms of £0 and £0 by the equations

The form of ?°<j>, as the sum of a simple harmonic function of n{t—r/a)
and an exponential function of (at—r)/r0, is determined by the conditions
which hold at the surface of the vibrating sphere. The form of the ratio
of the coefficients of these two terms, viz., —sin a, is determined by the
conditions which hold at the front of the wave. The actual value of this

* A small addition (placed between asterisks) has here been made to the paper (April 17th,
1904). Prof. Larmor called my attention to the special case noted in equation (21a).

8KB. 2 . VOL. 2 . NO. 8 5 7 . H
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ratio is determined by the initial conditions. As in the case of initial
velocity without initial displacement, the wave is in general composite. In
one case it can be simple. This happens when £0 and £0 are connected by
the equation £0 = — n2roa~xgQ. In this case a vanishes and <p has the

cj) = Ar'1 sin n \ t— {r—r^/a}. (21a)*

6. Decay of Vibrations that have been maintained for a time.

We may extend the method of Art. 5 to the case where the system is
set in motion by forces which operate for a finite time. It will be suffi-
cient to consider the motion due to periodic forces acting in the interval
tr > t > 0, and to suppose that when t < 0 the sphere and the air
surrounding it are at rest. Taking the force acting on the sphere to be
proportional to elKllt, equation (9) is replaced by an equation of the form

, (22)
r=r0

where Xo is written for IK. Equation (10) is unaltered, and the form of <p
is the same as before, viz., r~xx^~r)' The system of equations (10)
and (22) will possess a particular solution of the form

(23)

where Bn(n
2+A;a2) — — \nAn = F

(24)

Boa\+ — (l+Xo
roMo =ro

Since equation (14) has not any pure imaginary roots, Xo cannot be a root
of it, and the equations (24) determine Ao and Bo in terms of F. We shall
therefore take AQ and J50 to be known. The complete expressions for <p
and £ are to be determined by adding to the right-hand members of (28)
expressions of the forms given by (15) and (16), in which the constants
Av A2, As are to be determined by the conditions that £ and £ vanish
when t = 0 and that (30/3*)+a(30/3r) vanishes at r = at+r0. These
conditions give

3 / 1 \ 8 3

0 \AS / 0 0

and these equations determine Av A2, AB in terms of AQ. It follows
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that we may put

ar0 o

1 1, ,d> =
r o

(26)

in which the A'a are known in terms of F, Xo is IK, and \ , \ , X3 are the
roots of the equation (14). This solution holds for g when t is in the
interval tx > t > 0, and it holds for <f> when a£+?*o > f > *o an<^ ^ *s ^n

the same interval. The motion of the sphere is compounded of three
motions :—(1) a simple harmonic motion of the same period as the force
and having a definite phase-relation to the force, (2) a motion of expo-
nential type which is relatively very small when the sphere is massive,
(8) a motion of slightly damped harmonic type. The second and third of
these motions are of the same types as those which are consequent upon
an initial disturbance. The motion of the air is compounded of three
wave-motions of types corresponding exactly with the three motions of the
sphere. When the force has been in action for a sufficiently long time
the motion of the sphere is practically a simple harmonic motion, and
the motion of the air near the sphere is practically a simple harmonic
wave-train. These motions are represented by the particular solutions
(23). But the motion of the air near the front of the waves never
has this simple character. The co-existence of the three types
of waves is necessary to the continued advance of the wave-
front.

The mode of decay of the vibratory motion after the force has ceased
to act will be determined by taking a new solution of the equations (9) and
(10) in the forms

(27)

in which constant factors eA»a<1 are absorbed in the constants A's. The

constants A'v A\, A'3 are determined by the conditions that £ and £ have
given values when t = tv and that (d<f>/dt) •}• a (d<p/d?') is continuous at the
surface r = at—a^+r0. The solution expressed by (27) will hold in the
interval t > tx and in the region rQ<.r < at—atx-\-rQ. The equations by

H 2
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which the constants A\ are determined are accordingly

(28)

The results show that the simple harmonic motion of the sphere with the
period of the force ceases at once, and the subsequent motion of the sphere
is of the same kind as the motion consequent upon given initial displace-
ments and velocities. The motion of the air near the sphere is of the
same kind as that determined by initial conditions. The two types of
motion—exponential and slightly damped harmonic—must co-exist in
order that the waves sent out in the subsequent motion may be continuous
with the waves sent out by the maintained vibrations.

7. Rigid Sphere vibrating in Air.

As a second example, we may consider the vibrations of a rigid sphere
of mass M controlled by a spring of such strength that in the absence
of the air the frequency would be w/2ir. The surface of the sphere at
any time may be taken to be expressed by the equation r = ro-\-£Pi,
where Plf or more fully Px (cos 6), is the zonal surface harmonic of degree
unity referred to the line of motion of the centre as axis. The motion
of the air will be expressed by a velocity potential <f> of the form given
by the equation

The function x *s connected with the displacement £ by two equations
which hold at r = r0. One of these is the condition of continuity of
velocity normal to the surface, viz.,

\'\r=r« (30)

and the other is the equation of motion of the sphere, viz.,

M(£+n2i) = [ (-p fy) (-cos 0) 2*** sin 0 M, (31)
Jo \ 06/ r=r0

where cos 6 is the argument of Pv Taking a- for the density of the
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sphere, we may write this equation:—

'£+ffi£= - -£-4 \x'(*t-r()+roX»(at-ro)}. (82)
* ro

Equation (80) is

£ = r -M2XM-ro)+2ro X 'M-ro)+r2x ' ' (^-r o ) [ . (33)

To solve these equations we assume

x(a*-ro) = Aem, g = BeKai, (34)

a factor e~Kr° being absorbed in A. Then we have

(35)

so that X must satisfy the equation

^2+a2X2)(2+2r0X+r;X2)+^-a2X2(H-r0X) = 0. (36)

If Xlf X2, X3, X4 are the roots of this equation, the forms for g and <f> are

^ V a ' - r + r ° > . (38)

This solution holds when r < at-\-r0 and t > 0. It can be adapted,

as before, to represent motions due to given initial values of $ and g.
This adaptation yields two equations connecting the A's. The condition
at the front of an advancing wave, viz., (30/3tf)+a(30/9r) = 0, gives rise
to the relation 4 / o \ \

which must be satisfied when r = at-\-r0. This condition, therefore, is
equivalent to the two equations

2Ms = 0, 2\sAs = 0. (39)
1 1

Hence all the constants are determinate when the initial state is given.
When pl<r is small two roots of the equation (36) are approximately

Xj = mla, X2 = —in/a, (40)
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and the other two are approximately

/r0, \ = %(-l-i)/r0. (41)

The coefficients of e*3"* and e^1 in (37) are very small, and the motion of
the sphere is very nearly a simple harmonic vibration of frequency ?i/27r.
The motion of the air is compounded of two wave-motions: one wave-
train is very nearly simple harmonic, with the same period as the motion
of the sphere ; and the other is very rapidly damped. Near the sphere the
motion of the air is practically that belonging to the simple harmonic
wave-train. Near the front of the wave the rapidly damped harmonic
motion has the same degree of importance as the nearly simple har-
monic motion, and the co-existence of the two is necessary to the
continued advance of the front.

When we make a second approximation to the roots \ and X2
 w©

and X2 is the imaginary conjugate to Xv This approximation gives the
same results as regards the effective inertia and the decay of the motion
as are obtained by Lord Rayleigh {Theory of Sound, Vol. n., § 325).

Similar methods may be employed when the motion of the sphere is
maintained periodic for a time and then allowed to decay, with results
of the same kind as those for radial vibrations. Further, no essentially
new feature is introduced when the normal displacement of the sphere
depends upon a surface harmonic of order higher than unity.

8. Electric Vibrations of Order Unity.

The first case of electric vibrations to be discussed is that in which elec-
trification is distributed over the surface of a conducting sphere with sur-
face density proportional to the first zonal harmonic Pv We shall suppose
that before the instant t = 0 the electrostatic field of this electrification is
established through all space outside the sphere r = r0. The initial state
of the medium outside this sphere is that expressed by the equations

( 4 3 )

v 7\ - w (dxz
, Y,Z)-E (-^

(a, 0, y) = 0

in which E is a constant. The initial surface density on the sphere is
then EP1/2TT^.

At the instant t = 0 the cause which previously maintained the field
expressed by (43) is supposed to cease to operate. Thereafter the surface
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r = r0 is to be taken to be that of a perfect conductor. It is required to
determine the subsequent state of the medium in accordance with the
conditions: (i.) that the initial field is that expressed by (43), (ii.) that
the tangential electric force vanishes at r = r0.

It is clear that a new state of the medium arises, for the surface
condition at r = r0 is not satisfied by (43). It is clear also that the
disturbed state of the medium cannot at any instant t have extended to
the part of the medium beyond the sphere r = ct-\-rQ. Further, it is
known that the problem can have only one solution.* The form of
solution which suggests itself naturally involves the assumptions (i.) that
the surface density on the sphere is always distributed so as to be
proportional to Pv (ii.) that the spherical surface r = ct-\-r0 is the front
of an advancing wave. We can show that the solution obtained by means
of these assumptions satisfies all the conditions of the problem. In
accordance with what has been said in § 2, we ought to take (X, Y, Z) and
(a, /3, y) in the region r < ct+r0 to be given by (1) and (2) with n = 1
and oon = z. We take them, therefore, to be given by the equations

+ 0(0, 0, -2) (±l >, (44)

which are the same as

while (48) is the same as

\dx dz' dydz'

We then show that we can adjust the unknown function x so as to satisfy
the surface condition at the conductor r = r0, and also to satisfy the con-
ditions of the types (7) and (8) which must hold at the front of the
advancing wave.

* For the proof of this theorem in the case where there is a moving surface of discontinuity,
see my paper already cited in Proceedings (Ser. 2), Vol. 1.
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To express the condition that the tangential component of (X, Y, Z)
vanishes at r = r0, denote by B the radial component of (X, Y, Z), so that

Br = Xx+Yy+Zz.

Then, at this surface, B is the resultant of {X, Y, Z) and the direction of
(X, Y, Z) is the same as that of r. Hence, at this surface, we have

or

1L-X.x y

X-Bx/r

z

= 0,

_B
r

• • • i

I form therefore the vector (X—Bx/r, Y—By/r, Z—Bz/r), and express
the condition that it vanishes at r = r0. I find

(x-B—, Y-B^-, Z-B-)
\ r r r I

= QKXZ, yz, -x"-y")\ I - T) ^v , + - r 5- ^ - — ' , (45)

and it vanishes at r = r0, provided

X ( c ^ - r 0 ) + r 0 x ' M - r 0 ) + r J x " ( c ^ - r 0 ) = 0 . (46)

This holds for all positive values of t.

To deduce the form of x ^ f stand for ct—r0. Then x(£) is a
function of f which, for all values of £ that are > — r0, satisfies the
equation

= 0;

and therefore, for all such values, x (£) has the form

sin

It follows that, for all values of r and t which satisfy the inequality
ct> r—rQ, x(Qt~r) m a v be written in the form

x(ct-r) = ^e-4(ct-r+r°>/r°sin ( ^ (c*-r+ro) + e} , (47)

where 4̂ and € are arbitrary constants. It follows that a damped har-
monic train of waves is propagated outwards; the period is 47rro/cV8,
and the modulus of decay is c/2r0. The forms obtained by substituting
this value of x iQ (44) are those which are generally taken as the solution
of the problem. This solution holds, however, only when r < ct+r0.

The conditions which have to be satisfied at the wave-front r = ct-\-r0

are three of the type
r(X-Xo) = Bfi-yy (48)
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and three of the type —ra — z{Y— Yo) — y{Z—Z^, (49)

where Xo, Yo, ZQ are the X, Y, Z expressed in (43), and (X, Y, Z) and
(a, fi, y) are given by (44). The first of equations (48) is

f 7T (50)

the second differs from this only by having yz in place of xz, and the
third is

"). (51)

In these x> x'» x" m u s t have their values at the surface r = ct-\-rQ and r
must have this value. It follows that the value of x' vanishes at this
surface, and that the value of x at this surface is E/c. When these con-
ditions are satisfied, it appears that equations (49) are satisfied identically.
Now we have

x'(ct-r) =-lAr-1e-Kat-r+T*lr*[wn jgj? (c^-r

-V3 cos |*£? (ct-r+rj+e | ] ,

and this vanishes at the surface r = ct-\-rQ, if e = \tr. Thus we have

x = *° sin { ^ ? (c«- (52)

and the constants A and e are determined. With this form of x we find

= _ i . 1 ^ e-i(ct-r+r0)/r0 s i n ^
r0 CAJS {2r{ 0

(53)

It may be observed that with the above determination of A and e the
magnetic force along a circle of latitude is

where = £(c*—r+rjlro and tan <5 = (r—2ro)/rv
/3 ;
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also the radial electric force is

and the tangential electric force is

where tan 8' = {r—rj / (r+?'0)-v/3. These results differ from those obtained
by J. J. Thomson {he. cit.) as regards phase. The phases given by him
are not determined by the conditions which hold at the front of the wave-
train.

It appears from the above analysis that the damped harmonic wave-
train represented by the customary form of solution can advance into a
region in which the electric field is expressed by (43). The same analysis
can be applied at once to show that it cannot advance into a region free
from electric and magnetic forces; it can also be applied to determine
the mode of decay of the external field due to maintained electrical
oscillations of the same surface harmonic type on the sphere. Exactly as
in the problem of sound waves it appears that the forced wave must be
accompanied by a wave of the type (47), and that the wave that is pro-
pagated outwards after the system is left to itself is also of the type
expressed by (47); and the constants A and e of these two waves can be
adjusted so as to satisfy the conditions that hold at the front of the forced
wave and at the'common boundary of the two waves. The concurrent
existence of a wave of type (47) along with the forced wave is necessary
to the continued advance of the wave-front. Exactly as in the sound
problems the damped harmonic wave-train is not damped at the front, but
is subject only to the kind of diminution by spherical divergence that is
appropriate to the spherical surface harmonic.

9. Redistribution of the Energy.

In the initial state the sether in the region between the spheres r and
1 2

r-\-dr possesses electric energy of amount — lirr^drE* — or r~422adr,
and the total energy of the field is ^2£V~3. In the subsequent state of
wave-disturbance the same portion of the medium possesses magnetic
energy of amount

J^V{(^!)X^=!>}\ (54)
r or) r )
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and it possesses electric energy of amount

where x has the value already determined. The amount of the magnetic
energy in the region is

( J L ) } V » (56)

where $ is written for %{ct—r-\-ro)/rQ. As soon as the wave-front has
travelled to a distance from the conducting surface which is at all large
compared with the radius of this surface the factor e~2S will be small
except in the immediate neighbourhood of the wave-front, and thus we
see that the energy of the wave-motion will be accumulated near the
wave-front. Also when r is large compared with ?-0 the above expression
may approximately be replaced by

f ^ e-~> 11-cos (2^3 5 - y ) | dr. (57)

We may calculate the energy between the wave-front and a spherical
surface within it, and not far from it, by integrating this expression. Con-
sider the case where the inner of these surfaces is at a distance of half
a wave-length behind the front, i.e., at a distance 2TT?-0/V'3. The magnetic
energy between the surfaces is approximately equal to

r J \
2 ^_ e-2* 1 + i c o s ( V 3 $ ) - *L2 Sin

r0 Jo

which is P?V0-
3 (1 -e-2""*) .

If we had taken the first wave-length of the advancing wave instead of
the first half wave-length, we should have found ^£J2;-~3(1—e~4rr/V3) as the
approximate value of the magnetic energy between the surfaces. If we
calculate the electric energy in the same way and to the same order of
approximation, we find the same values, so that the total energy between
the two surfaces is approximately equal to $E2r~3(l— e~2ir/V3) when the
surfaces are half a wave-length apart, and to ^E2r~3(l—e~4rrW3) when they
are a wave-length apart. The terms omitted in the calculation are small
compared with those retained in the order rjr and higher powers of rjr,
r denoting the radius of the wave-front. It appears therefore that the
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energy of the initial electrostatic field is propagated outwards with the
wave in such a way that the energy that was initially within a spherical
surface surrounding the conductor is the energy of the wave-motion when
that surface is the wave-front, and it is gathered up close behind the wave-
front.* When the wave-front is at a great distance from the conductor
the accumulation of energy at the front is so great that all but about T

2^
of the total initial static energy of the field is gathered up in the first half-
wave-length, and all but about YTQTS °f ^ ia gathered up in the first wave-
length.

10. Electrical Vibrations of Order 2.

We suppose that the initial electrification has surface density propor-
tional to the second zonal harmonic P2, or to the solid harmonic
2-ar2—x2—y2, which is 2rjjP2,

 o n *ne sphere of radius r0, and we take the
initial field to be given by the equation

which gives a surface density (8/27r)2£r~4P2. The appropriate forms of
(X, Y, Z) and (a, /3, y) in the ensuing wave-disturbance are expressed by
(1) and (2), in which n = 2 and ton = 2z2—x2—yi, and we have

<«, ft y) = 6c (j,*, - « , ,

X = 6c Ix (J- # ) X « ± 3 + A ( 1 £V XMZ
{ \ I \r or) ; 59)

With these forms we find

(60)
r r r r \r or) r

and the (x, y, ^-components of a vector which has the same tangential

* The remark that it is the static electric energy of the field which is propagated with the
wavee was made by Prof. Larmor in a letter to the author before this paper began to be written.
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components as (X, Y, Z), and no radial component can be written down
in the forms

Z- JL (x — + Y 2- +Z —)

- ( 6 1 )

Hence the condition that the surface r = rQ may be that of a perfect
conductor is

- r o ) = 0, (62)

and it follows that x(c£—r) may be expressed in the form

x(ct-r) = 41^<c(-r+r«)+i4ae
x»<o*-r+ro>+i43eA»(c<-r+ru)

f (63)

where Xlf X2, X3 are the roots of the equation

r{X8+8rjXa+6r0X+6 = 0, (64)

and Av Aif Aa are constants. The real root is approximately — (1*6) rj"1,
and the imaginary roots* are approximately (—0'7 + l'StJr"1.

To determine the constants Av A2, A3 we have the conditions at the
front of the wave, i.e., at the surface r = ro-\-ct. We use the same equa-
tions (48) and (49) as in the previous problem, but now XQ, YO, ZO are
given by the equations

(65)

* J. J. Thomson, Recent Researches, p. 371, gives the imaginary roots.
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and (X, Y,'Z) and (a, (5, y) are given by (59). Now we have

(66)

so that equations (48) require that at the surface r = ct-\-r0 we should

and it will be found that when these equations are satisfied equations (49)
are satisfied identically. Hence the constants Ax, A2, As are determined
by the equations

l XAs\s = 0, IAS\* = O. (67)
i i i

The important result is that the A's are definite multiples of E/c, and, in
particular, that the A that corresponds with the real value of X is not
small in comparison with the other A's.

Hence in this case the wave-motion that ensues when the initial
statical field is left to subside is compounded of two wave-motions—one of
exponential type determined by the real value of X and the corresponding
value of A, and the other of damped harmonic type determined by the
conjugate complex values of X and the conjugate complex values of A that
belong to them. Neither of these waves can be propagated except in com-
pany with the other, for the co-existence of the two is requisite to the
continued advance of the wave-front. Near the conductor the field sub-
sides very rapidly, but near the common front of the waves the fields that
belong to them are not subject to damping, but merely diminish according
to the law of spherical divergence which is appropriate to the spherical
surface harmonic concerned.

11. Generalization of the Besults for "Electrical Vibrations on a

Spherical Conductor."

We may proceed to discuss waves that correspond with surface har-
monics of higher orders. In any case we have to form the condition
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which is to be satisfied at the surface of the conductor. Taking the forms
(1) and (2), we may show that

and so on. Thus the condition is expressed by the equation

which must hold when r = r0. This is a linear differential equation of
the (w+l)-th order with constant coefficients satisfied by xM—rj, and
it serves for the determination of x(°^~r) m ^

x(ct-r) = "£ Ase
K^-r

i

where the values of \rQ are roots of an equation of the (vi+l)-th degree
with determinate numerical coefficients. When n is even one root is real,
and we may expect it to be negative ; we may also expect the remaining
roots to be complex with negative real parts, and when n is odd we may
expect all the roots to have this character.* The constants A will be
determined by the conditions which hold at the wave-front r = ct-\-r0.
In general these conditions can be shown to lead to the equations

and x = a given constant. These hold at r = ct-\-rQ, and they suffice to
determine the constants Ax, A2, ..., A,,.+i. It follows that, in general, with
an initial distribution of surface density proportional to a definite surface
harmonic of order 2m a wave of exponential type and m waves of damped
harmonic type are propagated together with a common front, and that
when the harmonic is of order 2 m + l the waves propagated are all of
damped harmonic type and are in number m + 1 . In both cases the field
near the sphere subsides rapidly, nearly all its energy being transferred to
a relatively thin spherical shell near the wave-front. The field of each of
the waves near their common front diminishes only through the kind of

* J. J. Thomson (loc. cit.) gives the roots in case n = 3.
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spherical divergence that is appropriate to the spherical harmonic con-
cerned. In all cases the co-existence of the various waves of the system
is requisite for the continued advance of the wave-front.

12. General Conclusion.

In our problems of sound waves we found that, besides the slightly
damped harmonic wave-trains which have periods nearly equal to the
natural periods of the vibrator, there must be others of exponential or
rapidly damped harmonic type, which accompany the former as they
travel outwards and serve to establish continually the front of the ad-
vancing waves. These subsidiary wave-trains have little influence on the
motion of the vibrator, but they play a large part in the motion of the
medium, especially in the region near the wave-front. The number of
them increases with the complexity of the mode of vibration (expressed in
the case of a sphere by the order of a surface harmonic), and all those that
correspond with a particular mode of vibration must co-exist along with the
slightly damped harmonic wave-train that is characteristic of the mode.
They cannot exist independently. The motion of the medium that
belongs to any particular vibration of the nucleus may be analysed as
above into a system of damped harmonic and exponential wave-trains,
but the analysis is entirely mathematical and does not correspond with a
possible physical analysis into motions that can be executed independently
of each other.

When a distribution of charge, which would not be possible for a free
charge, is maintained over a conductor, and suddenly released, electric
waves travel out into the medium. The waves may be expected to fall
into classes determined by the modes of distribution of the charge, and
the number of waves in a class may be expected to be definite. The
different waves in a class are of exponential or damped harmonic types,
and they are distinguished from each other by the exponents and periods.*
They can have no physical existence independently of each other ; all the
waves in a class must co-exist, t The composite system of electric waves
which consists of all the waves in a class advances into the statical field
due to the initial distribution of the charge, and the co-existence of the

* It is possible that the types may involve a dependence on time of a more complicated
character than exponential or damped harmonic when the conductor is not spherical.

t Mr. Macdonald has called my attention to the fact that a similar result was found by
Heaviside, Electrical Papers, Vol. n., p. 408.—April nth, 1904.
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several waves is necessary to the continued advance of the front. As the
wave advances, it transforms into electromagnetic energy the excess of
the statical energy of the initial field over that of a free charge of the
same total amount on the same conductor; and this electromagnetic
energy is transferred continually towards the front of the advancing wave,
in such a way that at a distance from the conductor the wave practically
passes as a pulse. The electric waves that are thus generated appear to
have little analogy to the sound waves sent out from a vibrator, and
having nearly the natural period of the vibrator, but to be analogous
rather to the subsidiary sound waves which accompany these and serve to
establish the advancing wave-fronts without having a sensible influence
upon the vibrator. This theory should be applicable to all cases in which
the space outside the conductor is simply-connected; there may be
exceptions when the space is multiply-connected or when this condition is
nearly realized—for example, when a gap is made in a conducting ring.
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