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A GENERAL THEOREM ON INTEGRAL FUNCTIONS OF
FINITE ORDER

By J. E. LITTLEWOOD.

[Eeceived October 30th, 1907.—Read November 14th, 1907.—Revised December, 1907.]

1. In a memoir* published in 1903, Prof. Wiman put forward the
following conjecture.

Let F(z) be any integral function of order p less than £ ; then, if e be
an arbitrarily small positive number, there are values of r as large as we
please, such that, for all points z of the circle \z\ = r,

\F{z)\ > exp(**-").

In the present paper I give a proof of an analogous theorem, express-
ing a relation between the maximum and the minimum modulus of F(z)
on the circle | z | = r. This theorem is given in § 4 ; the two articles now
following are devoted to the proofs of certain results which are required
in the proof of the main theorem.

2. LEMMA.—Let j3lt /32, ... be a sequence of real positive numbers such
that for all values of s, fis+\7& &, and such that

Lt Bas-2 = oo.

We define the function ft(x), for values of x greater than 1, to be
A+(&+i—fis)(x—s), when s ^ x <; s-f-1. Then /3(x) is a continuous
non-decreasingt function of x. It is easily seen, moreover, that

Lt (3(x)x~2= QO. (1)
X=oo

Let us denote the curve y = /3(x) by G. This curve C starts at the
point [1,/3(1)].

We shall show that, if any positive number h, however large, be

* A. "Wiman, Arkiv. for Math. Astr. oeh Fy&ik, Band i., 1903. " Ueber die angenaherte
Darstellung von ganzen Funktionen."

t By this phrase I mean that & (x + y) > 0 (x), when y > 0.
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assigned, there is a ray I through the origin lying in the first quadrant,
such that if (X, Y) be that intersection of C and I which is nearest to the
origin, the following state of things obtains.

(ii.) When x < X, YxlX>/3(x).

(iii.) When x

In the first place, if I, y = mx, be any ray* which passes above the
point [1, j8(l)], there is at least one intersection of I and C. For the
distant part of G is clearly above I [since Lt fi(x)x~'2= oo, and conse-

quently f3 (x) > mx when x is sufficiently large], while the point [1, ft (1)]
of C is below I.

Now let us suppose that, for a given h, there is no ray I such that (i.),
(ii.), and (iii.) hold simultaneously. Then it is clear from the figure that the
following must be the state of things.

Let I be any ray which passes above [1, /3(1)], and let {X, Y) be the

• I uBe the word •' ray" throughout to mean a ray through the origin, lying in the first
quadrant, and not coincident with the axis of y.
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intersection of I and C which is nearest to the origin. Then, if X > h,
there is a second intersection (X, ¥') of I and C such that X > X+£ .

This result is evident when we observe that I is the ray through
(X, Y), so that Yx/X is the ordinate of the point of I whose abscissa is x ;
that the part of the curve C for which 1 < x < X is below the corre-
sponding part of I, while the distant part of C is above the correspond-
ing part of I; and when we remember that if (i.) and (ii.) are true, on our
present hypothesis (iii.) roust be false.

We shall now show that the existence of this point {XT), which we
shall call the result (A), leads to a consequence incompatible with (1).

Let lQ be the ray through [1, /3 (7i)]. Since (3(x) is a non-decreasing
function, it is evident from the figure that if (xoyo) be the intersection of
l0 and C which is nearest to the origin, we have x0 > h.

Then, by the result (A), there must be a second intersection (£0, >70) of
l0 and C, such that iQ—xQ > £•

Let lx be the ray through (xoijQ)7 and let {xxyxi be its intersection with
C which is nearest to the origin.

It is again evident, from the figure and from the fact that /3 (x) is a
non-decreasing function, that x1 > £0.

Hence, by (A), there is a second intersection (f1»71) of lx and C, such
that il.—x1 > £.

Let l2 be the ray through (x^, and let {x2y^ be its intersection with
C nearest to the origin, and so on.

Then we have the following relations :—
in — Xn >h in> Xn > &_i, (2)

and, since (x«_iijn_i)f (xnyn), ( £ ^ ) lie on the ray In,

£ \O)
2Jji_ i Xn gn

Hence we have f &

Vn-1 _

Xn-l

in-1

Vti-2

in-2

. Vn _
Xn

in-2

, i

_ Vn

in-1

SO *^0 •£»—2 Xn—1

$0 <f 1 feu-2 £
~i • • • feU-1
4*0*^0 "^1 *^2 %n—1

r in, by means of (2).
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Thus *<[W<6>ab>]£ (4)

Now &>*»+*>&-!+*>... >^=i,

so that by sufficiently increasing n we caa make £n as large as we please.

Again, x0, £Q, rj0 are finite constants depending on h, and (£i>7«) is a.
point of the curve G.

But then the result (4) is incompatible with (1). Hence the result (A)
is impossible, and the Lemma is proved.

3. We shall require the two following definite integrals :—

I. If 0 < X < 1,

log U — ) (xK+x~k) — = l/X-7rcot (TTX).
\1—xl x

II. If 0 < X < 1,

^ ) — = vrcosec (TTX) —1/X.
x

The integrals are easily seen to be convergent.
Consider the first integral. We have

' • - ^=r ^ (i
where 6 is a small positive number, and where

Lt |e(0)| = 0 .
o=o

The first term in the above expression

f l - 9 i- co ,-A + s - l co ,,,-A + s - l - l= fs £ + 2 * \\dx
Jo L=i s , a i s J

» ri-e ~x+s-i co ri-e ~.-\+s-i
= 2 \dx+ 2

5=1 Jo S s=l Jo S
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(since the infinite series are uniformly convergent when x ^ 1—0)

( + A ) v
 s=is(s—A)

Now ZA/s(s±A) is convergent

Hence, by a well known theorem of Abel, the above expression

A " A
Hs=i s(s+\) s=i s(s—A)

where Lt I e' (0) I = 0.

From (1) and (2) we see that we must have

A

i~€ (w> (2)

or, r -

fi = 2 •
s=i L

,

+ A~=~J
= -r 7T COt (7rA).

A

In a similar manner we obtain

i2= i ( - ) ^ r 4
s=i Ls+A A—

, 1
= 7r cosec 7rA——

A

4. THEOREM.—Let F(z) be an integral function of order p, where
% > p ^ 0. Let M(r), m{r) denote the maximum and the minimum
moduli of F(z) on the circle \ z \ — r.

Then there is a sequence >\, r2, ..., where r 1 < C r 2 < . . . , and
Lt rs = oo , with the following properties.

If e be any assigned positive number there is a finite n, such that when
s > „, we have

Moreover the sequence rx, r2, ... is independent of the arguments of the
zeros of F(z), depending only on their moduli. Thus, if Fx{z) be any
other integral function of order p, the sequence of the moduli of zohose
zeros is the same as the corresponding sequence for F(z), we have, token
8 > a finite M', ^ ^ > ^ w]cos(**>-..

8KB. 2. VOL. 6. NO. 987. 0
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Further, when s > a finite fx", we have

m (rs) > [ilfiCn)]009^-', Wifa) >

Suppose first that £ > p > 0.

Let F(z) — Czp. ft

when. av a2, ... are arranged in order of non-decreasing moduli.. Let
| cts | = as. Let e1 be a (small) positive number less than. £—p, which we
shall presently choose suitably.

Let ft=^f
Since F'(z) is of order p, we have

Lt [ass-1/(p+ei)] =-oo.

Hence Lt (3a s~
2 = oo .

Moreover /3S is clearly- a non-decreasing function of s. We define the
function /3(x) as in the Lemma, and then the result of the Lemma holds
for this function.

Let a (x) = {J3(x)f 2<o+^ = \J3 wyv.

Then a (s) = as, and a{x) is a non-decreasing function.
Now, let h be a (large) positive number to be choaen presently. Then

by the Lemma there is a ray y = fix, such that, if (X, Y) be the inter-
section withy =/3(rc) which is nearest to the origin, we have

(3(x) < xp{X)/X, when x < X;

and &{x) > x/3(X)IX, whenir>Z-H.

Choose r = \z\ = [X'/SiX^/Xj1^',

where Z + i > XT > X,

and. where we shall determine X" more precisely later.

Let m be the greatest integer not greater than X. Then we have

z
logics) = log I C | +p log r + 2 log

aa

and log F b) = P+R-hS+-Ti-hT2+T3+[log \C\+p logr] ,
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where* p

B

S

00

y ir
s=3

zm

axa2... am

>g

m - 1

— 2 log

z
am+8

(1)

Tx = log

= log 1-f-
0>m+2

am

z

We proceed to find a lower limit for P, and upper limits, for
S| . . . . .
By the result of the Lemma, when, s ^ m <. X, we have

£,. | i i | ,

Hence-

where

Again, whea s ^ m-|-3

a,< (i) [ |^] < r (2)

r' = l /(2p').

£4-£, we have (3s>sfi(X)IX, and hence.

«,>r[*W. (3)

First consider P. We have

P = 2 log (—)

m /Y"\ "•'

> S log ^ ) [from (2)]

> a-' \_m log m—log (m !)J (since Z'' > m)

> cr' m log in— {m log m—m [(1 -\-e (m)]}

(4)

• The idea o£ dividing, log F(z) into (practically) the three parta T, RfS, wafr employed- bjr
"Wiman (loc. cit.) in the particular case F(z) = n (1 + s/«").

t I shall always use e(m), e (x), ... for functions which tend to zero-as their argument tenda
to its limit. I shall, moreover, use the same symbol for all the functions of this type with the
same argument- The symbol e (m) may be considered, as an. abbreviation for " some function
which tends to zero with 1/m."

o 2
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Next consider B and S. When s > 8,

[Nov. 14,

am+s Lm
(8)]

w+sJ

Hence i2 = - 2
3

2 log 1 + (algebraically), since
- 3 L Q>m+s I J

< 1,

log (1 + 0 7 - ^ t-1-1* dt, on putting

Again, when s < wt—• 1,

t (5)

m

Hence = "?'log [l +-j]
w-i r a n

< 2 log 1 + —f (algebraically)
3—1 L_ *̂ J

log (l + t) ^L t-i+W dt, on putting (—Y =

(6)
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Prom (5) and (6) we have

R+S < (w+2) T logd+^+r1/"') i ^
Jo c

< (w+2) (jr cosec-^ -<r') *, (7)

by the second result of § 3, since I/a' < 1.

Again, we have

B > £ { - l og ( l —) \ (algebraically)

1 ^ , on putting ( ^ r f ) =t.

Similarly S > - [ log (1 —t) -1 ?4 tw~l dt,
Jo cr

and hence E + S > - ( w + 2 ) Plogd—i)-1(«1/ff'4-r1/<0 ^ T ^
Jo *

(8)

by the second result of § 8.
We shall now show that it is possible to choose X' subject to the

limitations so far imposed, and such that

[^-KTa-hTg-H log | C11 +p logr]IP = e(m). (9)

We have m<X< X+£< m+2. (10)

Now, so far we have only restricted X" to lie between X and X + i - Thus
r, or [X'P(X)IX¥, may vary between

and

Moreover am and a™+2 do not lie between these limits, though am+i may
possibly do so. These results follow at once from (10).

• The results (7) and (8) were suggested by the form of the asymptotic expansion of Barnes's
function PP(«).



198 M B . J. E. LITTLEWOOD [Nov. 14,

Hence it is possible to choose Xr, within the limits already prescribed,
such that

\r—am+p\ > £ \[J3(X)Y (l-\-^j —{^(X)]'} (p=0, 1, 2)

> Tv[fi(X)Y (since aJ>l). (11)

Suppose- that thia is done. Then,, since | am/z | < 1, we have

log

A-L
\r—a,

log (-=•) —r [fronL(ll), substituting for r]

= me (m).

Hence, from. (4),

Next consider

(12)

log 1-h-

(i.) Suppose

Then < log (3^) <log"2

= vi.e(m).

(ii.) Suppose £ <. < 1.
Cltn+l

Then | Z i | < - l o g ( l —)

m + i

<lo

= m.e(m),
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as in the case of | Tz \. Hence in cases (i.) and (ii.),

I JL i I / x = = e \tn). (13)2

(iii.) The relation | zjam+i | = 1 is impossible on account of (11).
Suppose, then, that | z/awi | > 1. Then

loglog

By means of (11) we prove, as in the case of | Td |, that

Also log < =r

Hence

and hence, in any ease,

Consider now

(i.) If

Tx\!P = e(m),

T1\JP = e(m).

(13)3

(13)

•»i +2

log 2 and |T2|/P=e(w).

(ii.) If — j < 1, then, as in the case- (ii.) for | 2^1, we obtain,,

by means of (11), \T2\(P=e(w).

Hence, in any case, | T2 \/P — e {m). (14)

Finally, when r is large,

P = log( ) >log )

\r—log(a1a2...cfj,e)

however small e may be.
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Hence { | log | C | \+p log r \ IP = e(r) = e(m). (15)

From (12), (13), (14), and (15) we obtain (9).
The first part of our theorem, for p =£~0, now follows easily.

Denote by \J(Z)]M, [/0*)]m, ^ e maximum and the minimum algebraic
values of the (real) expression/(2), for all points z on the circle \z\ = r.
Then we have

logilf(r) = P+CJB+Slf+Crj+ra+T.+log \C\+plogr]M,

log wi(r) = P+CB + Sk+CTj+ra+rs+log | C\+p logrj,,

From (7) and (8) we have

(w+2)(

Hence, by means of (10), noticing that (7rcosec —, — cr') and
, \ \ or /
(cr'—TT cot -̂ 7) are positive, we have

1 111/ ~t~ a l t 1. T 1 1 / \5— I <r' —ir COt — I -he (m)
log ??t (r) ^ P \ <rV
log ilf(r) n , w + 2 / 7T A

x \ 0" /

1 (cr' —7rcot-^-)+e(??l)

— f 7T cosec — — cr') -he(m)
ar' \ cr' )

[on replacing P by its minimum, given by (4)]

> cos —r +€(m). (16)
cr

We can make m as large as we please, and consequently r as large as
we please, by choosing h sufficiently large. Choose h so that m is so
large that e(m) < ev Then

log vi (r) / 7r \ m / 1 \i
. v - - . . ^> COS I —7-) —€1 > COS \&7T \P-\-€i)\ — €1.
logM(r) \<r'/ l L r- • i'j 1

Choose et so that

COS [2TT (/O + ^ I ) ] — ex > COS (2-7T/)) — e.
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(This can always be done, since p < £.) Then

and . m(r) > [ilf(r)]cos(27rp)-e. (17)

We have therefore proved that when e is assigned we can find a value
of r, as large as we please, such that the above inequality holds.

Now, in the above analysis, the number r was determined quite
independently of the arguments of ax, a2, ..., although it may depend on
the constant C.

We may therefore determine our sequence rv r2, ... as follows.
Determine, by the above methods, a number rn, such that

rn > r«

and such that (17) holds for r = rn when e = 2~n.

Then Lt rn = oo and m(r,) >

when s > some finite n.

Again, P is independent of the arguments of z and of the zeros, while
the limits which we found for [i2+S]jf and [JR+SQ,» are independent of
the arguments of the zeros. Moreover, the relation (9) always holds.

Then it follows, by considerations similar to those which gave us the
result (16), that if

F1(z)=
s = l

be a function with the same constant C, and with the same sequence of

moduli of zeros as that of F{z), then . " * and , TUT t \ a r e greater

than cos — -\-e{m).
<T

It follows, then, that

and m (rs) > [Mx (rs)]cos ̂ -<)' ( 1 8 )

when s"> fx.
Finally, if the C and the p which occur in the product-forms for Fx (z)

be replaced by C and p', it is easily seen that the inequalities (18) still
hold when s > some finite /*', which is possibly different from /x.

Thus we have proved our theorem for the case when p=£0.
Although the above analysis breaks down when p = 0, it is easy to
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see that the theorem remains valid for the limiting case, the main in-
equality taking the form*

m(r) > [M(r)J~\

We have proved implicitly that the theorem stated at the beginning of
the article holds when F(z), instead of being of order p (p not zero), is of
order less than. p. Now a function of zero order is of order less than e,
and we can therefore determine a sequence of circles of radii rv ?'2, ...,
such that m{rs)>^M{rs)yOs^)-tf w h e n S > M >

with the corresponding relations between mt (?*,), ilfifo), ... .
The theorem for the limiting case then follows immediately.

5. When p < ^, we have cos 'Zirp > 0.
It follows that, if F{z) be an integral function of order less than J,

then, on circles of radii as large as we please,

m(r)>[M(r)T,
where c > 0.

Now, if any number p be assigned,

Lt r-»'c M(r) = oo .
r—uo

Hence r~pm(r) has an upper limit infinity, and as z tends to infinity
along any radius vector through the origin,. \z~vF{z)\ must have infinity
for its upper limit.

6. The theorem of § 4 is only provisional. I am convinced that it
remains true when the condition 0 ^ p <C \ is i*eplaced by 0 ^ p -< 1,
and when the index cos (27rp) is replaced by cos (irp).

But, although it would seem that the expression which I have called P
must play a prominent part in the proof, I believe that to establish the
result an entirely new point of view is required.

The line of proof of this paper is based essentially on the Lemma. It
might be thought that by further refinement the Lemma might be
extended into a form which should enable us to deal with the case
£ ^ p < 1. This, however, is not the case: if, with the notation of the
statement of the Lemma, /3(x) tends to infinity like x2~k, no more
valuable result is true than that X' is of order Xl+k, and this result is
clearly useless for our purpose.

* I have already given the theorem for this limiting, case, Proc. London Math. Soc, Ser. 2,
Vol. 5, p. 365.
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7.* The extended form of the theorem, if it be true, is chiefly inter-
esting as showing that when p < J, m(r) > [Af (r)]c, where c is positive.
For it is easy to deduce, by a well-known device, from the theorem estab-
lished in § 4, a theorem applicable to all functions of finite order, and
analogous to the result which we have obtained for the case i < p < i .
This theorem is as follows, t

Let F(z) beany integral function of finite {apparent) order p. Then
there exists a sequence of circles of radii rlf /'2, ... tending to infinity, and
depending only on the moduli of the zeros of F(z), such that

where c (p) is a constant depending only on p.

Let \ be the least integer greater than 2/o, and let w be a primitive
A-th root of unity, X

Let F(z)F(coz) ... F(ooK~lz) = G(z),

and let £ = ^ , | £ | = t.

Now G(z) is clearly an integral function of zK or £, H(£) suppose.

Since | H(£) \ < [M. {r)J < exp (Xrp+e) < exp (\fr+e)jK),

for large values of r or t, H (£) is of order in £ not greater than /o/X.§

Let M(t) be the maximum modulus of H(£) on the circle | £| =• t.
Since p/X -< \, there exists a sequence of circles | ̂  | =• t, of radii

7*i, 7 ,̂ ..., tending to infinity, and depending only on the moduli of the
zeros of H{£), i.e., depending only on the moduli of the zeros of F{z),
such that, on each circle

In particular, if zx be the point of the circle | z \ = •;•„• for which
| F (zx) | = m (rs), we obtain

m (r.) [Af (r.)?"1 > | G{zx) \

* The remainder of the paper was added December 24th.
t I must hero withdraw the statement which I put forward in a previous paper (Proc.

London Math. Soc, loc. cit., $ 5), that no theorem such as the above could exist.
X The method here employed is substantially that used in extending Hadamard's theorem

that w (») > exp ( — rp*'), from the case when p < I, to the case when p is general.
§ 2 / (0 is actually of order p/K, when p is not an integer.
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Hence tn{rs) > [M(r^]~{SK~l\ and if we take

c (p )=-2X- l ,

it is seen that the theorem is true.

8. It is interesting to notice that, if F{z) and F^z) be two integral
functions of the same apparent order p, with the same sequence of
moduli of zeros, it is not necessarily true that we can find a sequence of
circles of radii tending to infinity, such that

We have proved that this inequality holds when p < £, and I believe
that it holds when, p is not an integer; but a simple example, due to
M. Borel, shows that when, e.g., p = 1, the inequality need not hold.

If F (z) = sin TTZ, Fx(z) = z~l \T{z)\-\

we have

M(r) = exp [ {1+e (r)} TIT], mx (r) = exp [ — {1 -fe (r)} 2r log r],

and we cannot have ^hir) > [M{r)~\~e.


