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X LII .  On the 3fomentmn a~d .Pressure of Gaseous Vibrations, 
and on the Conne,vion with the Virial Theorem. B~ Lord 
RAYL•IGn, 0.~1~[., F .R .S .*  

I N a paper on the Pressure of Vibrations (Phil. Meg. iii. 
p 338~ 1902) I considered the case of a gas obeying 

Boyle's law and -dbrating within a cylinder in one dimension. 
It  appeared that in consequence of the vibrations a piston 
closing the cylinder is subject to an additional pressure whose 
amount is measured by the volume-density of the total energy 
0f vibration. More recently, in an interesting paper (Phil. 
Meg. ix. p. 393, 1905) Prof. Poynting has treated certain 
aspects of the question, especially the momentum asso- 
ciated with the propagation of progressive waves. Thus 
prompted, I have returned to the consideration o[ the subject, 
aud have arrived at some more general results, which how- 
ever do not in all respects fulfil the anticipations of Prof.  
Poynting. I commence with a calculation similar to Lhat 
before given, but applicable to a gas in which the pressure 
is any arbitrary function os the density. 

By the general hydrodynamical equation (Theory o[ 
Sound, w 253 a), 

.3  P . . . .  ( i ) ,  

where }) denotes the pressure, p the density, q~ the velocity- 
potential, and U the resultant velocity at any point. I f  
we integrate over a long period of time, ~b disappears, and 
~ e see that 

~ d t + ~ . f U 2 d t  . . . . . .  (2) 

retains a constant value at all points of the cylinder. The 
value at the piston is accordingly the same as the mean value 
taken over the length of the cylinder. 

If p~, p] denote the pressure and dens i tya t  the piston, and 
iPo, po the pressure and density that wouldprevail  throughout 
were there ~o vibrations, we have 

p = f  (p)=f(po+p--po) . . . .  (3), 
and approximately 

J PoS-P-Po 

- J  . 

* Communicated bv the Author. 
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}l[omentu.m and Pressure o f  Gaseous Vibrations. 365 

For  the mean value of ~ at the piston we have only to 
write fll for p in (4) and integrate with respect to t. And at 
the piston U = 0 .  

For the mean of the whole length 1 of the cylinder (parallel 
to x), we have to integrate with respect to x as well as with 
respect to t. And in the integration with respect to x the 
first term of (4)disappears, inasmuch as the mean density 
remains the same as if there were no vibrations. Aeeordlngly 

d]' 
/ (oo) z 

+l;,,/"(po)-f'(po)l { f f  f(o,-00):et (.5), 
"~Po '~ ~ 3 2Po: " 

~he terms on the right being of the second order in the 
quantities which express the vibration. 

Again, 

j'(p,-p0) d*=.f {/'(pl) - f  (v0)}dr 

=Pof ' (Po Pl ~ k~'o) / ~ ~'~ ; 
, )  ~b'o 

so that by (5) 

}CO (p __~)2 fT~xldtJff i~ (jOo)f (pl ;2:)2 dt ~ 
+ {ooV"(po)-pof'(oo) 33 

. . . .  (6). 
The three integrals on the right in (6) are related in a way 

which we may deduce from the theory of infinitely small 
vibrations. I f  the velocity of propagation of such vibrations 
be denoted by a, then i f ( p o ) = a  2. By the usual theory we 
have 

U =  dd? P--po _ 1 d~  
d x  ' Po a "~ dt . . . .  (7). 

I f  we suppose that the cylinder is closed at x = 0  and at 
x = l ,  a normal vibration is expressed by 

8 ,'lr X $ 7r c~ t 
= c o s  ~ - .  cos l (8),  

,Phil. _Ma,g. S. 6. Vo}, 10. No. 57. Sept. 1905. 2 C 
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366 Lord Rayleigh on the Momentum and 

where s is any integer, giving 

;o: yy ff (pl 0 d t = a  ~ (p--po) ~ dx dt U~dx dt 
po ~ l - -  1 (9), 

the integrations with respect to x in (9) being taken from 0 
to l, that is over the length of the cylinder. 

The same conclusions (9) follow in the general case where 
~b is expressed by a sum of terms derived from (8) by attri- 
buting an integral value to s. The latter part expresses the 
equality of' the mean potential and kinetic energies. 

Introducing the relations (9) into (6), so as to express the 
mean pressure upon the piston in terms of the mean kinetic 
energy, we get as the final formula 

(pl--~,o) dr= po + 2f'Cpo) 

Among special cases let us first take that of Boyle's law, 
where p=a2p, so that 

/ '  (po) = ~', ,f"(Po) = o. 
We have at once 

f ( p ~ - - p o ) d t = p o f f U 2 d ' c d t  . . . (11) 

The expression on the right represents double the volume- 
density of' the kinetic energy, or the volume-density of the 
whole energy, and we recover the result of the former 
investigation. 

According to the adiabatic law 

p/po= (p/po) ~ . . . . . .  (12); 
so that 

f'(po) = po'Y, , f"  (Po) = Po"/("/- 1) (13). 
po po 2 

Hence from (10) 

f fj'V dxdt (14). (P~--Po) dt=�89 + l)po l 

1 The mean pressure upon the piston is now ~(~/+ 1 ) o f  the 
volume-density of the total energy. We fall hack on Boyle's 
law by taking ~/= I. 

I t  appears therefore that the result  is altered when Boyle's 
law is departed from. Still nlore striking is the alteration 
when we take the case treated in ' Theory of Sound ' w 250 
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Pressure of  Gaseous Vibrations. 367 

of the law of pressure 

p = C o n s t . -  a ~ po2 . . . . .  ( 1 5 ) .  
P 

According to this 

/'(p0) =a~, /"(p0)=  -2a:/p0 . (16), 
and (10) gives 

j" (pl-po)  d t=o  . . . . .  (17). 

The law of pressure (15) is that under which waves of finite 
condensation can be propagated without change ot~ type. 

In (17) the mean additional pressm'e vanishes, and the 
question arises whether it can be negative. I t  would appear 
so. If,  for example, 

19----- Const. a~P~ 2p ~ . . . . .  (18), 

f ' (po)=a ~, /"(po) =--3a~/po, 

and (Pi--29o) d t =  - .  ~Po l 

I now pass on to the question of the momentum of a pro- 
gressive train of' waves. This question is connected with 
that already considered ; for, as Prof. Poynting explains, if 
the reflexion of a train of waves exercises a pressure upon 
the reflector, it can only be because the train of waves itself 
involves momentum. From this argument we may infer 
already that momentum is not a necessary accompaniment of 
a train of waves. If: the law were that of (15), no pressure 
would be exercised in reflexion. But it may be convenient 
to give a direct calculation of the momentmn. 

For this purpose we must know the relation which obtains 
in a progressive wave between the forward particle velocity u 
(not distinguished in one-dimensional motion from U) and 
the condensation (P--Po)/Po, usually denoted by s. When 
the disturbance is infinitely small, this relation is well known 
to be u = a s ,  in the case of a positive wave. Thus 

u :  s =  r  . . . . .  ( 2 o ) .  

The following is the method adopted in c Theory of Sound,' 
w 351 : - - "  I f  the above solution be violated at any point a 
wave will emerge, travelling in the negative direction. Let  
us now picture to ourselves the case of a positive progressive 
wave in which the changes of' velocity and density are very 
gradual, but become important by accumulation, and let us 

2 C 2  
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368 Lord Rayleigh on the Momentum and 

inquire what conditions must be satisfied in order to prevent 
the formation of a negative wave. It is clear that the answer 
to the question whether, or not, a negative wave will be 
generated at any point will depend upon the state of things 
in the immediate nelghbourhood of the point, and not upon 
the state o[ things at a distance from it, and will therefore 
be determined by the criterion applicable to small dis- 
turbances. In applying this criterion we are to consider the 
velocities and condensations not absolutely, but relatively, to 
those prevailing in the neighbouring parts of the medmm, 
so that the form of (20) proper for the present purpose is 

P 
whence 

which is the relation between u and p necessary for a 
positive progressive wave. Equation (22) was obtained 
analytically by Earnshaw (Phil. Trans. 1859, p. 146). 

In the ease of Boyle's law, v' (dp/dp) is constant, and the 
relation between velocity and density, given first~ I believe, 
by ttelmholtz, is 

u = a  log (p/po)~ 

if p0 be the density corresponding to u--~O." 
In our previous notation 

dHdp =/'(p)=~ +y'(p0). ~o--p0), 
a being the velocity of infinitely small waves, equal to 
~/{/'(Po)}; and by (22) 

u=ap- -p0  + a [ f ' ; (Po)  1 p0 ~ \ ~ - ~  - s  (P-~p~ (23), 

the first term giving the usual approximate formula. 
The momentum, reckoned per unit area of cross section, 

Introducing the value of u from (23) and assuming that 
the mean density is unaltered by the vibrations, we get 

4i---  + ~ ) v ~o ~ d~ (2~t), 
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P~.essuve of Gaseous Vib~'ations. 369 

or, if we prefer it, 

a" 4~ + ~ ~ d,~ (25). 

The total energy of the length considered is 

Po ~ u2 dx ; 

and the resul~ may be thus stated 

.f Pof"(po) 1 } momen~mn ( ~ + 2 a  xtotM energy (26). 

This may be compared with (10). I f  we suppose the long 
cylinder of length 1 to be occupied by a train of progressive 
waves moving towards the piston, the integrated pressure 
upon the piston during a time t, equal to l/a, should be equal 
to twice the momentum of the whole initial motion. The 
two formulm are thus in accordance, and it is unnecessary to 
discuss (26 )a t  length. ] t  may suffice to call attention to 
Boyle's law, w h e r e f ' ( p o ) = 0  , and to the law of pressure 
(15) under which progressive waves have no momentum. 
I t  would seem that pressure and momentmn are here asso- 
ciated with the tendency of waves to alter their form as they 
proceed on their course. 

The above reasoning is perhaps as simple as could be ex- 
pected; but an argument to be given later, relating to the 
kinetic theory of gases, led me to recognize, what is indeed 
tolerably obvious when once remarked, that there is here t~ 
close relation with the viriaI theorem of Clausius. ] f  x, y, z 
be the coordinates; v'x, vy, v~ the component velocities of a 
materiM particle of mass m, then 

d2Y~rna: ,~ 
1 2 

with two similar equations, X being the impressed force in 
the direction of ~' operative upon m. If  the motion be wha~ 
is called stationary, and if we understand the symbols to re- 
present always the mean values with respect to time, the last 
term disappears, and 

1 2 ~Xmv~,= - { X X x  . . . .  (27). 

The mean kinetic energy of the system relative to any 
direction is equal to the virial relative to the same direction. 

Let us apply (27) to our problem of the one-dimensional 
motion of a gas within a cylinder provided with closed ends. 
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370 Lord Rayleigh on the Momentum and 

As in other applications of the virial theorem, the forces X 
are divided into two groups, internal and external. The 
latter reduces to the ibrces between the ends (pistons) and 
the gas. I f  pl be the pressure on the pistons--it  will be the 
same on the average at both ends-- the external virial is per 
unit of area �89 simply. As regards the internal virial, I 
do not remember to have seen its value stated, probably 
because in hydrodynamics the mechanical properties of a 
fluid are not usually traced to forces acting between the 
particles. There can be no doubt, however, what the value 
is. I f  we suppose that the whole mass of gas in (27) is at 
rest, the lef~-hand member vanisbes, so that the sum of the 
internal and external virial must vanish. Under a uniform 
pressure po, the internal virial is therefore �89 In an actual 
gas the virial for any part can depend only on the local 
density, so that whether the gas be in motion or not, the 
value of the internal virial is 

- p d x  . . . . . .  ( 2 8 ) .  

Hence (27) gives 

q: kinetic energy = ]~pfl-- dx 

 fi'< = ~(p l - -p0)~- -  p--]Oo)dX (~9)o 

I f  the gas be subject to Boyle's law, pressure is proportional 
to density, and *he l a s t  term in (29) disappears. The 
additional pressure on the ends (Pt--Po) is thus equal to 
twice the density of the kinetic energy. 

In general, 

P --Po = a~(P - -  Po) + �89 �9 (p --  Po) ~, 

If  we introduce expressly the integration with respect to t 
already implied, (29) gives 

l.((pl--Po) dr= poSS V~dx dt + �89 (Po) S.I (p-po)~dx dt 

{ ':Z"(Oo)}ffU dx,lt, = Po q 2a~ 

regard being paid to (9). Equation (10) is thus derived very 
simply from the virial. 
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Pressure of  Gaseous Vibrations. 371 

In all thai precedes, the motion of the gas has been in o~e 
dimension, and even when we supposed the gas to be confined 
in a cylinder, we were able to avoid the consideration of 
lateral pressures upon tbe walls af the cylinder by applying 
the virial equation in its one-dimensional form. We now 
pass on to the case of three dimensions, and the first question 
which arises is as to the value of the virial. In place of (27) 
we haYe now 

• m U ~ = -- ~X(Xx + Yy + Zz) . (30), 

U being the resultant veiocity, Y, Z impressed forces 
parallel to the axes of y and z. Let  us first apply this to a 
gas at rest under pressure P0. The total virial, represented 
by the right-hand member of (30), is now zero ; that is, the 
internal and external virial balance one another. As is well 
known and as we may verify at once by considering the case 
of' a rectangular chamber, the external virial is ~poV, v denoting 
the volume of gas. The internal virial is accordingly --~t)ov ; 
and from this we may infer that whether the pressure be 
uniform or not, the internal virial is expressed by 

--':J-~j.ipdxd~ldz, . . . . .  (31). 

The difference between the internal virial of the gas in 
motion and in equilibrium is 

- SSS (p-po)d  dv (3 *). 
According to the law of Boyle, (31")  must vanish, since ~he 

mean density of the whole mass cannot be altered. The 
internal virial is therefore the same whether the gas be at 
rest or in motion. 

A question arises here as to whether a particular law of 
pressure may not be flmdamentally inconsistent with the 
statical Boscovitchian theory of the constitution of a gas upon 
which the' application of the virhfl theorem is based, lf ,  
indeed, we assmne Boyle's law in its integrity, the incon- 
sistency does exist. For Maxwell has shown (Scientific 
l)apers, vol. ii. p. 422) that on a statical theory Boyle's 
law involves between the molecules of a gas a repulsion 
inversely as the distance. This makes the internal viri'al for 
any pair of molecules independent of their mutual distance, 
and thus the virial for the whole mass independent of the 
distribution Of the parts. But such an explanation of Boyle's 
law violates the principle upon which (31) was deduced, 
making the pressure dependent upon the total quantity of 
the mass and not merely upon the local density ; from which 
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372 Lord l:[ayleigh on the ~]Iomentum and 
Maxwell concluded that all statical theories are to be rejected. 
I t  is to be remarked, however, that our calculations involve 
the law of pressure only as far as the term involving the 
square of the variatiou of density, and that a law agreeing 
with Boyle's to this degree of approximation may perhaps 
not be inconsistent with a statical Boscovitchian theory*.  

Passing over this point, we find in general from (30) 

d,z. (32), 

whenever the character of the motion is such that the mean 
pressure (P1) is the same at all points of the walls of the 
chamber. Further ,  as before, 

and finally, regard being paid to (9) as extended to three 
dimensions, 

(pl--po)V=(3 + P~176 xtotal energy . (33). 

In  the case of Boyle's law f ' = - 0 ,  and we see that the 
mean pressure upon the walls of the chamber is measured by 
one-third of the volume-density of the total energy. 

For  the adiabatic law (1"2), (13) gives 

(~vl--p0)v= g + 72 1 x total energy. (34). 

In the case of certain gases called monatomlc, 7 = 1 ~ ,  and 
(34) becomes 

(p~--po)v = ~ x total energy (35). 

Thirdly, in the case of the taw (15) for the relation 
between pressure and density, 

(Pl--Po) v = -- ,2 x total energy . (:~6), 

the mean pressure upon the wails being less than if there 
were no motion. 

So far we have treated the question on the usual hydro- 
dynamical basis, reckoning the energy of compression or 

I think the difficulty may be turned by supposing the force, inversely 
as the distance, to operate only between particles whose mutual distance 
is small~ and that outside a certain small distance the force is zero. 
All that is necessary is that a pair of particles once within the range 
of the force should a:tways remain within it--a condition easily satisfied 
so long as small disturbances alone are considered. 
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Pressure of Gaseous l~bratio~L,,. 373 

rarefaction as potential. I t  was, however, on the lines of the 
kinetic theory that I first applied the virial theorem to the 
question of the pressure of vibrations. In the form of this 
theory which regards the collisions of molecules as instan- 
taneous, there is practically no potential, but only kinetic, 
energy. And if the gas be monatomic, the whole of this 
energy is translational. If  V be the resultant velocity of tile 
molecule whose mass is m, ~he virial equation gives 

~p~v= � 8 9 1 6 3  ' . . (37), 

/91 denoting, as before, the pressure upon the walls, assumed to 
be the same over the whole area. ] f  necessary, pl  and 2mV 2 
are to be averaged with respect to time. 

I t  i susua l ly  to a gas in equilibrium that (37) is applied, 
but  this restriction is not necessary. Whether  there be 
vibrations or not, Pl  is equal to ~ of the volume-density of' 
the whole energy of the molecules. Consider a given chamber 
whose walls are perfectly reflecting', and let it be occupied 
by a gas in equilibrium. Tile pressure is given by (37). 
Suppose now tha~ additional energy (which can only be 
kinetic) is communicated. We learn from (37) that the 
additional pressure is measured by ~ of the volume-density of 
the additional energy, whether this additional energy be 
in the tbrm of heat, equally or unequally distributed, or 
whether it take the form of mechanical vibrations, i. e. of 
coordinated velocities and density differences. U n d e r  the 
influence of heat-conduction and viscosity the mechanical 
vibrations gradually die down, but the pressure undergoes 
no change. 

The above is the case of the adiabatic law with ~/=1~ 
already considered in (35), and a comparison of the two 
methods of treatment, in one of which potential energy plays 
a large part, while in the other all the energy is regarded as 
kinetic: suggests interesting reflexions as to what is really 
involved in the distinction of the two kinds of energy. 

I f  we abandon the restriction to monato,nic molecules, the 
question naturally becomes more e0mplieated. We have 
first to consider in what form the virial equation should be 
slated. In  the ease of a diatomie molecule we have, in the 
first instance, not only the kinetic energy of the nlolecule as 
a whole, but also the kinetic energy of rotation, and in 
addition the internal virial of the force by which the union 
of the two atoms is maintained. I t  is easy to see, however, 
that the two latter terms balance one another, so that we are 
left with the kinetic energy of the molecule as a whole. For  

D
ow

nl
oa

de
d 

by
 [

FU
 B

er
lin

] 
at

 1
3:

28
 0

8 
Ju

ly
 2

01
5 



374 ~llome~tum and Pressure of Gaseous Vibrations. 

general purposes a theorem is required of which I have not 
met a complete statement. For  any part of a wider system 
for which we wish to form the virial equation, we may omit 
the kinetic energy of the motion relative to the centre of 
gravity of the part, if at the same time we omit the virial 
of the internal forces operative in this part and treat the 
forces acting from outside upon the part~ whether from the 
remainder of the system or wholly from outside, as acting at 
the centre of gravity of the part. In applying (37) to a gas 
regarded as composed of molecules~ we are therefore to 
include on the r ight  only the kinetic energy of translation of 
the molecules. I f  a gas originally at rest be set into vibration, 
we h a v e  

~(y~--p0)v=addit lonal  energy of translation. (38). 

The pressnre pl  does not now, as in the case of monatomic 
gases, remain constant. Under the influence of viscosity and 
heat-conduction, part of the energy at first translational 
becomes converted into other forms. 

A complete discussion here would carry us into the inner 
shrine of the kinetic theory. We  will only pursue the subject 
so far as to consider briefly the case of rigid molecules for 
wMch the ene1~y is still entirely kinet ic--par t ly  that of the 
translat~ry motion of the molecules as wholes and part ly 
rotatory. Of the additional energy E representing the 
vibrations, half may be regarded as wholly translational. Of 
the other halI; the fraction which is translational is 3/m, where 
m is the whole number of modes. The translational part of 
E is there%re ~E (1 +'~/m) ; so that 

I f  m=3~ as for monatomic molecules~ we recover the 
former result ; otherwise P~-Po is less. In terms of 7 we 
have ~/= 1 + 2/m . . . . . .  (40), 

and accordingly 

. . . .  

in agreement with (34) where ~;hat was there called the 
total energy is now regarded as the additional energy of 
~ibration. In the case of a diatomic gas~ m = 5 ,  ~/--1~.-- e 

Terling Place, Witham, 
July 26. 
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