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INTRODUCTION 

The present investigatiop. is essentially an attempt to devise 
a statistical method for treating learning data. Part I is a dis­
cussion of correlation methods and empirical and rational equa­
tions. Part II is a description of the learning curve equation 
and its interpretation. Part III is a discussion of the application 
of the learning curve equation to typewriter learning. Part IV 
is a summary. 

Learning curves are usually very erratic and for this reason 
it is necessary to study the general trend of numerous observa­
tions instead of the vari;;J..ble individu~l observations. The 
methods to be discussed often make it possible to obtain co­
efficients which expre~s the characteristics of a subject's learn­
ing based on all the observations and in such a manner that all 
observatio,:~s are as far as possible equally weighted. Quantita­
tive methods in psychology are far in advance. of our control 
over the things measured, and consequently we make ourselves 
subject to ridicule when refined correlation statistics are applied 
to measures which are obviously crude. We shall therefore dis­
cuss not only the more refined statistical procedure for the learn­
ing curve but also some readily applied methods which are 
adaptable in the study of more or less erratic learning data. 
Even though refine<l technique is available we should select the 
quantitative methods for any particular study so as to keep a 
fair balance between the certainty of our measures and the statis­
tical niceties by which we treat them. 

For the benefit of any reader who wishes to apply the statis­
tical methods to be described for his own learning data I wish 
to call attention to the first two .sections of the summary in which 
will be found an outline describing the detailed procedure in 
calculating the learning _coefficients. 

In applying these methods of · learning curve analysis one 
should be fully aware of their limitations. They are not ap­
plicable to the following conditions of learning: I) when trial 
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and error learning is mixed with generalizations such as in puzzle 
solving; 2) when the learning is so erratic that it fails to show 
continuity; 3) when the learning process has not been carried 
far enough to reveal the nature of the function; which is often 
the case with apparently linear learning curves; 4) when the 
learning curve is not plotted in the speed-amount form ; 5) when 
the learning curve fails to- show diminishing returns with prac­
tice; 6) when the units of formal practice are variable in the 
different stages of learning (learning measured on different 
successive scales can not be treated as a continuous function) ; 
7) when the wrong responses are eliminated by ideational learn­
ing without giving any objective scores during the process of 
elimination. Such learning curves have the same appearance 
as those which contain generalizations. 

I) VERBAL STATEMENT OF RELATIONSHIP 

Our present problem concerns the relationship between prac­
tice and attainment in learning. When an observer notes as an 
element in common experience that attainment increases as· prac­
tice increases, he may generalize by verbally asserting a positive 
relation between the two variables. The verbal generalization 
is so ·common that it is embodied in what we call common sense. 
Thus we expect without further verification that twenty hours 
of practice in a complex function will yield higher attainment 
than ten hours of practice under roughly similar conditions, but 
uncontrolled observation does not tell us how much higher. 

2) THE CoRRELATION CoEFFICIENT AS AN ExPRESSION OF RE­
LATIONSHIP 

It is possible to express by a single number the degree of rela­
tionship between two variables. This is what one attempts to 
do by a correlation coefficient. The Pearson coefficient of corre­
lation is so derived that when its value is unity the two variables 
have perfect concomitance. When its value is -I. the two 
variables have perfect inverse relationship, a rise in one of the . 
variables being always associated with a proportional decrease 
in the other. A zero correlation establishes the fact of entire 
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absence of relationship within the conditions of the experiment. 
A correlation coefficient considerably less than unity may be 

explained in at least four different ways: I) the observations 
themselves may be so inaccurate as to obscure the relationship; 
2) the two variables may be related through a common third 
variable which, if not controlled or kept constant, plays havoc 
with the experiment ; 3) the regression may be non-linear in 
which case the Pearson coefficient, r, is almost meaningless;* 
4) the two variables may be intrinsically independent. Psycho­
logical experimentation rarely yields correlations over o.85 be­
cause of the inaccuracy of psychological measures. When a 
correlation coefficient turns out to be 0.95 or above an empirical 
equation may properly be substituted for the correlation methods. 

In the interpretation of a correlation coefficient one should. be 
careful to note that while a high correlation coefficient does indi­
cate a relation between the variables under the conditions of the 
experiment, a low coefficient does not indicate the absence of 
relationship between the variables. The first, second, or third 
factors enumerated in the preceding paragraph may be responsi­
ble for a low coefficient when a high relation really exists. It is 
perhaps rare that a correlation is calculated with psychological 
data which is not grossly affected by all three of these factors. 

·When one variable is immediately contingent on one or more 
other variables it is advisable to use the method of partial cbrre­
lation to establish the relation. Thus the volume of a box is 
contingent on the three variables, length, width, and depth. Now, 
if a heterogeneous collection of wooden boxes were to be meas­
ured as to all four of these attributes and the correlation co­
efficient between volume and length determined, it would un-

"doubtedly tum out to be positive and significant because long 
boxes are usually more voluminous than short boxes. But the 

*The term regression was introduced by Galton in connection with his 
statistical studies in the heredity of stature. It is the equation of the best 
fitting line for a series of paired observations of two variables. The use 
of the term seems to be restricted to "data <>f considerable dispersion and is 
not used for those observations in the .exact sciences which do not involve 
serious scatter. The term linear regression refers to the equation of a re­
gression line which is straight, as contrasted with non-linear regressions 
which are curved. See Yule, "Textbook in Theory of Statistics," p. 176 
and references 2 and 3 on p. 188. 
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coefficient would not be unity because. of the two other variables 
which were left out of consideration. This would illustrate 
case 2 in the preceding paragraph. We may distinguish two 
methods of handling this type of relation. a) We may control 
the extraneous variables by keeping them constant while meas­
uring the two variables with which we are immediately con­
cerned. This is the customary procedure in th~ physical sciences. 
Thus when verifying Boyle's Law we keep the temperature of 
the gas constant, but· when verifying Charles' Law we keep the 
pressure constant .. Except for these precautions neither of the 
two laws would be observed. In the. biological sciences we do 
not ·have such ready control over the extraneous variables and 
the best we can do is to measure them also, while allowing them 
to vary at will. b) In these cases we use a second method, 
namely, partial correlation. Thus if we calculate the partial 
correlation coefficient between volume and length of the coll~­
tion of wooden boxes, with the depth. and width accounted for, 
we obtain a higher coefficient than when the two extraneous 
variables were ignored. The advantage of. the partial correla­
tion method is that it enables us to control the extraneous vari­
ables analytically without having any physical control over them. 

There are some limitations of the correlation methods which 
every experimenter should keep in mind in · order to ,guard 
against erroneous conclusions. One of the limitations of the 
partial correlation method is that it assumes the combined effect 
of the several independent variables ·on the dependent variable 
to be additive, a condition which rarely obtains. This limitation 
is much more serious than the. inadequacy of the correlation 
coefficient for non-linear regressions. A non-linear regression 
can usually be rectified by one of the algebraic artifices used . in 
connection with empirical equations, but the assumption that the 
several independent vari_ables produce their effect on the de­
pendent variable in an additive manner can not be handled by 
any predetermined statistical method. Thus, returning to the 
box illustration, the best measure we could obtain by the method 
of partial correlation is expressed in the form 

· v = k1d + k2w + k31. r 



THE LEARNING CURVE EQUA'[ION 

But the true fonnula for the volume takes the form 
v=k.d.w.l. 

5 

2 

Now, this type of relation is not revealed by the partial cor­
relation method, nor is the method adequate for any of the 
thousands of ways in which the several variables may combine 
except the additive one. 

If we are not content with merely stating in quantitative form 
the degree of relationship between the two -variables but wish to 
formulate a method of prediction, we use the regression equa­
tion. This equation is derived . from the Pearson coefficient 
which merely states in numerical form the degree of relation­
ship between the two variables. It places the infonnation at 
our immediate command for the purpose of prediction. Given 
one of the unknowns, the other can be found either from the 
regression lines or from the regression equation which is simply­
an ·algebraic description of the regression line . 

. It is quite conceivable that a low value of attribute A may 
be associated with either high or low value of attribute B, 
whereas a high value of attribute A may be associated with 

-'only 'high values of attribute B. Similarly a low value of at-
tribute B may be associated with low values of attribute A only, 
whereas high values of. B are associated with either high or 

.low values of attribute A. Whenever such conditions obtain 
the· Pearson correlation coefficient is inadequate to express the 
complete relationship. In these cases called non-linear regres:. 

' ' 
sioris, it is advisable to calculate another kind of coefficient which 
is~ called the eta. coefficient, 'f/, * or correlation ratio. The sig­
nificance of the correlation ratio may perhaps be made more 
apparent by the analogue All dogs are quadrup·eds but all quad­
rupeds are not dogs. What would correspond to the correlation 
ratio of dogs on quadrupeds would be very high because all 
dogs are quadrupeds. But the correlation ratio of quadrupeds 
on dogs would be low, f<?r only· a few of the quadrupeds are 
dogs. The Pearson correlation coefficient for a relation of this 
_type would be positive but low. 

-
'*For a. brief statement giving the derivation of the correlation· ratio, see 

Yule, p. 2<>4. ' . 
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There are a number. of algebraic artifices by means of which 
a non-linear regression may be rectified. The value of such 
devices becomes apparent when it is considered that such other­
wise exceedingly useful tools as are available in the correlation 
methods are inapplicable as long as the regressions are non­
linear. The investigator must rely on his own ingenuity in rec­
tifying a non-linear regression. Some of these methods will be 
considered in connection with the learning curve equation. 

3) EMPIRICAL EQUATIONS 

Every equation can be represented ·by a line. in a diagram and 
practically every line encountered in quantitative experimental 
work can be represented by an equation. Thus the regression 
equation is only an algebraic way of describing the regression 
line of a scatter diagram, or, putting it the other way, the re­
gression line is a graphical description of the regression equa­
tion. Ea<;h tells the same story in its respec;;tive language. 

An empirical equation is an equation selected to fit a given 
set of data. The observations give us the diagram and if we 
find an equation whose line coincides with the general trend. of 
the observations, it may be used interchangeably with the dia­
gram for predicting one of the attributes when the other is 
given. When the observations indicate a linear relation we can· 
derive the corresponding equation with very little trouble, but 
when the observations fall along a curve and when they are 
badly scattered the finding of the most representative empirical 
equation sometimes taxes the investigator's ingenuity. I shall 
describe the routine steps in determining the empirical equation 
for a linear relation by means of an example and wilt show that 
it turns out to be identical with the regression equation for the 
same data. 

Figure I is a diagram of the relation between two hypo­
thetical variables X and Y. Each of the small circles repre­
sents a hypothetical observation ; the solid line represents the 
general trend of the observations. This line may be used for 
the purpose of prediction. Thus if we know that on a certain 
occasion attribute X had a numerical value of 9, the attribute Y 
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must have been very close to the value 63, as read from the 
chart. Our problem now is to describe this line algebraically 
so that the prediction may be made by means of a formula in­
stead of by the diagram. 

a) Method of insp·ection. This procedure is the simplest but 
it can only be applied when the relation is close, as it is in the 
present illustration. We first indicate the observations by small 
circles or dots on the diagram. Then we draw by inspection the 
best 'fitting straight line through ,the general trend of the ob­
servations. The equation of a straight line always takes the form 

· Y = a+b.X 3 
The y~intercept is 30.8 and it is the constant a. The slope of 
the line is 3.56 and it is the constant b. Hence the equation for 
the line is 

Y = 30.8 + 3.56X 4 
This equation may be used interchangeably with the diagram 

in predicting one of the attributes when the other is known. 
The procedure is so simple and direct, that it would be uni­
versally used, were it not for the fact that when the observa-

. tions scatter badly, it is difficult to draw the best fitting straight 
line by inspection. Moreover, the same line can not properly 
be used in predicting X from Y as in predicting Y from X 
when the data are scattered. In these cases we have recourse 
to two other types of procedure, namely, the method of the re­
gression equation and the method of least squares. 

b) Method of regression equation. In figure 2 we have repre­
sented a hypothetical set of data which are quite scattered. By 
the usual correlation methods we obtain the following constants : 

r =+ 0.59 · 
(]'X 4.58 
O'y - 3·03 
n so. 
mx = IO. 

my= 8. 
The regression equation with two yar1ables for predicting X 

from Y takes the form 
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CTX 

x=rx.y-y 
CTy 

in which x and y are deviations of X and Y from their respective 
means. Rewriting this equation in terms of the variables X and 
Y instead of in terms of the deviations from their means, we have 

CTX 

X-mx = rx-y- (Y-my) 6 
CTy 

in which mx arid my are the arithmetic means of X and Y re­
spectively. 

Substituting the numerical values into equation 6 we have 

x·- IO = o.s9 X 4-58 (Y-8) 
3·03 

and simplifying, we obtain 

7 

X= o.89Y + 2.88 8 
This is the regression equation ready for use. By means of 

it we predict X when the value of Y is known.· When the data 
are not seriously scattered it is safe to fit the line by inspection 
and determine the empirical equation by the shorter method, 
but with the data of figure 2 the regression lines can hardly be 
judged by inspection. 

By analogy the· regression equation for predicting Y from X 
takes the form 

CTy 
y ::::='rxy.-X 

CTX 
9 

which when stated in terms ot the variables instead of in terms 
of the deviations from their respective means becomes 

IO 

Substituting and simplifying, as before, we get as a numerical 
statement of the relation that 

Y = 0.39X + 4.1 II 

which is ready for use in predicting the most probable value of 
Y for a known value of X. 

These regression equations may be obtained with less arith­
metical labor, particularly if only one of the regression equations 
is needed, by the method of least squares. 
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c) Method of least squares.· The method of least squares is 
an aid in finding the best fitting straight lines for representing 
a series of observations. It can be applied also to curves b_ut 
that often leads to awkward mathematical maneuvering. The 
method of least squares gives a line such that the sum of the 
squares of the deviations of the independent variable from the 
regression line is a minimum. It is the best fitting straight line 
for the observations. The method gives the numerical values 
of the constants a and b in the equation 

X =a+b·¥ 3 
which represents any straight line and by means of which we 
can predict the most probable value of X from a given value 
of Y. The application of ,the method consists in solving the two 
following formulae: 

l(Y) ·l(X·Y) -l(Y2 ) ~~(X) 
a=. 12 

[l(Y) ]2- n·l(Y2
) 

b = l(Y)·l(X) -n·l(X·Y) 
13 

[l(Y) ]2- n·l(Y2) 
Substituting the appropriate sums from the data we find that 
a= 2.9 and b = 0.89. Hence the equation of the best fitting 
line for predicting X from Y is 

X= 2.90 + o.89Y. 14 
It should be noted that this equation, as determined by the 

method of least squares, is identical with the regression equation 
· 8 which was determined by correlation methods. 

By analogy, the equation for the straight line by which the 
most probabl~ value of Y may ~e determined from a known 
value of X is 

.Y~c+d·X 15 
The constants c and d may be determined from the original ob­
servations by the formulae: 

l(X) ·l(X·Y) -· l(X2 ) ·l(Y) 
c = .. 

[l(X) ]2 -· n-l(X2) 

d,.. l(X) ·l(Y) -n·l(X·Y) 
16 

-. 
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Substituting the numerical value of the dat_a from figure 2 into 
equations I 5 and I 6 we obtain: c = 4.09, and b = 0.39. Sub­
stituting these numerical values into I 5 we get 

Y = 4.09 + 0.39X 17 
by means of which we may predict the most probable value of 
Y from a known value of X. 

It can be shown readily that when the regression equations 
have been determined by the method of .least squares the Pearson 
coefficient of correlation is expressed by the relation 

r = V b-d * r8 
in which b and d are identical with the regression coefficients. 

The above calculations make it apparent that the method of 
least squares gives us a pair of regression lines which are iden­
tical with those obtained by the correlation methods~ For the 
purpose of stating quantitatively the degree of relationship be­
tween two variables it is desirable to calculate the correlation 
coefficient. When the regression equation is of primary interest 
it can be calculated to advantage by the method of least squares 
particularly if only one of the regressions is ·needed. 
4) RATIONAL EQUATIONS 

A rational equation is derived from known relations and is 
verified by experimental observation. From a philosophic point 
of view one may argue that all equations used by science are in 
the last analysis empirical but in pra;ctice there is a far cry be­
tween fitting an empirical equation to a series of observations 
and the ability to predict the observed relations on the basis of 
a rational equation. 

Psychology has very few bona fide laws on which we can, 
build a system of quantitative prediction and control. Thus 
practically all we can do with the problem of learning is to ob­
serve the function and describe it. The present attempt is to de­
scribe it quantitatively by an empirical equation. Some day we 
shall possess in psychology a coordinated system of really work­
able concepts with objective reference by which we may be able 
to predict and ,control at least certain aspects of behavior by 
rational equations or their equivalents. 

*See Yule, p. 203. 



II. THE LEARNING CURVE EQUATION 

I) PuRPOsE OF THE EQUATION 

When the learning function for a simple coordination pro­
ceeds undisturbed by external or internal ·distraction it usually 
follows a law of diminishing returns. In the majority of learn­
ing curves the amount of attainment gained per unit of practice 
decreases as practice increases. . Exceptions to this tendency are 
found in studying the learning of complex processes such as a 
foreign language, and when successive generalizations are in­
volved such as puzzle solving and the like. These exceptions 
sometimes take the form of a positive acceleration at the initial 
stage of the learnjng, plateaus during the course of learning 
and erratic advance of attainment. But these irregularities 
should not stand in the way of an attempt to express the learn­
ing function as a law provided that we do it with due conserva­
tism in its interpretation. All we can hope to do in thus ex­
pressing the learning function is to formulate what can with 
considerable certainty be considered as the typical relation be­
tween practice and attainment. 

Besides giving the satisfaction of formulating the relation 
between practice and attainment, the use of an equation for this 
relation enables. one to predict the limit of practice before it 
has been attained, provided that the learning follows the law 
of diminishing returns. It also enables one to differentiate for 
various purposes the rate of learning from the limit of practice 
since these two attributes are undoubtedly independent. It en­
ables us to state how much preceding practice the subject has 
experienced under the assumption that . the learning function 
followed the same law before and after the formal measure­
ments. Another use for which the equation can be of service 
is in the analysis of the relation between the variability in learn­
ing and other mental attributes. The problems of formal disci­
pline may be investigated by ascertaining whether a succession 
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of learning processes, all of the same type, yields any rise in 
the limit of practice, or a higher rate of learning, or a greater 
consistency of learning in the successive learning processes. 
Some of these coefficients may be more susceptible than others 
to modification by successive repetition of the same type of learn­
ing. This would in reality be studying the problems of learning 
how to learn. All questions of transfer of training may be in­
vestigated by the learning equation and the transfer effect may 
be differentiated into its psychological components. Thus, con­
tinued practice in learning poetry may show no rise of the prac­
tice limit, but a considerable rise in the rate at which that limit 
is approached and in a decrease of the variability of the learning. 
Relearning may be found to approach the same limit of practice 
as the initial learning but it may proceed at a higher rate, and 
this rate can be stated as a coefficient which is independent of 
the amount of previous practice in each learning process. The 
laws of forgetting are expressible in terms quite similar to those 
here used for the learning function. It is not at all unlikely that 
these coefficients may come to be significant in individual psy­
chology quite apart from their immediate utility as descriptive 

. attributes of the learning function. The preceding remarks 
have, I hope, justified my attempt to devise a method for In­

vestigating the learning, memory, and forgetting functions. 
2) THE EQUATION 

After experimenting with some forty different equations on 
published learning curves I have selected a form of the hyperbola 
as being for practical purposes the most available. It takes the 
form 

in which 

L·X 
Y=---

X+R 
19 

Y= attainment in terms of the number of successful acts per 
unit time. 

X =formal practice in terms of the total number of practice 
acts since the beginning of formal practice. 

L =Limit of practice in terms of attainment units. 
R = Rate of learning which indicates the relative rapidity 

with which the limit of practice is being approached. It 
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is numerically high for a low rate of approach and nu­
merically low for a high rate of approach. 

Equation 19 represents a learning curve which passes through 
the origin, i.e., it starts with a zero score at zero formal practice. 
The majority of learning curves start with some finite score 
even at the initial performance. For learning curves which do 
not pass through the origin, the equation becomes 

Y= L(X+P) 
(X+P)+R 

20 

in which P = equivalent previous practice in terms of formal 
practice units. 

Figure 3 represents the learning curve for subject No. ~3 in 
the group of fifty-one typewriter students to be discussed in a 
later section. This curve is plotted between attainment, Y, in 
terms of the number of words written in a four minute test 
given weekly for seven months, and f~rmal practice (X) in 
terms of the total number of pages written since entering the 
course. We shall call this type of curve the speed-amount curve 
to distinguish it from other ways of plotting the same data.· 

Equation 19 may be rectified as follows: 
L·X 

Y=---
X+R 

XY+R·Y=LX 

X+R~L(X) 
y 

21 

This equation is linear if X/Y is plotted against X. Similarly 
equation 21 may be rectified when written in the form 

X+ (R + P)-:- L (X -f:.P) 
y 

which becomes linear when (X+ P)/Y is plotted against X; 

22 

When so rectified, the constants L, R, and . P may be deter­
mined by several different methods, the choice between which 
depends on the scatter of the data, the desired accuracy, and the 
number of curves one has to calculate. We shall describe four 
methods of calculating the coefficients. 
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a) Method of least squares 
Case I: when ·the learning curve passes through the origin: 

Arrange the data as in table I. Calculate X/Y and tabulate~ 
Plot X/Y against X as in figure 4. For convenience we shall call 

X 
-=Z 23 y 

The reader wili notice that the learning data as plotted in figure 
4 falls practically in a straight line whereas the same data in 
figure 3 takes the typical learning curve form. 

The equation for the best fitting straight line of figure 4 can 
be represented by the equation 

Z=c+d·X 24 
The ·constants c and d are determined from the table of data by 
the formulae: 

~(X)·l(X·Z) -· l(X2 )·l(Z) 
c = .;.,..· --· --~-------

[l(X) )2- n·l(X2
) 

l(X)·l(Z) -n·:S(X·Z) 
d- ;' ' . ' ' 26 

[l(X) J2- n·l(X2 ) 

which are simply the least square formulae (15) and (r6) re­
written for X and Z. Substituting the proper sums, we have 
c = 0.42, and d = 0.0041. Hence the equation for X and Z 
becomes 

Z = 0-42 + 0.0041X 
which by replacing X/Y for Z and transposing becomes 

Y= 
244X . 

X+ 102 
in which the predicted limit of practice, L, is 244 words in four 
minutes, and the rate of learning, R, is 102. The constants L 
and R may also be determined by the relations 

R=c/d 
Z= r/d 

Plotting equation (28) we obtain the solid line in figure 3· 
It will be noticed that _this curve fits quite well the general trend 
of the observations which are indicated by the small circles. This 
method of stating algebraically the relation between practice and 
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attainment is of course not applicable unless the speed-amount 
curve for the data takes the typical hyperbolic form. 

Case 2: when the learning curve does not pass through the 
origin. When the learning curve does not pass through the ori­
gin it can be rectified by slightly different procedure. We shall 
take as an illustration the combined curve for a group of fifty­
one subjects studying typewriting. Figure 5 represents the 
average speed of typewritin&' against the total number of pages 
written si~ce enteri~g the course. It is seen to be a fairly smooth 
and regular curve. 

The equation for the learning curve which does not pass 
through the origin is 

or, if we call 

Y= L(X+P) 
(X +P) +R 

P+R=K 
for convenience, we have, i1:1stead of equation (20) 

Y= L(X+P) 
X+K 

20 

32 

33 

This equation can be rectified as fol~ows : When ~ -:- o, and 
Y . Y 1, Y 1 being the initial attainment s~ore, 

L-P 
y1 =--- 34 

K 
and hence equation (33) becomes 

X·Y =L X -.K 
Y-Y~ Y-Y1 

35 

This equation is linear if XY/(Y-Y1 ) is plotted against 
X/ (Y-Y 1), in which case L is the multiplying constant and 
K is the additive constant. 

Plotting the data represented in figure 5 in this manner we 
obtain figure 6 in which the learning data appear as a straight 
line. This line may be represented by the equation 

S=a+b·T 36 
in whkh 

x x.y 
T= and S=---

Y-Y1 ·y_·yt 
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The numerical values of a and b may be determined by the fol­
lowing least square formulae which are identical with equations 
I2 and I3, except for the analogous notation. 

l(T)-l(S·T) -l(T2
) ·l(S) 

a=------------
[l(T) ] 2

- n·l(T2 ) 

l(T) ·~(S) -. n·~(S;T) 
b = ------..-------

[l(T) )2- n·~(T2) 

37 

Substituting the pro pet sums we find that a= -148. and 
b=z16. Hence 

S = 148. + 216.T 39 
which is the equation of the solid line in figure 6. This equation 
may be transposed into the original form of equation 20, or we 
may write it in that form directly by the following relations: 

a=K 
b=L 

p = a·Y1 

L 
R=K-P 

All of the constants K, L, Y, P, and R, are positive when ap­
plied to learning curves. It should be no~ed that Y 1 is a repre­
sentative original score determined by projecting the learning 
curve back to the y-axis. In figure 5 the actually observed 
initial score was used since it is continuous with the rest of the 
data. But it is occasionally necessary to select a representative 
initial score since Y 1 is weighted in this procedure more than 
any of the other points. The numerical values of these con­
stants for the data of figure 5 are as follows : 

L=216. 
P= 19. 
R= 133· 

Substituting these constants in equation 33 we have 
216.(X + 19.) 

Y= 40 X+ 148. 
which when plotted becomes the solid line of figure 5· The 
reader will notice that this equation, as represented by the solid 
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line in figure 5, is a beautiful .fit for the data, and it justifies 
our use of equations I9 and 20 to represent the hyperbolic form 
of learning curve. 

The predicted limit of practice L which is 216. words in four 
minutes, is of course based on the assumption that the _learning 
curve would continue as uniformly beyond the measurements 
as it did during the measurements. This limitation must be kept 
in mind and we shall therefore differentiate between the pre­
dicted limit and a limit of practice which has been practically 
attained.· The equivalent previous practice (P) is I9 pages 
which we may interpret as the average number of pages of type­
writing to which the previous general experience of our subjects 
was equivalent. This interpretation of the constant P is also 
limited by the ass!lmption that the unmeasured learning function 
followed the law which the measurements reveal. One circum­
stance which bears out this assumption is that those learning 
curves which actually do pass through the origin and which do 
not show positive acceleration usually follow this curve law 
when the coordinates are properly chosen. The curve of figure 
5 does not pass through the origin but this is explainable by the 
fact that a person who has never touched a typewriter will in 
four minutes make some finite score even though handicapped 
by using the hunt and punch method. 
b) Method of inspection 

When the observations fall very nearly in a straight line as 
they do in figure 6 it is hardly necessary to plough through the 
arithmetical labor involved in evaluating the constants a and b 
o{ equation 36 by the method of least squares unless one has 
ready access to a calculating machine. After plotting figure 6 
one may draw at sight the best fitting straight line through the 
general trend of the data and evaluate the constants from any 
of the following relations: 

y-intercept =a= K 
x-intercept = K/Y 1 

slope=L 
a·Y1 

P=-­
L 

R=K-P 
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By this graphical procedure much labor is saved in calculating 
the learning curve constants and the method is identical with 
the preceding in principle. 
c) Method of three equidistant points 

The learning coeffici~nts may be determined from three se­
lected points with less labor than when all the observations are 
taken into account. These three points should be so selected that 
they represent the general trend of the learning curve. 

Let the three selected points be denoted X1 Y 1 ; X 2 Y 2 ; and 
X 3 Y 3 • Let X1 be zero, X3 the total amount of practice and X2 

the midpoint between X1 and X 3 • Let the Y -values be the most 
representative ordinates to the curve. Then 

X 3 = 2·X2 41 
By substituting these values into equation 20, transposing and 
simplifying, we obtain 

X 3 (Y2 -X3 ) 

K= 42 
Y3 +Y1 -2Y2 

Y3 (X3 + K) ..- Y1 ·K 
L = ---------

. Xa 
Y1 ·K 

P=--
L 

R=K-P 

43 

44 

45 

From these relations we may determine the numerical values of 
the learning ·coefficients in terms of the three equidistant points. 

When the curve passes through the origin both X 1 and Y 1 

are zero. The coefficients may then be determined by the fol­
lowing somewhat simpler relations : 

X 3 (Y2 -Y3 ) 

K= 46 
Y3 -2·Y2 

Y3 (X3 + K) 
L=------

X3 
47 

R=K 
P is zero because when the initial score is zero the equivalent 
previous practice is zero. 
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3) INTERPRETATION OF LEARNING CONSTANTS 

We have seen that the learning curve equation 20 fits very 
well the learning data to which we have applied it. In order 
to bring out the interpretation of the learning coefficients we 
shall compare several learning curves with high and low nu-
merical values ·of the coefficients. · 

In figure 7 we have two hypothetical learning curves with dif­
ferent physiological limits but with identical rates of approach. 
Figure 8 represents two hyp6thetical learning curves, both ap­
proaching the same limit of practice, one at a high rate and the 
other at a low rate. Figure 9 represents two hypothetical learn­
ing curves with same limit of practice, and with the same rate 
of approach, but differing in the amount of previous practice. 
Curve A represents forty units of previous practice while curve 
B represents no previous practice. The two curves are identical 
in shape, the only difference between them being that curve B 
is forty x-units to the right of curve A. The same interpreta­
tion would be reached if the two curves were superimposed and 
the formal practice measurements started at the origin for curve 
B and after forty practice units for A. 

4) THE COORDINATES FOR LEARNING CURVES 

So far we have considered learning curves plotted only be­
tween the coordinates X (total number of practice acts since 
the beginning of practice) and Y (the number of successful acts 
per unit time). Learning curves have, however, been plotte~ 
with various units for the ·coordinates and we shall consider 
several of these together with some inferences that may be drawn 
from the translation of learning data from one system of pnits 
to another. 

The speed-:amou.nt cwrve is the name we ~hall use to designate 
the form of learning curve we have been considering. It is 
plotted as speed, Y, against amount of practice, X. It may be 
represented by equations I9 and 20 when it reveals the typical 
hyperbolic form. 

The time-amou.nt ,cu.rve is plotted as time, t, per unit amount 
of work against total amount of work, X, since the beginning 
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of practice. It is evident that the ordinates of this type of curve 
willbe proportional to the reciprocals of the speed-amount curve 
for the same data. Hence we may define t as 

c 
t=- 48 

y 

where t is the time per unit amount of work and Cis a constant. 
Limiting ourselves to the curves of diminishing returns we have, 
as the equation of the time-amount curve 

C(X +K) 
t= L(X+P) 49 

The constant C is only significant in translating learning 
curves from one form to the other. Applying the equation di­
rectly to learning data the ,constant C may be dropped. In that 
case 

X+R 
t= L(X+P) so 

This equation may be rectified by the procedure previously out­
line~ for equations 19 and 20. When P =zero, we have 

X+R 
t= 51 

L·X 
which can be rectified by plotting tX against X. 

In order to determine whether equations 50 and 51 really fit 
the time-amount curve throughout its range I have given a long 
substitution test to one of my students. He took the test seven­
teen times, once a day, and reached what is for all practical 
purposes a 'practice limit. The time-amount curve for this learn­
ing test is represented in figure I I. In figure I 2 I have rectified 
the data by plotting the products tX against X. The reader 
will notice that the speed-amount curve is hyperbolic. It is quite 
·gratifying that the learning records for an individual subject 
follow the hyperbolic law so closely. In order to avoid erratic 
scores from individual subjects it is absolutely essential that 
they work under uniform conditions with a minimum amount 
of distraction. The student whose substitution learning is repre­
sented in figures II and I2 took the test once a day only and 
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always at I P. M~ The test consisted in making six hundred 
substitutions at each sitting. 

The time-time curve is the learning curve plotted between the 
time, t, per unit amount of work and the total time, T, devoted 
to practice. An empirical equation may be derived for this type 
of curve from the assumed hyperbolic form of the speed-amount 
curve. The total time is the summation l.t·dx for the whole 
period of learning. Hence 

T = J t·dx 
But from equation 50 

X+K 
t=----

L(X + P) 
and hence 

X+K 
T - f . dX 

- L(X+P) 
which may be written 

I K-P dX 
T- fdX+ J---L . L X+P 

·Integrating, we obtain 
X K-P 

T = L + log (X + P) + C1 
L 

so 

53 

which gives the equivalent total time T in terms of X. Stating 
X explicitly from equation 50 and substituting in equation 53 
gives the desired relation between T and t as 

K.-t·L·P K-P K-P 
T = · . + · log ( ) + C2 54 

(L·t- I)L L L·t-I 
While this equation does give us a relation between T and t as 
derived from .the hyperbolic speed-amount curve it is too un­
wieldy to be practically feasible. We are hardly justified in 
using so complex an empirical equation for learning data. 

The speed-time curve is plotted between the speed Y (number 
of successful acts per unit time) and the total amount of time, 
T, devoted to practice. An equat!on between Y and T may be 
derived by stating X explicitly from equation 20 in terms of Y 
and substituting this for X in equation 53 which gives 
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P-K K-P K-P 
T = . .. + . L logY- L log (L- ¥) + C2 55 . 

. Y-L 
While this equation is too cumbersome for extensive use it 

serves one very interesting function in that it sheds light on the 
question of positive acceleration in learning curves. 

5)- INITIAL PosiTIVE AccELERATION IN THE SPEED,.. TIME CuRVE 

Equation 55 represents the speed-time curve. It may be sim­
plified by letting 

K-P 
A=P-K and B= 55a 

L 
when it becomes 

T= A +B·logY-B·log(L-Y)+C2 
Y-L · 

The first derivative with respect to Y is 
dT A B B 
dY =- (Y-L)2 + Y + L-·· Y 

The second derivative is 
d2T 2A B B 
dY2 = (Y-L) 3-Y2 + (L,....,.- Y) 2 

which when simplified becomes 
d2T B·(L) 2 ·(3·Y-L) 
~---.~--.,.--"'---------,-.-

dY2 Y2 ·(L-Y) 3 

since A=- BL from equation 55a 
Equating the second derivative to zero, we have : 

B·(L) 2 ·(3·Y-. L) 
--------=0 

Y2 ·(L-Y) 3 

which is true when Y has tpe value L/3. 

57 

59 

This de.monstrates the presence of a point of inflection ig 
equation 55 at tJie value L/3 for Y. The psycholog~cal si~ifi­
ca~ce of this relatio~ may be stated as follows: 

The learning curve in the speed-tinze fqrm must neces.s.arily 
have an initial positive acceleration which changes to a negative 
acceleration when the attainment has reached one-third of the 
limit o/ practice. This conclusion is contingent on ,thp assumfrr 
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tion that the learning curve in the sp·eed-amount form is hyper­
bolic~ an assumption which has been empirically shown to be safe 
for the nwjority of learning curves. As has already been said, 
the speed-amount curve is usually 4yperbolic but not always. 
These assertions regarding the speed~time curve are not applica­
ble when the speed-amount curve for the same data is not hyper­
bolic. The positive acceleration can not, of course, be obtained 
when the initial score is greater than one-third of the practice 
limit. It can only be observed when the initial score is less than 
one-third of the practice limit. 

In order to test empirically the above finding with regard to 
initial positive acceleration I have plotted in figure 13 the average 
typewriting speed for fift)l-one subjec~s against weeks of prac­
tice (the speed-time curve) instead of against total number of 
pages written (the speed-amount curve). The average practice 
limit for this group has already been found to be 216 words in 
four minutes according to the spe~d-amount curve for the same 
data. The reader will notice the initial positive acceleration fol­
lowed by negative acceleration, and also that the point of transi­
tion from positive to negative acceleration takes place at a 
writing speed of about seventy words in four minutes, as it 
should do according to our analysis of the speed-time curve. If 

· this finding will stand the test of further experimentation It is 
obviously of considerable diagnostic value for the psychologist 
who can by means of it predict the practice limit when attain­
ment reaches one-third of its limit. The limitation in the use 
of this relation is mainly in the errati~ improvement in complex 
coordinations which are learned under variable conditions of 
distraction and in the occasional deviations from the typi~al 

hyperbolic form of the speed-amount curve. 

6) OTHER PossiBLE EQUATIONS 

Before closing the discussion on the learning curve equation 
~s such it might not be out of place to mention a few of the other 
equations which I have tried to use for learning data. These 
will not be of interest to the general reader but may be of in­
terest to those who wish to try their hand at other empirical 
equations for the learning function. 
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One of these equations for the speed-amount curve is 
I . 

Y = L[r ----1 6o 
eax 

where e is the Naperian base or some other constant. This equa­
tion can not readily be rectified except by trying successive values 
for L. When the proper value for L is found it can be rectified 
when written in the form 

log (L-Y) = logL-a·X·loge 6r 
by plotting log(L-· Y) against X. If the curve does not pass 
through the origin equation 6o becomes 

. I 
Y = L[r -----] 

ea(X+P) 
62 

whicl! is rectified if the proper numerical values of L and P are 
found by writing it in the form 

log(L-Y) = log L-a(X+P)log e 63 
and plotting log(L-Y) against (X+P). This equation gives 
a fair approximation to the speed-amount curve but it does not 
fit nearly as well as the hyperbolic form previously considered. 
It can be rectified graphically by plotting Y -increments against X 
but this procedure is not feasible unless the individual observa­
tions are more consistent than they usually are for learning data. 
The constants L and P can also be determined graphically from 
three selected points. If X 1 Y 1, X2 Y 2, and X a Y a be three points 
on the curve, equidistant on the axis of abscissae, then the two 
lines X 3Y2; X2Y1 and X 3Y3 ; X2Y2 will intersect in a point which 
is on the asymptote parallel to the axis of abscissae, thus deter­
mining the constant L graphically. This equation gives a fair 
approximation to the speed-amount curve but it does not fit 
nearly as well as the hyperbolic form previously considered. 

Another equation which gives a fair approximation to the 
learning curve is 

c 

in which B and C are constants. It can be rectified by writing 
it in the form 

c 
logY= log L --log B 

X 
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and plotting logY against I/X. It has the advantage of sim-
. plicity and it can be used to represent an initial positive accelera­
tion. But as far as I have been able to determine the constant L 
does not agree as well with observed values as the hyperbolic 
form. 

One could perhaps write an indefinite number of exponential, 
trigonometric and other functions to represent the learning curve 
but as long as the simple equation 20 with its various trans­
formations fits the data, and as long as we do not have the basis 
for a rational equation for learning I have been content to 
abide by it. 



TYPEWRITER LEARNING 

I) THE SUBJECTS 

Eighty-three students at the Duff Business School in Pitts­
burgh took one four minute typewriter test once. a week during 
the school year Igi6-:I7. The tests were begun in September 
and continued until the middle of April. The subjects practiced 
two hours of school schedule time every day, five days a week. 
No tests are available for the first three weeks of practice be­
cause teachers of typewriting who use the touch system prefer 
not to give tests from straight copy until the mechanism of the 
typewriter and the key board have been mastered. This takes 
from three to seven weeks, depending on the maturity, adapta­
bility and industry of the students. Practically all of the sub­
jects had finished the grammar school, a number of them· had 
completed one or two years of high school, and several had fin­
ished a four year high school course. Their average age was 
about seventeen years. In order to obtain an initial typewriting 
score I asked ten of my students who had never touched a type­
writer to take a four-minute test. The average score for this 
group was 27 words in four minutes and this is used with the 
other data as an average initial score in typewriting. 

Of the eighty-three subjects who took the tests thirty-two 
were eliminated, leaving fifty-one subjects for the major study. 
The causes of elimination are indicated in the following table: 

Original size of group. . . . . . . . . 8 3 
Irregular attendance . . . . . . . . . . 20 

Unusually irregular performance 3 
Apparent linearity of learning 

curve . . . . . . . . . . . . . . . . . . . . . 5 
Delayed positive acceleration. . . . 2 

Demonstrable plateau . . . . . . . . . 2 

Total eliminated . . . . . . . . . . . . . . 32 

Size of group for major study ... SI 
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The twenty subjects eliminated from the major study on ac­
count of irregular attendance are not of interest in this <:onnec­
tion. Three subjects were eliminated for extremely erratic 
performance in the tests. It is impossible that their real type­
writing ability is even approximately represented by their erratic 
scores. The cause for their variability is undoubtedly due to 
lack of consistent interest in their work and in the tests. Most 
of the subjects took a competitive attitude toward the tests, the 
results of which·were given them weekly by their instructor. 

Ten subjects had learning curves which deviated from t:he 
typical hyperbolic form which we are here considering. This 
is a limitation of our method which is only applicable to the 
hyperbolic form of the speed-amount curve. Of these ten sub­
jects five were ·eliminated from the major study on account of_ 
apparent linearity of th.e learning curves. No learning curve 
r;an ever be continuously linear if it is plotted in the speed ... 
amount form. If it were linear the subject would have no 
physiological limit and he would in time reach the rather en­
viable attainment of infinite writing speed, which is of course 
absurd. Another alternative with a linear learning curve is that 
it is linear until it- reaches the practice limit after which it re­
mains at the limit. I_ can not entertain this as a possibility for 
it is inconceivable that an organic function like learning pro­
ceeds according to a linear relation until it bumps into some 
inflexible practice limit atwhich it stops and remains. The only 
possible explanation of apparently linear learning curves that 
I am willing to entertain is that they are in reality curved but 
that the- degree of curvature is so small that it is concealed by 
the variability of the individual observations. Such learning 
curves are therefore indeterminate unless they be continued far 
enough to make the curvature appear in spite of the variations 
of the individual observations. This leads to the conclusion 
that the accuracy with which the learning coefficients can be 
determined is contingent on two principal factors. It varies 
a) ·w.ith the degree of curvature of the learning curve, and 
b) inversely as the variability of the individual measurements. 
The coefficients of a learning curve with minimum variability 
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may be determined with a minimum amount of visible curvature. 
The more variable the measurements the greater is the degree 
of curvature necessary for a fairly accurate determination of 
th learning curve coefficients. Whether the linearity of the 
curves of these five subjects is apparent or real can not be settled 
with the available data. If the linearity is real it constitutes a 
limitation in the use of the learning curve equation. 

Two subjects were eliminated on account of delayed positive 
acceleration. Their learning· curves constitute deviations from 
the usual shape of curve and can not be handled by the methods 
which we are discussing here. It is not certain that these meas-
ures are not simply cases of erratic performance. . 

" Two out of the eighty-three subjects showed clear evidence 
of a plateau. Whether this is psychologically significant or 
simply due to the fact that these subjects were offered positions 
after attaining a specified typewriter proficiency is indetermina­
ble. The higher order learning curve which followed the first 
curve is not carried far enough with- either of these two_sub­
jects to justify determining the learning coefficients for the first 
and second order curves. 

We have eliminated twelve out of sixty-three complete rec­
ords. Generalizing from this fact we may conclude that the 
speed-amount form of learning for typewriting takes the hyper­
bolic form in about four cases out of five. This justifies our 
reference to it as the typical but ·not as the universal form of 
learning curve. 

2) THE CooRDINATES OF CuRVES FOR TYPEWRITING 

My first intention was to plot the learning curves with speed 
as ordinates and time in weeks as abscissae, the speed-time 
form. Finding that the industry of the subjects during the 
practice hours varied immensely I decided that the psychological 
analysis would be more equitable if I measured practice in terms 
of total number of pages written rather than in terms of time, 
although time is statistically more readily obtained than the 
amount of practice. The practice sheets were all turned in to 
the teacher in charge who tabulated every week the number of 
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pages written by each subject. According to the typewriter 
championship rules, attainment should be scored by deducing 
five words from the speed total for every error. For the pur­
pose of psychological study I have separated errors from speed. 
The learning curves are all plotted as speed (words in four min­
utes, disregarding errors) against formal practice (pages writ­
ten since entering the course). While errors ar~ entirely dis­
regarded in these curves the subjects were of course not informed 
on this point. The errors are studied separately by correlating 
them with the other learning characteristics. In this manner 
we shall arrive at a statement of the relationship between the 
several learning characteristics without artificially loading them 
with each other, as would be the case if we penalized the score 
for speed by the number of errors. 

3) THE L~ARNING COEFFICIENTS FOR TYPEWRITING 

We shall use the following notation in studying typewriter 
learning. 

X = Practice_, in terms of the total number of pages written 
since entering the course. 

Y = Attainment_, in terms of the number of words written 
in four minutes. 

x = Number of pages written when an individual test is 
taken. 

y = Number of words written in a four minute test. It is 
the observed speed whereas Y is the speed indicated by 
the learning curve equation. 

n = Number of tests taken. 
Ya. = Average speed in all tests or 

ly 
Ya=-­

n 
y20= Average speed after twenty weeks of practice, and sim­

ilar notation for the average speed at other stages of 
learning. 

L = Predicted practice lim.it in . terms of words written in 
four minutes. 

R = The rate of learning, a constant which is numerically 
large for a low rate of approach and numerically low 
for a rapid rate of approach. 

P = Equivalent previous practice in tenns of practice units 
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(pages written). It is the negative x-intercept of the 
speed-amount curve. 

d = Absolute deviation which expresses the deviation of any 
single observation above or below the value indicated 
by the learning curve at that stage of learning. It is 
positive when the speed of any single test is above that -
indicated by the learning curve, and negative when the 
actual speed is below the learning curve. It cart also -
be represented by the relation 

. d=y-Y 
D = Average dev.iation for all tests during the year, or 

ld 
D=-

n 
dr = Relative deviation of an individual test, determined ·by 

the ratio 
d y-Y 

dr=-=. ·. y; y 
Dr= Average relative deviation, determined by the ratio 

. . l( dr) 
Dr=---

n 
V · . Coefficient of variability, determined by the ratio 

D v =_____, " 
Ya 

e :=::::: Number of errors made in an individual test as deter· 
mined by the Typewriter Championship rules. 

E = Average number of errors in all tests, or 
E=-l_(_e)_ 

n 
er = Relative inaccuracy of an individual test, or 

e 
er=-

y 
Er = Average relative inaccuracy for all tests, or 

l(er) 
Er= -

n 
A = Coefficient of incmcuracy, determined by the ratio 

. E 
A=­

Ya 
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4) FINDINGS 

a) Writing Speed 
Figure 5 indicates the relation between average speed and 

number of pages practiced. The law of diminishing returns is 
shown by the continuity of the points representing average speed 
but we can not assert the universality of this form because we 
have already eliminated 12· out of the 63 available records. It 
will serve well as a norm of average performance for groups 
comparable with the one here represented. It is interesting to 
note that the curve does not pass through the origin. This is 
explainable by the fact that a person who has never written on 
a typewriter can, nevertheless, even on the first trial, make some 

·finite score. · I could not readily obtain a test from the fifty-one 
subjects prior to formal instruction on the typewriter. In order 
to ascertain what a truly initial score is, I asked ten of my stu­
dents who had never touched a typewriter to take a four minute 
test. The mean as well as the average of these ten subjects was 

. 27 words in four minutes. This is the point to which the compo­
site learning curve in figure 5 projects. 

The solid line of figure 5 represents the hyperbolic curve form. 
It is a good fit on the data which are represented by the small 
circles. The equation of the composite curve is 

216.(X+19.) 
Y= 40 

X+148. 
in which Y is the average score for the 51 subjects and X is the 
number of pages of practice. The predicted limit of practice 
for speed is 216. words in four minutes, which agrees well with 
average typewriter speed. The average of the limits of practice 
as determined from the individual curves is 214. The equivalent 
previo~s practice for the composite curve is 19. This indicates 
that the general experience which these subjects brought to their 
first· practice on the typewriter was equivalent to nineteen pages 
oi' formal practice. The rate of learning, R, for the composite 
curve is 129, a constant which varies inversely with the relative 
rapidity with which the limit of practice is approached. The 
average of the rates of approach as determined from the indi­
vidual curves is 137. The composite curve, figure 13, is plotted 
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against time in weeks instead of against amount of practice. It 
has an entirely different appearance. It shows the initial posi­
tive acceleration previously discussed. 

We shall now turn to the individu~l records and ascertain by 
correlation methods the interrelations of the learning character­
istics for typewriting . 

. The correlation between the predicted limit of· practice and 
the average speed of writing for all tests during the year is 
0.68. This correlation could not even theoretically be close to 
unity for while the fast writers tend to approach the ~higher 
practice limits there is considerable variation in the rate at which 
the limit is approached. It should be noted that the predicted 
limit was not attained by these subjects. The limit is predicted 
on the basis of the curve shape. If the predicted limit used here 
agrees at all closely with the ultimate writing speed of these sub­
jects, the correlation of 0.68 between the practice limit and the 
average writing speed during eight months' instruction indicates 
that the latter measure is not a very reliable criterion of ultimate 
proficiency. I think that it constitutes another piece of evidence 
against hasty and self-confident predictions based on so called 
vocational mental tests. 

The correlation between the predicted limit of practice, L, 
and the rate of learning, R, is 0.75. This indicates that those 
who approach a high limit of practice in speed generally ap­
proach their limit at a lower rate than those who are approach­
ing a low speed as their limit. The regression is linear and hence 
the converse is true, namely that those who approach a low limit 
of practice generally approach their limit at a relatively higher 
rate than those who have a high limit of practice. 

The correlation between predicted limit of writing speed and 
average number of errors in unit time is O.IO. Hence we con­
clude there is no discernible relation between the normal writing 
speed and the absolute number of errors made per unit time. 
But there is a noticeable relation between the coefficient of· in­
accuracy, A, and the practice limit, L. The coefficient of corre­
lation is only -o.I6 but the regression is non-linear. Those 
who approach a low practice limit for writing speed tend to be 
inaccurate, but those who approach a high practice limit are 
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either accurate or inaccurate. On the other hand those who are 
unusually accurate tend to be fast writers whereas those who 
are inaccurate are either fast or slow writers. The number of 
subjects is not large enough to warrant the calculation of the 
eta coefficient. 

The correlation between the predicted writing speed and the 
speed after eight weeks of practice is 0.27. Making use of the 
actual data. instead of predicted performance, we find that the 
correlation between the speed after eight weeks practice and 
that after twenty weeks practice is 0.74. The correlation be­
tween predicted limit and the average writing speed for all tests 
is 0.68. 

In this connection I wish to suggest what will perhaps be a 
more reliable technique in psychological prognosis. If a· high 
degree of relationship can be established between the learning 
curve constants for a complex function, performance in which 
is to be predicted, and the corresponding constants for a simple 
learning function which can be completed during a single sitting, 
then the constants for the simple learning test would have diag­
nostic value in predicting performance in the complex function. 
Such coefficients would not be subject to the accidents of a first 
performance but would represent the organically more significant 
learning function as such. The diagnostic value of such a tech­
nique is largely dependent on the degree of difficulty of the 
material to be learned. 
b) The errors 

The relation between the average absolute number of errors 
made in each test and the number of weeks of practice is indi­
cated in figure 16. This shows that the number of errors in unit 
time increases with practice. The relation between these two 
attributes may be expressed by the empirical equation 

e = 0.12T + 2.1 66 
in which e is the average number of errors in a four minute 
test, and T is the number of weeks of instruction. The equation 
expresses a norm of average performance. 

The analogous relation between average absolute number of 
errors and writing speed during the year is shown in figure 17. 
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This also indicates that the number of errors made in unit time 
increases with the attainment of writing speed. The relation 
may be expressed by the empirical equation 

e = o.o23y + 1.5 67 
which is fairly representative within the limits of observation. 
However, the relative inaccuracy decreases with practice as in­
dicated in figure 18, i.e., the number of errors per page decreases 
with practice but the number of errors. per unit time increases 
with practice. There ·is no discernible relation between the rela­
tive inaccuracy (errors per unit time) and the rate of learning. 
c) The variability 

Those who have a high practice limit for writing sr}eed·usually 
have a larger average deviation from their learning curves than 
those who approach a low practice limit. This statement must . 
be ,considered in connection with relation between predicted limit 
of writing speed and the average relative deviation. The corre­
lation between predicted writing· speed and average relative de­
viation for all tests is 0.27, indicating that the fast writers have 
a slight tendency to be more erratic in speed than the slow writers, 
even though the measure o.f variability is taken as the ratio of 

, deviation to writing speed. According to this measure the writer 
of 6o words per minute is allowed a deviation from his repre­
sentative learning curve twice that of a writer of 30 words per 
minute. But even according to this relative standard of varia­
bility the fast writers tend to be slightly more erratic in speed. 

Figure 14 indicates that the deviations from the learning curve 
increase with practice but figure I 5 shows that the t:atio of devia­
tion to theoretical writing speed, as indicated by the curve, de­
creases with practice. It is apparent that, just as one would 
expect, the absolute deviations increase with practice but the 
relative deviations decrease with practice. The decrease in the 
relative deviation with practice does not become noticeable until 
after about three months but after that the relation is approxi­
mately linear with practice time. In other words, the variability 
of the writing speed for any individual subject tends to decrease 
with :practice, but if he is a fast writer he tends to be more 
variable in his writing speed than if he is a slow writer, even 
when the variability is measured in relative terms. 



SUMMARY 

I) FORMS OF THELEARNING CURVE 

We have discussed four different forms in whit....h most learn­
ing data can he graphed. We have called these forms I) the 
speed-amount curve, 2) the speed-time curire, 3) the time-time 
curve, and 4) the time-amount curve. 

The speed-amount curve is plotted as speed, number of suc­
cessful acts per unit time, or a multiple thereof, against the total 
number of formal practice acts, or some multiple of it. In plot­
ting typewriter learning we have used words in four minutes, 
and the total number of pages written as the coordinates of tke 
speed-amount curve. . This form of curve is illustrated in figure 
s which gives average writing speed for fifty-one subjects against 
total number of pages written. · The small circles indicate the 
observations and the solid line indicates the general trend of the 
learning. The solid line is represented by the general equation 

Y= L(X+P) 

in which 
L = Predicted practice limit in terms of speed units. 
X = Pages written. 
Y =Writing speed. in terms of words in four minutes. 
P =Equivalent previous practice in terms of pages. 

20 

R ~Rate of learning, a constant which varies inversely as 
the relative rapidity with which the practice limit is being 
approached. 

K = P + K, a constant used for convenience. 
The particular line of figure 5 is represented by the equation 

y 216.(X+19.) 

~+I48. 
which we may interpret as follows. The predicted average prac­
tice limit, L, for the group of fifty-one subjects is 216 words 
in four minutes or about 54 words a minute. The rate of learn­
ing, R, is a constant which in this curve has the value of I29. 
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Its only usefulness is in comparing the rates of several learning 
curves with each other. By itself, and for a single curve, it has 
no significance. When used to compare several learning curves 
the precaution must be observed that all curves so compared be 
plotted by the same units for the coordinates. The equivalent 
previous practice is nineteen pages. This is interpreted to mean 
that the general experience which these students brought to their 
first instruction on the type~riter ·was equivalent to writing nine­
teen pages on the machine. This coefficient as well as the pre­
dicted limit is based on the assumption that the unmeasured part 
of the learning before ~nd after the observations followed the 
hyperbolic law. This assumption seems to be fairly safe since 
other learning curves, the actual observations for which start 
with practically zero attainment and continue almost to the prac­
tice limit, usually follow the hyperbolic form. See figure r r 
which represents a substitution test learning curve carried almost 
to the practice limit, and the curve for subject No. 23 in figure 3 
for typewriter learning which projects to the or-igin. 

The time-a:mount curve is plotted as time, t, per unit amount 
of work against number of formal practice acts, X. Its equa­
tion is 

X+K 
t=-----

L(X+P) 
49 

with notation similar to that of equation 20. Learning data can 
be changed from the time-amount form into the speed-amount 
form and vice versa by noting the fact that speed, Y, is propor­
tional to the reciprocal of the time, t, per unit amount of work. 

The time-time curve is plotted as time, t, per unit amount of 
work against total practice time, T. Its equation, 54, is derived 
from equation 20. This equation is too cumbersome for prac­
tical work and the speed-amount or time-amount curves should 
therefore be used unless one adopts a simple empirical equation 
for the time-time form. 

The speed-time curve is plotted as speed, Y, against totaJ prac­
tice time, T. Its equation, 55, is too unwieldy for practical work 
but it serves to demonstrate the following proposition regarding 
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positive acceleration. If we assume that the typical form of 
speed-amount curve is hyperbolic, then the learning curve in 
the speed-time form must necessarily have an initial positive 
acceleration which changes to a negative acceleration when the 
attainment has reached one-third of the limit of practice. The 
positive acceleration can not, of course, be obtained when the 
initial score is greater than one-third of the practice limit. It 
can only be observed when the initial score is less than one-third 
of the practice limit. 

The influence of different values for the learning coefficients 
on the shape of the learning curve may be summarized in the 
following comparisons. Figure 7 shows two learning curves 
approaching two different limits at the same rate. Figure 8 
shows two curves approaching the same limit at different rates. 
Figure 9 shows two ·curves approaching the same limit at the 
same rate but differing in the amount of previous practice. 
Curve A has a start of forty practice units over curve B. Fig­
ure 10 shows two curves, one approaching a high ·limit at a low 
rate, the other approaching a lower limit at a high rate. The 
important feature of this comparison is that one who learns 
rapidly but with a low limit will do better in the first stages of 
the learning than one who learns slowly with a high limit. The 
comparison shifts later in favor of the learner with the high 
limit. This ·is a condition which experimenters on learning 
should be on the look-out for in order to guard against the er­
roneous comparison of two subjects from insufficient practice 
data. 

2) OUTLINE FOR CALCULATING THE LEARNING COEFFICIENTS 

We shall describe two methods of calculating the coefficients. 
These are 1) the method of all points, and 2) the method of 
three points. 

1) Method of all points: 

1) Arrange the data in two columns as follows : X, the total 
number of formal practice acts since the beginning of practice, 
or a multiple of this number, and Y, the number of successful 
acts in unit time. or a multiple of this number. The multiple 
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used for the Y -column need not of course be the same as that 
for the X-column. 

2) Draw a chart analogous to figure 5· Leave room for a 
negative x-intercept. Always include the zero point of the 
y-scale on the chart. 

3) Select a representative initial score. In figure 5 the actually 
observed initial score, 27, was used. Denote this by the sym­
bol Y1 • 

4) Compute the values of X/(Y-Y1 ) and XY/(Y-Y1 ) 

for each observation. Arrange these in two columns. 
5) Draw a chart analogous to figure 6 with the coordinates 

determined in step 4· If the data so plotted fall nearly on a 
straight line the speed-amount curve is hyperbolic. If it does 
not, the use of the learning curve equation is not justified and 
other methods must be resorted to. 

6) Fit a straight line through these points in figure 6 in such 
a manner that there are about as many points on one side of 
the line as there are points on the other side. This procedure 
is called "rectifying the equation." The line can be fitted more 
accurately 'by the method of least squares but since that is a 
rather laborious procedure it should be avoided unless the points 
are so badly scattered that they can not readily be fitted by in­
spection. Even then it is doubtful whether one is justified in 
applying the equation to learning data so erratic that a straight 
line can not be fitted by inspection. 

7) Continue this line until it intersects the x-axis. The x­
intercept gives the value of K/Y 1 , and since the value of Y 1 . is 
already known the value of K can be readily determined. 

8) The slqpe of the line is numerically equal to the predicted 
limit, L. ' 

9) The constant P may then be determined from the equation 
K·Y · 

P= 1 

L 
ro) The constant R is then determined by the equation 

R=K-P 
since K and P are known. 
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2) Method of three equidistant points. 
The first two steps of this method are identical with the first 

two steps in the method of all points. 
3) Draw a smooth curve through the observations. If the 

data show irregularities in the rate of learning draw the smooth 
curve so that it has approximately as many observations above 
the line as there are observations below the line. A ragged line 
through all the more or less erratic observations will not serve 
the purpose. If the smooth curve representative of the data is 
not of the hyperbolic form the method of this learning curve 
equation is not applicable. 

4) Select the three following points: 
Xl;Y1 

in which X1 is zero, and Y 1 is the ordinate to the smooth curve 
at this value of X. If the learning data have no irregularities 
the value of Y 1 will be identical with the initial score. 

X2;Y2 
in which X 2 is one half of the total amount of formal practice 
and Y 2 is the representative ordinate to the curve for this value 
of X. 

Xs;Ys 
in which X3 is the total amount of formal practice and Y 3 is the 
ordinate to the smooth curve at this value of X. If the learning 
data show no irregularities, this will be identical with the ·final 
score. 

5) Determine the numerical value of the constant K from 
the equation : 

X 3 (Y2-Ya) 
K=----­

Y3+Y1-2Y2 
6) Determine the numerical value of constant L by means 

of the following equation: 
Y 3 (X3+K)-· Y 1 ·K 

L=--------
Xa 

7) Determine the numerical value of the constant P by the 
following equation: 

Y1 ·K 
P=--­

L 
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8) Determine the numerical value of the constant R by the 
following equation: 

R=K-P 
After the constants of the learning curve equation have been 

numerically evaluated it is best to check the arithmetical work 
by computing the theoretical value of the attainment for one 
or two points according to the following formula. These the­
oretical values of attainment should not differ much from the 
actually observed values unless the learning has been very erratic. _ 

. L(X+P) 
Y=-----

(X+P)+R 
A gross measure of the variability of the learning may be 

determined from the equation 
D 

V=-
Ya 

in which D is the average deviation from the theoretical curve· 
for all the observations, and Ya. is the average attainment as 
determined from all observations. 
3) TYPEWRITER LEARNING 

The following relations were found to be significant with re­
gard to typewriter learning. 

The corr~laticin between the predicted practice limit and the 
average writing speed for all tests which covered about seven 
months is +o.68. The correlation between practice limit and 
rate of learning. is +o.75. This indicates that those who ap­
proach a high practice limit usually do so at a lower rate tha~ 
those who approach a low limit since the coefficient, R, for the 
rate of learning varies inversely with the rate of learning. There 
is a noticeable relation between accuracy and the predicted prac­
tice limit. Those who approach a low practice limit for writing 
speed are usually ·inaccurate, but those who approach. a high 
practice limit are either accurate or inaccurate. On the other 
hand those who are inaccurate are either fast or slow writers. 
The number of subjects, SI, is not large enough to warrant the 
calculation of the eta-coefficient. The correlation between the 
predicted practice limit and speed as determined in the test at 
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the 8th week is +o.27. There seems to be no relation between 
the predicted writing speed at the limit of practice and the num­
ber of errors made in unit time. 

The number of errors made in unit writing time increases 
with practice. Similarly there is a positive relation between the 
number of errors in unit time and writing speed during practice. 
However, the number of errors per unit amount of work de­
creases with practice. See figures r6, 17, and r8. There is no 
discernible relation between the relative accuracy and the rate 
of learning. 

Those who have a high practice limit for writing speed usually 
have larger relative deviations from their theoretical learning 
curves. The variability of the writing speed for any individual 
subject tends to decrease with practice, but if the student is a 
fast writer he tends to be more variable in writing speed, than 
if he is a slow writer, even when the variability is measured in 
relative terms. According to this standard of variability the 
writer of 6o words per minute is allowed a deviation from his 
representative learning curve twice that of a writer of 30 words 
per minute. But even according to this relative standard of 
variability the fast writers tend to be slightly more erratic in 
speed. 

Considerable ambiguity in discussions about learning curves 
has been caused by the comparison of learning curves with dif­
ferent units for the coordinates. Thus we are entirely safe in 
saying that the speed-amount curve is never continuously linear. 
It would lead to infinite speed of performance which is of course 
absurd. But while that statement is obviously true it does not 
entitle us to jump to the denial o-f say linear error-time curves. 
It is quite possible for errors plotted against time to be linear. 
Therefore we should always specify the coordinates for the 
curves we are discussing. 

While I have confined myself throughout to what I have called 
the typical hyperbolic form of the speed-amount curve it is quite 
essential to keep in mind that this form of curve is not universal 
and that consequently it is impossible to make sweeping gen­
eralizations except in so far as we explicitly limit ourselves to 
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the relations which follow from the assumed hyperbolic form 
with which we started. 

The preceding pages have been filled with so much algebraic 
manipulation that the reader who has long since dropped the 
algebraic thinking of his school days may find their very appear­
ance formidable and distasteful. For the benefit of those who 
have acquired an aversion against symbolic notation I wish· to 
call attention to the outline for calculating the coefficients and 
the section on learning curve forms in the summary. In those 
sections will be found all that is really essential in applying the 
method. If the use of empirical equations in the quantitative 
study of the multifarious aspects of memory is at all furthered 
by the present study I shall be content though the particular 
forms used here are superseded by others. 
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