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VIIL—On Knots. By Professor Tarr. (Plates XV. and XV1I.)

(Revised May 11, 1877.)

The following paper contains, in a compact form, the substance of several
somewhat bulky communications laid before the Society during the present
session. The gist of each of these separate papers will be easily seen from the
abstracts given in the Proceedings. These contain, in fact, many things which
I have not reproduced in this digest. Nothing of any importance has been
added since the papers were read, but the contents have been very much
simplified by the adoption of a different order of arrangement ; and long passages
of the earlier papers have been displaced in favour of short general statements
from the later ones. With the exception of the portion which deals with the
main question raised, this paper is fragmentary in the extreme.- Want of
leisure or press of other work may justly be pleaded as one cause; but there is
more than that. The subject is a very much more difficult and intricate one than
at first sight one is inclined to think, and I feel that I have not succeeded in
catching the key-note. When that is found, the various results here given will
no doubt appear in their real connection with one another, perhaps even as
immediate consequences of a thoroughly adequate conception of the question.

I was led to the consideration of the forms of knots by Sir W. THoMSON’S
Theory of Vortex Atoms, and consequently the point of view which, at least at
first, I adopted was that of classifying knots by the number ‘of their crossings ;
or, what comes to the same thing, the investigation of the essentially different
modes of joining points in a plane, so as to form single closed plane curves with a
given number of double points. '

The enormous numbers of lines in the spectra of certain elementary sub-
stances show that, if THOMSON’S suggestion be correct, the form of the corre-
sponding vortex atoms cannot be regarded as very simple. For though there
is, of course, an infinite number of possible modes of vibration for every vortex,
the number of modes whose period is within a few octaves of the fundamental
mode is small unless the form of the atom be very complex. Hence the diffi-
culty, which may be stated as follows (assuming, of course, that the visible rays
emitted by a vortex atom belong to the graver periods) :—“ What has become
of all the simpler vortex atoms ?” or “ Why have we not a much greater number
of elements than those already known to us?” It will be allowed that, from
the point of view of the vortex-atom theory, this is almost a vital question.

Two considerations help us to an answer. First, however many simpler
forms may be geometrically possible, only a very few of these may be forms of

.
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kinetic stability, and thus to get the sixty or seventy permanent forms required
for the known elements, we may have to go to a very high order of complexity.
This leads to a physical question of excessive difficulty. THOMSON has briefly
treated the subject in his recent paper on “ Vortex Statics,””* but he cannot be
said to have as yet even crossed the threshold. But secordly, stable or not, are
there after all very many different forms of knots with any given small number
of crossings ? This is the majn question treated in the following paper, and it
seems, so far as as I can ascertain, to be an entirely novel one.

When I commenced my investigations I was altogether unaware that any-
thing had been written (from a scientific point of view) about knots. No one
in Section A at the British Association meeting of 1876, when I read a little
paper on the subject, could give me any reference ; and it was not till after I
had sent my second paper to this Society that I obtained, in consequence of a
hint from Professor CLERK-MAXWELL, a copy of the very remarkable Essay by
ListiNG, Vorstudien zur Topologie,t of which (so far as it bears upon my present
subject) I have given a full abstract in the Proceedings of the Society for Feb.
3, 1877. Here, as was to be expected, I found many of my results anticipated,
but I also obtained one or two hints which, though of the briefest, have since
been very useful to me. LisTING does not enter upon the determination of the
number of distinct forms of knots with a given number of intersections, in fact
he gives only a very few forms as examples, and they are curiously enough
confined to three, five, and seven crossings only ; but he makes several very
suggestive remarks about the representation of knots in general, and gives a
special notation for the representation of a particular class of “ reduced ” knots.
Though this has absolutely no resemblance to the notation employed by me for
the purpose of finding the number of distinct forms of knots, I have found a
slight modification of it to be very useful for various purposes of illustration
and transformation. This work of LisTiNG’s, and an acute remark made by
Gavuss (which, with sonie comments on it by CLERK-MAXWELL, will be referred
to later), seem to be all of any consequence that has been as yet written on the
subject. I have acknowledged in the text all the hints I have got from these
writers ; and the abstract of ListiNg’s work above referred to will show wherein
he has anticipated me.

Parr 1.

. The Scheme of a Knot, and the number of distinct Schemes for each degree
of Knottiness.

§ 1. My investigations commenced with a recognition of the fact that in
any knot or linkage whatever the crossings may be taken throughout alternately

* Proc. R. 8. E. 1875-6 (p. 59). + Gottinger Studien, 1847.
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over and under. It has been pointed out to me that this seems to have been
long known, if we may judge from the ornaments on various Celtic sculptured
stones, &c. It was probably suggested by the processes of weaving or plaiting.
I am indebted to Mr DaLLas for a photograph of a remarkable engraving by

" DURER, exhibiting a very complex but symmetrical linkage, in which this alter-
nation is maintained throughout. Formal proofs of the truth of this and some
associated properties of knots will be found in the little paper already referred
to* They are direct consequences of the obvious fact that two closed curves
in one plane necessarily intersect one another an even number of times. It
follows as an immediate deduction from this that in going continuously round
any closed plane curve whatever, an even number of intersections is always
passed on the way from any one intersection to the same again. Hence, of
course, if we agree to make a knot of it, and take the crossings (which now
correspond to the intersections) over and under alternately, when we come back
to any particular crossing we shall have to go under if we previously went over,
and vice versd. This is virtually the foundation of all that follows.

But it is essential to remark that we have thus two alternatives for the cross-
ing with which we start. 'We may make the branch we begin with cross under
instead of over the other at that crossing. This has the effect of changing any
given knot into its own image in a plane mirror—what LisTiNG calls Perversion.
Unless the form be an Amphicheiral one (a term which will be explained later),
this perversion makes an essential difference in its character—makes it, in fact,
a different knot, incapable of being deformed into its original shape.

LisTiNG speaks of crossings as dexiotrop or lacotrop. If we think of the
edges of a flat tape or india-rubber band twisted about its mesial line, we
recognise at once the difference between a right and a left handed crossing.
(Plate XV. fig. 1.) Thus the acute angles in the following figure are left
handed, the obtuse, right banded ; and they retain these characters if the figure
be turned over (i.e., about an axis in the plane of the paper):—

>
but in its image in a plane mirror these characters are interchanged.
§ 2. Suppose now a knot of any form whatever to be projected as a shadow

cast by a luminous poinf on a plane. The projection will always necessarily
have double points,t and in general the number of these may be increased—

o/

. ¥ “Messenger of Mathematics,” January 1877.
t+ Higher multiple points may, of course, occur, but an infinitesimal change of position of the lumin-
ous point, or of the relative dimensions of the coils of the knot, will rémove these by splitting them
into a number of double points, so that we need not consider them.
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though not always diminished—by a change of position of the luminous point,
or by a distortion of the wire or cord, which we may suppose to form the knot.
This wire or cord must be supposed capable of being bent, extended, or con-
" tracted to any extent whatever, subject to the sole condition that no lap of it
can be pulled through another, i.c., that its continuity cannot be interrupted. )
There are, therefore, projections of every knot which give a minémum number
of intersections, and it is to these that our attention must -mainly be confined.
Later we will consider the question how to determine this minimum number,
which we will call Krottiness, for any particular knot ; but for our present pur-
pose it is sufficient to get rid of what are necessarily nugatory intersections, <.e.,
intersections which no alteration of the mode of crossing can render. permanent.
These crossings are essentially such that if both branches of the string were cut
. across at one of them, and their ends reunited crosswise, so as to form two
separate closed curves, these separate curves shall not be linked together; how-
ever they may individually be knotted, i.c., that if they are knots they are
separate from one anotber, so that one of them may be drawn tight so as to
present only a roughness in the string. For in this case the nugatory crossing
will thus be made to bound a mere loop. '

[We may define a necessarily nugatory crossing as one through which a
closed, or an infinitely extended, surface may pass without meeting the string
anywhere but at the crossing.  Or, as will be seen later (§ 20), we may recognise
a necessarily nugatory crossing as a point where a compartment meets itself.]

In the first two of the sketches subjoined all the crossings are necessarily
nugatory ; in the third, only the middle one is so.

/

v _—

Now these diagrams, when lettered in the manner forthwith to be explained
(see, for instance, Plate X'VI. fig. 1), present respectively the following schemes :—

AABB| A
ACBBCA| A
ACBDCBDAEGFEGF | A

These and similar examples show that in a scheme a crossing is necessarily
nugatory, if between the two appearances of the letter denoting that crossing
there is a group consisting of any set of letters each occurring twice. The set
may consist of any number whatever, including zero. For our present purpose
it will be found sufficient to consider this last special case alone, i.c., the same
letter twice in succession denotes a necessarily nugatory crossing.
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§3. If we affix letters to the various crossings, and, going continuously
round the curve, write down the name of each crossing in the order in which
we reach it, we have, as will be proved later, the means of drawing without
ambiguity the projection of the knot. If, in addition, we are told whether we
_passed over or under on each occasion of reaching a crossing we can, again
without any ambiguity, construct the knot in wire or cord. Passing over is, in
what follows, indicated by a + subscribed to the letter denoting the crossing—
passing under by a —. Any specification which includes these two pieces
of information is necessarily fully descriptive of the knot ; and when it is given.
in the particular form now to be explained we shall call it the Sckeme.

If in accordance with § 1 we make the crossings alternately over and
under, it is obvious that the odd places and even places of the scheme will each
contain all the crossings. As the choice of letters is at our disposal, we may .
therefore call the crossings in the odd places A, B, C, &c., in alphabetical
order, starting from any crossing we please, and going round the knotted wire
in any of the four possible ways, 4.e., starting from any crossing by any of the
four paths which lead from it, put the successive letters at the first, third, fifth,
&c., crossings as we meet them. Then it is obvious that the essential character of
the projected knot must depend only upon the way in which the letters are arranged
in the even places of the scheme. Of course, the nature and reducibility (¢.e., capa-
bility of being simplified by the removal of nugatory crossings) of the knot itself
depend also upon the subscribed signs. [In general there will be four different
schemes for any one knot, but in the simpler cases these are often identical two
and two, sometimes all four.]

§4. Here we may remark that it is obvious that when the crossings are
alternately + and — no reduction is possible, unléss there be essentially nuga-
tory crossings, as explained in § 2. For the only way of getting rid of such
alternations of + and — along the same cord is by untwisting ; and this process,
except in the essentially nugatory cases, gets rid of a crossing at one place only
by introducing it at another. It will be seen later that this process may in certain
cases be employed fo change the scheme of a knot, and thus to show that in
these cases there may be more than four different schemes representing the same
knot ; though, as we have already seen, a scheme is perfectly definite as to the
knot it represents. Hence, in the first part of our work, we shall suppose that
the crossings are taken alternately + and —, so that no reduction is possible.
But it will afterwards be shown that, even When all essentially nugatory cross-
ings are removed, it is not always necessary to have the regular alternation of

+ and — in order that the knat may not be farther reducible. It is easy to
see a reason for this, if we think of a knot made up of different knots on the
same string, whether separate from one another or linked together. For the
irreducibility of each separate knot depends only upon the alternations of + and

VOL. XXVIIL PART I
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— in itself, and the two knots may be put together, so that this condition is satis-
fied in the partial schemes, but not in the whole. As there cannot be a knot with
fewer than three crossings, we do not meet with this difficulty till we come to
knots with six crossings. And as there can be no linking without at least two
crossings, we do not meet with linked knots on the same string till we come to
eight crossings at least.

§ 5. We are now prepared to attack our main question.

Gliven the number of its double points, to find all the essentially different
Jorms which a closed curve can assume.

Going. round the curve continuously, call the first, third, &c., intersections
A, B,C, &c. In this category we evidently exhaust all the intersections. The
complete scheme is then to be formed by properly interpolating the same letters
in the even places; and the form of the curve depends solely upon the way in
which this is done.

It cannot, however, be done at random. For, first, neither A nor B can
occur in the second place, B nor C in the fourth, and so on, else we should have
necessarily nugatory intersections, as shown in § 2. Thus the number of pos-
sible arrangements of # letters (viz., z. n—1 . . . . 2.1) is immensely greater than
the number which need here be tried. But, secondly, even when this is attended
to, the scheme may be an impossible one. Thus, the scheme

ADBECADBEC|A

is lawful, but

ADBACEDCEB|A
is not.

The former, in fact, may be treated as the result of superposing two closed
(and not self-intersecting) curves, both denoted by the letters AD BE C A, so
as to make them cross one another at the points marked B, C, D, E, then cut-
ting them open at A, and joining the free ends so as to make a continuous
circuit with a crossing at A.

But in the latter scheme above we have to deal with the curves ADB A
and CECE, and in the last of these we cannot have junctions alternately +
and — as required by our fundamental principle. In fact, the scheme would
require the point C to lie simultaneously inside and outside the closed circuit
ADBA. '

Or we may treat ADBA and CED C as closed curves intersecting one
another and yet having only one point, D, in common.

Thus, to test any arrangement, we may strike out from the whole scheme
all the letters of any one closed part as A——4, and the remaining letters
must satisfy the fundamental principle, .., that they can be taken with suffixes
+ and — alternately, or what comes to the same thing) that an even number
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of letters intervenes between the two appearances of each of the remaining
letters.

Or we may strike out all the letters of any two sets which begin and end
similarly, e.g., A:. .. X, X ... 4, the two together being treated as one closed
curve, and the test must still apply.

More generally, we may take the sides of any closed polygon as A—X,
X—Y,Y—Z,Z—A, and apply them in the same way. But in this, as in the
simpler case just given, the sides must all be taken the same way round in the
scheme- itself.

- A simple mode of applying these tests will be given later, when we are
dealing with the question of Beknottedness. ‘

It may be well to explain here how a change of the crossing selected as
the initial one alters the scheme. Take the simple case of making B the first,
and reckoning on from it. Then B becomes A, &c., and the scheme, which.
may be any whatever, suppose for example

AFBLCEDH. ...

becomes (by writing for each letter that which alphabetically precedes it)
NEAKBDCG. ...

or beginning with A,
AKBDCG. . ..
Hence the letters
F,LEH,. ...
in the even places of a scheme are equivalent to
K,DG,....E,

i.e., we may change each to the preceding letter taken in the cyclical order of
the alphabet and put the first to the end, or wvice versd, without altering the
scheme. An arrangement of this kind is umique (reproducing itself) if the
letters are in cyclical order ; and if the number of letters be a prime, any arrange-
ment is either unique or is reproduced after a number of operations of this kind
equal to the number of letters. If it be not prime, arrangements may be found
which will reproduce themselves after a number of operations equal to any one
of its aliquot parts.

Another lawful change is this:—Begin from the A in the even places and
letter as usual, 7., start from the same crossing. as before, and in the same
direction round the curve, but not by the same branch of the cord or wire.
This will be evident from an example. Beginning at the second A, and letter-
ing alphabetically every second crossing, we have the suffixed letters.

ADBACFDBECFE[A
F A B C D E
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Now write the same equivalents for the same letters in the odd places, and the
scheme in its new lettering is o

AFCADBFCEDBE|A-

or the followmg are equivalents in the even places

v DAFBCE
DFEBAC,

and each of these has, of course, five other equivalents found by the first of
these two processes.

But we may also start from the same intersection A by either of these paths,
but in the reverse direction round the curve. To effect this we have only to
read the scheme backwards, beginning at either A, and changing the lettering
throughout in accordance with our plan. Thus, taking the last example,

ADBACFDBECFE|A
F E D C B |A

we keep the terminal A unchanged, and write B, C, &c., for the 2d, 4th, &c.,
preceding letters. We have thus, as it were, the key for translating from the
upper line to the lower. Apply this key to all the letters, and then write the
result in the reverse order. Thus we get

ACBECFDBEAFD|A

This new scheme has for its even places-

CEFBAD

which is equivalent (in this particular case) to the second of the two direct
schemes just given, viz..—
DFEBAC.
Finally, if we read this reversed scheme from the A in the even places, its
even letters become
EAFCBD
which (in this case) is the same as

DAFBCE

the even letters of the original scheme.
The notation we shall employ is this—do, de, ro, 7e, signifying the even
places of the four cases
d o the direct scheme, read from A in the odd place
d ¢ the direct scheme, read from A in the even place
7 0 the reversed scheme, read from A in the odd place
r ¢ the reversed scheme, read from A in the even place
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and we shall denote by an appended numeral the number of times the opera-
tion above has to be performed. Thus, in the example just given it will be

found that
ro=de 2

re=do 2.

§ 6. With one intersection or two only, a Anot is thus impossible, for the
crossings must necessarily be nugatory. Hence we commence with three.
And here there is but one case, for by our rule we must write A, B, C in the
odd places, and we have no choice as to what to interpolate in the even ones.
Thus the only knot with three intersections has the scheme

ACBACB|A
One of its two projections is the “ trefoil ” knot below.

J

For four intersections our choice in the even places is restricted to C or D
for the second, D or A for the fourth, &c., as expressed below,

CDARB
D A B C.

Now, if we take C to begin with, we obviously must take D next, else we shall
not get it at all. Similarly A must come third, And if we begin with D, we
must end with C, so that this case also is determinate. The only possible sets,
therefore, are given by these two rows as they are written. But it is obvious
that, as they are in cyclical order, the full schemes will be identical if one be
read from the beginning, the other from the A in the even places. Thus they

represent the same arrangement, and the sole knot with four intersections has
the scheme

ACBDCADB|A,

One of its two projections is given by the annexed figure : -

v

§ 7. When we have five intersections, our choice for the even places in order
is limited to the following groups of three for each, viz, :—
VOL. XXVIIL. PART I,
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C DEAB
DE ABZC
E A B C D.

This gives the following thirteen arrangements : —

(1) CDE AB
2 CE ABD
(3) CEBAD
(4) CAEBD
(5 DE ABC
6) DEBAC
(7) DEACB
) DAEBC
9 DAECB
(10) ED ABC
(1) ED ACB
'(12) EDBAC
(13 EABCD.

Now of these (1), (5), and (13) are unique; (6), (7), (8), and (10) can be
obtained from (2) by cyclical alteration of the letters and bringing the last to
be the beginning, and by the same process (4), (9), (11), (12) may be deduced
from (3).

Hence the only possible forms are included in the following arrangements
for the letters in the even places :—

CDEAB
CEABD
CEBAD
DEABC
EABCD.

Of these the 1st, 3d, and 5th violate the conditions laid down in § 5 above.
Hence there are but two schemes for five intersections, viz. : —

ACBECADBED|A

of which this is one of the four forms

/
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and ADBECADBEC|A
one of the two forms of which is the pentacle or Solomon’s seal
v

§ 8. The case of six intersections gives the following choice : —

C DEFAB
DETFABOC
EF ABCD

F A BCDE.
I found, by trial, that there are 80 possible arrangements included in this form ;
and that the following 20 alone are distinct. Ihave appended to each the number
of apparently different forms in which it occurs among the 80 arrangements :—

1. CD EF A B Unique 11. EF AB CD Unique

2. CD F B A E Six forms 12. DF ABC E Six forms
3. CD F AB E Six forms 13. CF ABDE Six forms
4. CD AF B E Six forms 14. DF A CB E Six forms
5. CD B F A E Three forms 15. DF B ACE Three forms
6. CE F B A D Six forms 16. CF B ADE Six forms
7. CE F AB D Six forms 17. CAF BDE Six forms
8. CE AF BD Three forms 18. CABF D E Three forms
9. DE F ABC Unique 19. DAF C B E Two forms
10. CF E BAD Two forms 20. F ABC D E Unique

Of these, all but (5), (6), (7), (8), (12), (14), (15), (18), violate the conditions
of-§ 5, and therefore do not correspond to real knots. Of those excepted the
schemes agree in pairs when the branch first taken from the starting-point is
changed.

Hence there are only four forms of 6-fold knottiness. These are as follows:—
(a). (5) and (18) agree in giving the scheme
ACBACBDFEDFE|A

of which one form is the following :— ,

This form consists of two separate trefoil knots.
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(B)- (6) and (14) give the scheme

’

ACBECFDBEAFD|A

one form of which is as follows :—
Y

(y). From (7) and (12) we have

ACBECFDAEBEFD|A

which has as one form .

(8). (8) and (15) give
ACBECADFEBFD|A

of which one form is

§$ 9. The case of seven intersections is the only other to which I have found
leisure to apply this method. As I did not see how otherwise to make certain
that I had got all possible forms, I wrote out all the combinations of seven
different letters, one from each column (in order) of the scheme—

C DETFGATB
D EFGADBC
EFGABCD
F GA B CDE
G ABCDEF

These I thus found to amount to 579. Then, by the help of an improvised
arrangement of cardboard, somewhat resembling Napier’s Bones, I rapidly
struck off six of each equivalent set of 7. Thus 87 forms in all were left, viz.,
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one form from each of 82 groups of seven, and 5 unique forms. Here they

are—

1. CDEFGAB | 3. CEBGDAF | 599 CAFGBED
2 CDEGABTF | 3. CEBAGDF | 600 CAFGDBE
3. CDEAGBF 32. CFGABDE 6. CAFBGED
4* CDEBGATF | 83" CFGADBE | 62 CAGBDETF
5. CDFBGAE | 4* CFGABED | 68 CABGDETF
6. CDFGBAE | 8, CFGBAED | 64 DEFGABC
7. CDFAGBE | 38 CFGBADE | 66, DEGABCTF
8. CDGFABE | 37. CFGBDAE | 6. DEGACBF
9. CDGFBAE | 38* CFAGBDE | 6727* DEGBACTF
10. CDGABETF | 39* CFAGDBE | 688 DEGCABF
1. CDGBAETF | 0*CFAGBED | 69. DEAGBCTF

122 CDAGBEF 41, CFABGDE | 70. DEAGCBF
13* CDABGEF 42. CFABGED | 1.* DFGABCE
14* CDBAGEF 43. CFBGADE | 2* DFGACBE
15* CDBGAEF 4. CFBGDAE | 73 DFGBACE
16. CEFGABD | 45. CFBGAED | 74 DFAGCBE
17* CEFGBAD | 46. CFBAGED | 75. DGABCEF
18. CEFGADB | 47 CFBAGDE | 76. DGACBEF
19 CEFAGBD | 48 CGEBADF | 772 DGBACEF
20* CEGFBAD | 49 CGEBDAF | 788 DGBCAEF
21. CEGFDAB 50. CGFABDE | 799 DAGBCEF
2* CEGABDF 5. CGFABED | 80 DAGCBEF
23. CEGADBF 52* CGFADBE | 81* EFGABCD
24* CEGBADF 5. CGFBADE | 82 EGABCDF
25, CEGBDAF 5 CGFBAED | 88* EGABDCF
26* CEAGBDF 55, CGAFDBE | 8¢ EGACBDF
27. CEAGDBF 56. CGABDEF | 85* EGBADCF
28. CEABGDF 5. CGBADETF 8. FGABCDE
29 CEBGADF 58. CAFGBDE | 8. GABCDEF

On testing these by the rules of § 5, I found that 22 only, viz., those marked
with an asterisk, correspond to real knots.

§ 10. When we study these groups by the method of § 5, we find that more
than one of them correspond to different readings of the scheme of one and
the same knot. Of course that knot will be the least symmetrical which has
the greatest number of essentially different schemes. The following grouping
has thus been arrived at (the notation is that of § 5 above) :—

VOL. XXVIII. PART I 28
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do de ro re

L[ @ 1(63) (63)  6,(4)
' { 13) 6,15 (15 1,(13)-

IL (17) 3,83) 5(83) 2,717
III. (20) 3,85) 38,85)  (20)
IV. (22) 6,33 (22) 6,33)
V. (24) (39)  (26) 5,52
VL (34) (34) 6,34) 6,34)
VIL (38) (87) (87)  (38)
VIII. (40) 6,(40) 6,(40)  (40)
IX. (r1)  (71) (7)) (71)
X. (72)  (72) 5,(72) 5,72
XL (81) (81) (81) (81)
14) ., (14) (14) (14)

1

Thus it appears that the knot V., represented by any of the four schemes
(24), (26), (39), and (52), is devoid of symmetry, while VI, VIIL, IX., X., XI.
have the highest symmetry. No number has been in this table affixed to (14),
because it is only accidentally a 7-fold knot. It is represented by the third
figure in § 2 above, and when the nugatory crossing is removed, it becomes (a)
of the 6-fold type, § 8. Also it will be noticed that (4) and (63), although
their common scheme differs from that of (13) and (15), are included with
them under I. The reason is that the knot represented is a composite one,
consisting of a 3-fold and a 4-fold knot, and that either may be slipped
along the string or wire into any position whatever relative to the other.
But even with this licence it appears that there are only 4 really distinct
schemes.

In the second and third rows of figures of Plate XV. projections of each
of these classes of 7-fold knottiness are given, with the number of the class
attached.

§ 11. But the knots represented by these eleven forms are not all distinct.
It will readily be seen that (by the process of inversion of § 15 below) 1L, when
formed of wire, with crossings + and — alternately, may be brought into the
form (whose perversion will be found in Sir W. THOMSON’s paper on “ Vortex-
Motion,” Trans. R. S. E., 1867-68, p. 244)

N
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while IV. may be modified into

These are two of the three figures of 7-fold knots given as examples by
LisTiNG ; and he has stated, though without any explanation, that these two
forms are equivalent, i.e., convertible into one another. Hence II. and IV,
form but one class of 7-fold knot.

How to effect this transformation has been already hinted in §4. It is
merely the passing of a crossing from one loop of the string to another (which
intersects it twice) by a twist through two right angles. And the diagrams 5, 6,
7 of Plate XV. show the nature of this transformation, as well as of two others
which I have since detected, viz., that of III. into V., and of VI. into VIL
Hence there are in reality only eight distinct forms of 7-fold knottiness.

Thus, as the result of the last six sections, we have the following table :—

Knottiness, 3, 4, 5, 6, 7.
No.of Forms, 1, 1, 2, 4, 8.

§12. I have not attempted the application of the preceding method to forms
with more than 7 intersections. Prof. CAvyLEY and Mr Muir kindly sent me
general solutions of the problem, «“ How many arrangements are there of n letters,
when A cannot be in the jfirst or second place, B not in the second or third, &c.”
Their papers, which will be found in the Proceedings R. S. E.,* of course give
the numbers 13, 80, and 579, which I had found by actually writing out the
combinations for 5, 6, and 7 letters. But they show that the number for 8 letters
is 4738, and that for 9, 43,387 ; so that the labour of the above-described process
for numbers higher than 7 rises at a fearful rate. I cannot spare time to attack
the 8-fold knots, but I hope some one will soon do it. There is little chance of
anything more than that, at least of an exhaustive character, being done about
knots in this direction, until an analytical solution is given of the following
problem :(—

Form all the distinct arrangements of n letters, when A cannot be first or
second, B not second or third, &c.

[Arrangements are said to be distinct when no one can be formed from an-
other by cyclic alteration of the letters, at every step bringing the last to the
head of the row, as in § 5.] This, I presume, will be found to be a much
harder problem than that of merely jinding the number of such arrangements,

* 1877, p. 338, and p. 382.
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which itself presents very grave difficulties, at least where » is a composite
number. In fact it is probable that the solution of these and similar pro-
blems would be much easier to effect by means of special (not very complex)
machinery than by direct analysis. This view of the case deserves careful
attention.

In a later section it will be shown how, by a species of partition, the various
forms of any order of knottiness may be investigated. But we can never
be quite sure that we get a// possible results by a semi-tentative process
of this kind. And we have to try an immensely greater number of par-
titions than there are knots, as the great majority give links of greater or less
complexity.
~ §13. But even supposing the processes indicated to have been fully carried
out for 8, 9, and 10-fold knottiness, a new difficulty comes in which is not met
with, except in a very mild form, in the lower orders. For when a knot is
single, 7.e., not composite or made up of knots (whether interlinked or not) of
lower orders, any deviation from the rule of alternate + and — at the crossings
gives it, in general, nugatory crossings, in virtue of which it sinks to a lower
order. But when it is composite, and the component knots are separately
irreducible, the whole is so. Thus there are more distinct forms of knots than
there are of their plane projections. For instance, the first species () of the 6-
fold knots (§ 8) may be made of three essentially different forms, for the
separate trefoil ” knots of which it is made may (when neither is nugatory) be
both right-handed, both left-handed, or one right and the other left-handed.
This species is thus, from the physical point of view, capable of furnishing
three quite distinct forms of vortex-atom. And it will presently be shown
that in each of these forms it is capable of having regular alternations of + and
—, or a set of sequences at pleasure.

At least one knot of every even order is amphicheiral, i.e., right or left-handed
indifferently, but no knot of an odd order can be so. Hence, as there is but one
3-fold knot form, and one 4-fold, there are two possible 3-fold vortices, right
and left-handed, but only one 4-fold. A combination of two trefoil knots gives,
as we have seen, three distinct knots ; that of two 4-fold knots would give an
8-fold, with only one form. When a 3-fold and a 4-fold are combined, as in
Class I. of § 10, there are two distinct vortices, for the trefoil part may be right
or left-handed. Thus it appears that though we have shown that there are
very few distinct outlines of knots, at least up to the 7-fold order, and though
probably only a very small percentage of these would be stable as vortices,
yet the double forms of non-amphicheiral knots give more than one distinct
knot for each projected form into which they enter as components.
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Part II

The number of Forms for each Scheme.

§14. A possible scheme being made according to the methods just described,
with the requisite number of intersections, let it be constructed in cord, with the
intersections alternately + and —. Then [since all schemes involving essentially
nugatory crossings, like those mentioned in § 2, must be got rid of, as they
do not really possess the requisite number of intersections] no deformation
which the cord can suffer will reduce, though it may increase, the number of
double points. If it do increase the number, the added terms will be of the
nugatory character presently to be explained. If it do not increase that
number, the scheme will in general still represent the altered figure. For, as
we have seen, the scheme is a complete and definite statement of the nature of
the knot. But, as already stated, in certain cases the knot can be distorted so
as no longer to be represented by the same scheme.

All deformations of such a knotted cord or wire may be considered as being
effected by bending at a time only a limited portion of the wire, the rest being
held fixed. This corresponds to changing the poéint of view finitely with regard
to the part altered, and yet infinitesimally with regard to all the rest. This, it is
clear, can always be done, as the relative dimensions of the various coils may be
altered to any extent without altering the character of the knot. In general
such deformations may be obtained by altering the position of a luminous
point, and the plane on which it casts a shadow of the knot. Any addition to
the normal number of intersections which may be produced by this process is
essentially nugatory. As is easily seen, it generally occurs in the form of the
avoidable overlapping of two branches, giving continuations of sign.

The process pointed out in § 11 gives a species of deformation which it
is perhaps hardly fair to class with those just described, though by a slight
extension of mathematical language such a classification may be made strictly
accurate. It may be well to present, in passing, a somewhat different view of
the application of this method. Thus, it is obvious at a glance that the two
following figures are mere distortions of the second form of the 4-fold knot

“figured in § 17 below :—

Also it will be seen that by twisting, the dotted parts being held fixed,
VOL. XXVIII. PART L 2T
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162 PROFESSOR TAIT ON KNOTS.

either of these may be changed into the other, or changed to its own reverse
(as from left to right).
We may now substitute what we please for the dotted parts. I give only

the particular mode which reproduces the two forms stated by ListiNG to be

equivalent :— y
J

Another mode of viewing the subject, really depending on the same principles,
consists in fixing temporarily one or more of the crossings, and considering the
impossibility of unlocking in any way what is now. virtually two or more
separate interlacing closed curves, or a single closed curve with full knotting,
but with fewer intersections than the original one.

Another depends upon the study of cases of knots in which one or more
crossings can be got rid of. Here, as will be seen in § 33 below, it is proved
that continuations of sign are in general lost when an intersection is lost ; so
that, as our system has no continuations of sign, it can lose no intersections.

§ 15. Practical processes for producing graphically all such deformations
as are represented by the same scheme are given at once by various simple
mechanisms. Thus, taking O any fixed point whatever, let p, a point in the
deformed curve, be found from its corresponding point, P, by joining PO and
producing it according to any rule such as

PO - Op=2’,
or

PO+ Op=a, &c., &c.

The essential thing is that points near O should have images distant from
O, and vice versd. And p must be taken in PO produced, else the distorted
knot is altered from a right-handed to a left-handed one, and vice versd, as will
be seen at once by taking the image of the crossing figured in §1 above.

It is obvious, from the mode of formation, that these figures are all repre-
sented by the same scheme,—for the scheme tells the order in which the
various crossings occur,—and it is easy to show that they give merely different
views of the same knot. The simplest way of doing this is to suppose the knot
projected on a sphere, and there constructed in cord, the eye being at the centre.
Arrange so that one closed branch, e.g., A A, forms nearly a great circle.
Looking towards the centre of the sphere from opposite sides of the plane of
this great circle, the coil presents exactly the two appearances related to one
another by the deformation processes given above. What was inside the closed

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 09 May 2017 at 17:48:25, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0080456800090633


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0080456800090633
https:/www.cambridge.org/core

PROFESSOR TAIT ON KNOTS. 163

branch from the one point of view is outside it from the other, and vice versd.
In . fact, because the new figure is represented by the same scheme as the old,
the numbers of sides of the various compartments are the same as before, and
so also is the way in which they are joined by their corners. The deformation
process is, in fact, simply one of flyping, an excellent word, very inadequately
represented by the nearest equivalent English phrase “ turning outside in.”

Hence to draw a scheme, select in it any closed circuit, e.g., A . ... A—the
more extensive the better, provided it do not include any less extensive one.
Draw this, and build upon it the rest of the scheme ; commencing always with
the common point A, and passing each way from this to the next oceuriing of .
the junctions named in the closed circuit. [It is sometimes better to construct
both parts of the rest of the scheme énside, and then invert one of them, as we
thus avoid some puzzling ambiguities.] Inversions with respect to various
origins will now give all possible forms of the scheme, though not, necessarily
of the knot.

§ 16. Applying these methods to the “ trefoil ” knot (§ 6)

we easily see that if O be external, or be inside the inner three-sided compart-
mert, we reproduce (generally with much distortion, but that is of no conse-

quence; § 2) the same form ; but if O be in any one of the two-sided compart-

naents, we have the form
J

This again. is reproduced from itself if O be external, or be within either of
the zwo-sided compartments. But it gives the trefoil knot if O be placed inside
either of the three-sided compartments.

Here notice that the angles of the two-sided compartments are left-handed,
and those of the three-sided right-handed in each of the figures.

The perverted
or right-handed form is of course

v

and its éolitary'deformation is the perversion of the other figure above.
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§ 17. When we come to the deformations of the single 4-fold knot

v

we obtain a very singular result. If we place O external to the figure, we
simply reproduce it ; but if we put O inside the two-sided compartment in the
middle we get the perversion of the same figure.

Again, if we place O in either of the boundary three-sided compartments
we get

but if we place it in either of the ¢nterior three-sided spaces we get the perver-
sion of this last figure.

Thus this 4-fold knot, in each of its forms, can be deformed into its own per-
version. In what follows all knots possessing this property will be called
Amphicheiral.

§ 18. The first of the two 5-fold knots (§ 7) has the following forms :—

4 v
These I found were long ago given by LisTiNG as reduced forms of a reduci-
ble 7-fold knot, and I have now substituted for my former drawing of the

second form his more symmetrical one.
The second of the 5-fold knots has only two forms, viz. :—

¥

§19. Plate X'V. figs. 2, 8, 4, give various forms of the 6-fold knot distinguished
as o in the classification in § 8. It will be seen that in the first of these the
crossings are alternately over and under, but that it is not so in the others.

And in fig. 8 we have a collection (not complete) of forms of various species
ot the 7th order, drawn so as to show their relation to a lower form—the
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trefoil knot. It will be seen that in none of these is the connection merely
apparent, the trefoil part having its signs alternately + and — if those of the
complete knot have this alternation. But if, for instance, we had drawn the
fine line horizontally through the trefoil, so as to d1v1de each of the upper two-
cornered compartments into two three-cornered ones, we should have got No.
II. of the 7-fold forms, and the original trefoil would have been rendered only
apparent.

§ 20. In my British Association paper, already referred to, I showed that any
closed plane curve, or set of closed plane curves, provided there be nothing
higher than double points, divides the plane into spaces which may be coloured
black and white alternately, like the squares of a chess-board, or, to take a
closer anailogy, as the adjacent elevated and depressed regions of a vibrating
plate, separated from one another by the nodal lines (Plate XV. figs. 9 and 10).
I afterwards found that ListiN¢ had employed in his notation for knots, in
which the crossings are alternately over and under, a representation which
comes practically to the same thing; depending: as it does on the fact that in
such a knot all the angles in each compartment are either right or left-handed,
and that these right and left-handed compartments alternate as do my black
and white ones.

I have since employed a method, based on the above proposition, as a mode
of symbolising the form of the projections of a knot, altogether independent of
its reducibility. I wasled to this by finding that ListiNg’s notation, though
expressly confined to reduced knots, in which each compartment has all its
angles of the same character, is ambiguous: in the sense that a Type-Symbol,
as he calls it, may in certain cases not only stand for a linkage as well as a knot,
but may even stand for two quite different reduced knots incapable of being
transformed into one another.* The. scheme, already described, has no such
ambiguity, but it is much less easy to use in the classification of knots. Hence,
following LisTiNg, I give the number of corners of each compartment, but,
unlike him, only of those which are black or of those which are white. But I
connect these in the diagram by lines which show how they fit into one another
in the figure of the knot. An inspection of Plate XV. figs. 11 and 12 (species
VIIL. of sevenfold knottiness) will show at once how diagrams are arrived at,
either of which fully expresses the projection of the knot in question by -
means of the black or of the white spaces singly. The connecting lines in the
diagrams evidently stand for the crossings in the projection, and thus, of course,
either diagram can' be formed by mere inspection of the other,t and the rule for

* Proc. R. S. K. 1877, p. 310 (footnote), and p. 325.
t Some further illustrations of this will be found in the abstract of my paper on “Links,” Proc.
R. 8. E. 1877, p. 321.
VOL. XXVIIL PART I 2vU

Downloaded from https:/www.&ambridge.org/core. Cornell University Library, on 09 May 2017 at 17:48:25, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/50080456800090633


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0080456800090633
https:/www.cambridge.org/core

166 PROFESSOR TAIT ON KNOTS,

drawing the curve when the diagram is given is obvious. Thus the annexed
diagram shows the result of the process as applied to a symmetrical symbol.

An inspection of one of these diagrams shows at once

(1) The number of joining lines is the same as the number of crossings.
I-'Ience, as each line has two ends, the sum of the numbers representing the
number of corners in either. the black or the white spaces is twice the number.
of crossmgs .

(2.) Every'additional crossing involves one additional compartment, for the
abolition of a crossing runs two compartments into one. But where there is
Mo crossing there are two compartments, the inside and outside (Amplez, in
Listine’s phraseology), of what must then be merely a closed oval. Thus
when there are 7 crossings there are #+ 2 compartments.

(3) No compartment can have more than » corners. For, as the whole
number of corners in the black or white compartments is only 2z, if one have
more than 7, the rest must together have less, and thus some of the joining
lines in the diagram must wunite tke large mumber to itself, i.e., must give essen-
tially nugatory intersections.

As an illustration, let us use this process in giving a second enumeration or
delineation of the forms of 7-fold knottiness. The numbering of the various
forms is the same as that already employed in §§ 10, 11 above.

||

or. —3 3—2-

3

lll —

64
N

V9 w———m U9

L

The second form of this symbol is particularly interesting as consisting of
two parts. This accords with the composite nature of the knot.

(_ v
3 :lsz' ' f T 3| “\
NP4 3\‘2'/3 AN |l
IL : TI1. ' Iv.
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v ) v
5 .
/ N\ 4 ::4 5 J:/,
3 =4 3 . | I ” —
;/ 3 = 5 — 2|
Vv VI. VII
2 2 d
. . _ 2
/N |
6 — ¢ 6 — 5
“VIII. IX.
N ‘.
A\ —t
b e 4 =
X. ) XI.

The relations of equivalence in pairs among six of these forms, which were
pointed out in § 11 and in Plate XV. figs. 5, 6, 7, are even more clearly seen

as below —
2 v
\\2// \2/\2
II1. IV.
Vv R 2 v
b6 =— 4. / \
”\2/ = 5 —_— 4
3
I11. \Y
i s
N
\2'/ \2/
VI VII.

where the mode of passing from one form to the equivalent one is obvious.’
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§ 21. A tentative method of drawing all possible systems of closed curves
with a given number (z) of double points is thus at once obvious.

Write all the partitions of 2», in which no one shall be greater than » and
no one less than 2. Join each of these sets of numbers into a group, so that
each number has as many lines terminating in it as it contains units. Then
join the middle points of these lines (which must not intersect one another) by
a continuous line which éntersects itself at these middle points and there only.
When this can be done we have the projection of a Amof. “When more
‘continuous lines than one are required we have the projection of a linkage.

To give simple examples of this process, let us limit ourselves to 4 and 5

intersections. *
The only partitions of 8, subject to the conditions above, are
(1) 4 4
@24 2 2
(33 3.2
42 2 2 2

Now the number of black and white compartments together. must in this case
be 4+2. Hence there are but four combinations to try, viz., (1) and (4), (2)
and (2), (3) and (8), (2) and (3). Of these, the last is impossible ; the others are
as in Plate XVI. fig. 16. The third is the amphicheiral knot already spoken
of, and the second may for the same reason be called an amphicheiral link.

The partitions of 10, subject to our rule, are

5

2
2 2
2 2 2 2 2

W B Bkt O
LW N W w
NN WNDN

and the four figures (Plate XVI. fig. 17) give the only valid combinations of
these. The third and the first’ are the knots already described (§ 18), the
others are links.
§ 22. The spherical projection already mentioned (§ 15) will in general allow
us to regard and exhibit any knot as a more or less perfect plaiz. It does so
.perfectly whenever the coil is clear, i.c., when all the windings of the cord may be
regarded as passing in the same direction round a common vertical axis thrust
through the knot. 'When the coil isnot clear some of the cords of the plait are
doubled back on themselves. Thus by drawing the plait corresponding to a
given scheme we can tell at once whether one of its forms is a clear coil or not.

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 09 May 2017 at 17:48:25, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0080456800090633


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0080456800090633
https:/www.cambridge.org/core

PROFESSOR TAIT ON'KNOTS. ' 169

Let us confine our attention for a moment to clear coils. It is easy to see
that |

If the mumber of windings is even the number of crossings is odd, and vice
versi.

Various proofs of this may be given, all depending on the fundamental
theorem of §1, but the followmg one is simple enough, and will be useful in
some other applications.

First, in a clear coil of two turns there must be an odd number of intersec-
tions. For there must be one intersection, and the two loops thus formed
must have their other intersections (if any) in pairs.

Now begin with any point in a clear coil, where the curve intersects itself
for the first time. The loop so formed intersects the rest in an even number of
points. Hence every turn we take off removes an odd number of intersections.
Thus, as two turns give an odd number (or, more simply, as one turn gives.
none), the proposition is proved.

Thus, to form the symmetrical clear coil of two turns and of any (odd)
number of intersections, make the wire into a helix, and bring one end through
the axis in the same direction as the helix (not in the opposite direction, as in
Ampere’s Solenotds), then join the ends. [The solenoidal arrangement, re-
garded from any point of view, has only nugatory intersections. ]

§ 23. A very curious illustration of the irreducible clear coils which have
two turns only is given by the edges of a long narrow strip of paper. Bend it,
without twisting, till the ends meet, and then paste them together. The two
edges will form separate non-linked closed curves without crossings.

Give the slip ome half twist (i.e., through 180°) before pasting the ends
together. The edges now form one continuous curve—a clear coil of two
turns with one (nugatory) crossing.

Give ome jfull twist before pasting. Each edge forms a closed curve,
but there are two crossings. The curves are, in fact, once linked into one
another. (See Plate X'V. fig. 13.)

Give three half twists before joining. The edges now form one continuous
clear coil with three intersections.

Two full twists give two separate closed curves with four crossings, ¢.e.,
twice linked together. (See Plate XVI. fig. 12.)

Five half twists give the pentacle of § 7 above, And so on. In all these
examples, from the very nature of the case, th_e crossings are alternately
+ and —.

§ 24. Now suppose that, in any of the above examples, after the pasting, we
cut the slip of paper up the middle throughout its whole length.

The first, with no twist, splits of course into two separate simple circuits.

That which has half a twist, having originally only one edge, and that edge

VOL. XXVIIL. PART 1. 2x
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170 PROFESSOR TAIT-ON KNOTS.

not being cut through in the process. of splitting, remains a closed curve. It is,
in fact, a clear coil of two turns, which, having only one intersection, may be
opened out into.a single turn. But in this form it has zwo whole twists, half a
twist for each half of the original strip, and a whole twist additional, due to
the bending into a closed circuit.

That. with one whole twist . splits, of course, into two interlinking single
coils, each having one whole twist. j

That with three half twists gives, when split, the trefoﬂ knot, and When

- flattened out it has three whole twists.

From two whole twists we get two single-coils twice linked, each with two
whole twists. This result may be obviously obtained from a continuous strip,
with only half a twist. One continued cut, which takes off a strip constantly
equal to one quarter of the original breadth of the slip, gives a half twist ring
of half breadth, intersecting once a double twist ring of quarter breadth. A
second cut splits the wider rmg into one s1m11ar to the narrow one, but there is
now double linking.

'§25. A good many of these relations may be exhibited by dipping a wire,
forming a two-coil knot, into PLATEAU’s glycerine soap solution, and destroying
the film which fills up the clear interior of the coil. Neglecting the surface
curvature of the remaining film, it has twists similar to those of the paper
strips above treated, and the integral amounts of twist show how far the wire-
knot is, if at all, reducible.

This mode of regarding a clear coil of two turns, as, in certain cases, the
continuous edge of a strip of paper whose ends are pasted together after any
odd number of ‘half twists, is one of many ways in which we are led to study
all clear coils as specimens of more or less perfect plaiting, the number of
threads plaited together being the same as the number of turns of the coil.
Another mode in which we are led to the same way of regarding them is by
supposing a cylinder to be passed through the middle of the (flattened) clear
coil, and then to expand so as to draw all the turns tight. As there can be
only a finite number of intersections, we have always an infinite choice of gene-
rating lines of the cylinder on which no intersection . lies. * Suppose the whole
to be cut along such a line and rolled out flat. It would, of course, be a more
or less perfect plait, but with a special characteristic, depending upon the fact
that it is formed from one cantinuous cord or wire.

‘Call the several laps of_ the cut cord o, B;y, &. Then we may arrange-
the cut ends anyhow as follows:—a to v, y to ¢, e to B, B to §, 8 to « if there be
but five; and similarly for any other number, exhausting all before repeating
any one oftener than once. We may now, after having settled their order,
change their designations, so as to name them; as they occur, in the natural
order of the alphabet. Thus any such plait may be represented by a diagram
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PROFESSOR TAIT ON KNOTS. 171

as in Plate XV. fig. 14, where the dotted parts may cross and recross in any

conceivable way, but must begin and end as above. .
The number of ways in which such coils can be exhibited in plaits essen-

tially distinct from one another is therefore, if » be the number of laps,

n—1n=2....2 1. All the other possible arrangements, 7 —1 times the last
written number, correspond to links or, at all events, to more than one continu-
ous cord. o
.§ 26. From this point of view another notation for clear coils may be given
in the form )
ayBa,
BayB 77
Here a; B, y . . . . are, as above, the several strings’ plaited, so that in the coil

B is the prolongation of «, y that of B, &c.; and o that of the last of the series.
The expression E means that a crosses over B. . It is sometimes useful to indicate

whether a crossing takes place to the right or left. Thisis done by putting
+ or — over the symbol. Thus the four crossings above may be more fully
written as
: +—+—
ay Ba
BayB "

The properties of this notation were examined in detail in my first paper ; but
. as they are more curious than useful, I merely mention one or two.
Thus the combination just written cannot be simplified jin'itself ; but

This notation requires care. For instance, the terms

a a

BB

are simply nugatory, and may be cancelled. But, on the other hand, the terms
a B
B a

usually add to the beknottedness of the whole scheme.

When the scheme is not compatible with a clear coil there occur terms of
the form

a
a,

and the application of this method becomes very troublesome.
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172 PROFESSOR TAIT ON KNOTS,

§ 27. A question closely connected with plaited clear coils is ‘that of the
numbers of possible arrangements of given numbers of intersections in which
the cyclical order of the letters in the 2d, 4th, 6th, &c., places of the schemke
shall be the same as that in the 1st, 3d, 5th, &c., s.c., the alphabetical.
Instances of such have already been given above. In the first scheme of § 5,
for example, the letters in the even places are

DEABC.

Here the cyclical order of the alphabet is maintained, but A is postponed by
two places. It is easy to see that the following statements are true,

Whatever be the number of intersections a postponement of zo places leads
to nugatory results.

A postponemént of one place is possible for three and for four intersections
only.

Postponement of two places is possible only for (four), five, and eight—
three for seven and ten—four for nine and fourteen—five for (¢ight), eleven and
sixteen,—six for (ten), thirteen, and twenty, &c. - Generally there are in all
cases n postponements for 27+ 1 intersections ; and for 3z+2, or 8n+1 in-
tersections, according as » is even or odd. The numbers which are italicised
and put in brackets above, arise from the fact that a postponement of # places,
when there are n intersections, gives the same result as a postponement of
n—r—1 places. [It will be observed that this cyclical order of the letters in
the even places is possible for any number of intersections which is not 6 or a
multiple of 6. | |

When there are n postponements with 2%+ 1 intersections the curve is the
symmetrical double coil, <.¢., the plait is a simple zwist.

The case with 37+ 2 or 3n+ 1 intersections is a clear coil of three turns,
corresponding to a regular plait of three strands.

Figures 16, 17 of Plate X'V give the diagrams corresponding.to the latter
case for n=2, 3 respectively; 4.c., with 8 and. 10 crossings. The diagrams 15
and 18, constructed according to the same plan for 6 and 12 intersections, show
why there are no multiples of six in this form of coil. In fact, whenever the
number of crossings in this three-ply plait is a multiple of 6, the strands are
separate closed curves.

Parr III.
Methods of Reduction.

§ 28. Before taking up the question of the complexity of a knot, a word or
two must be said about the methods of reducing any given knot to its simplest
form. I have not been able as yet to find any general method of doing this,
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PROFESSOR TAIT ON KNOTS. 173

nor have I even discovered, what would probably solve this difficulty, any
perfectly general method of pronouncing at once from an inspection of its
scheme or otherwise, whether a knot is reducible or not. It is easy to give
multitudes of special conformations in which reduction can always be effected ;
but of these I shall give only a few, with the view of showing their general
character.

One very simple case of such reduction has already been given, viz., where

@ letter occurs twice ih succession.
For, if we have as part of a scheme, the letters

...PQQR....

the corresponding part of the coil must have the form shown in Plate XV. fig. 19.
Whichever way the crossing at Q is effected, the loop can be at once got rid
of, and it is thus nugatory, because the scheme shows that it is not intersected by
any other branch.

If we put in the signs of the crossings, they must obviously be different for
the two Qs ; and thus in

...PQQR....
+__

we may treat them as + Q — Q = 0, and obliterate Q altogether.
An immediate consequence of this is, of course, that any group such as

...PQRRQP....

whatever be the number of letters arranged in this form, may be wholly struck
out. Cases corresponding to this have been already figured in § 1.

§ 29. Another useful step in simplification occurs when we have a scheme
containing the following terms :—

for then both P and Q may be struck out.

[N.B.—The order of P and Q need not be the same at each occurrence, the
essential thing is that they should twice occur together, and with like stgns.
This explanation shows that the process is not confined to clear coils. ]

For the corresponding part of the diagram must evidently be of the form
shown in Plate XV. fig. 20, since the scheme shows that there are no inter-
sections between P and Q on either branch. Hence, as P and Q have the
same sign for each branch, one branch may be slipped off from the other with-
out otherwise altering the coil. |

If a single turn of the coil pass across between P and @, the only ways in
which it can prevent the slipping off just described are that shown in Plate XV.

VOL. XXVIII. PART I. ) 2Yv
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174 PROFESSOR TAIT ON KNOTS.

fig. 21, and the same lookéd' at from the other side, i.e., with all the signs

changed.
Henee in the scheme
...PRQ....PSQ..... RS.....
+ o+ - -

(where the order is again indifferent. in each of the groups) we can always leave
out P and Q, unless R be negative and S positive, .e.; unless this: part of the
scheme has in itself the greatest possible number of changes of sign.

But when we can thus strike out P and Q, it is necessary to observe that
in R S or S R, which must occur at .some other-part of the scheme, the order is
to be ehanged. . Thus

PRQ...... PSQ R'S
+ + + — 4+ - ——
is simplified into
' R..... S, SR.......
+ + —-—

§ 80. Such a portion as that figured in Plate XV. fig. 22 evidently goes out
of itself, whatever be the character of B; i.e., the whole of it

...ABCABC.....
may be struck out of any scheme. In fact, whichever sign be given to B, § 29
applies and removes two of the interseetions. Then § 28 disposes of the
remaining one. ' .

This is merely a particular case of the general and obvious theorem, that
any portion of a coil which may be treated as a separate coil, and which, if
alone, could be reduced, may be reduced én situ. '

A more general theorem, which includes the preceding, is that, if in

...ABC....GHA

the signs of B, €, ... G, H, where they occur between the two A’s, are all
alike, all these intersections, including A, may be struck out. This is quite
obvious, because it indicates a complete turn of the coil entirely above or below
the rest. 'When one or more of B, C, G, H has a different sfgn from the others,
a less amount of simplification is usually still possible.

Along with this we may take the case of fig. 23. Here we have

......

If the sign of P were changed these parts of the scheme would contain
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alternately + -and —. The scheme obviously loses three intersections, and
becomes .

Q...... Q.

— +

If the signs in the complete knot, with the exception of that of P, were all
originally + and — alternately, there will generally be farther reductions possible.

§ 3. A glance shows that the first of the diagrams, 24, 25, Plate XV, can
be reduced to the second. Henece in the scheme of a knot

....... PQRP......QR.....
++—— — 4+
may be simplified into
....... QR.........R Q
...+_ .l.,.._. N

'[N.B.—The essential point is that P and Q should have the same sign, and
"R the opposite. If Q and R had the same sign they might both be struck out
§29. Butif Pand Q have different signs, as also Q and R, no simplification
can be effected, though, as has been shown in § 11, a change of scheme is practi-
cable. ]
§ 32. The scheme

...ABC....EFG...... AMN....PQG...
+++ F++ - —

always admits of striking out A and G. But special consideration is necessary
as to what is to take the place of B, C, . .. E, F. Their substitutes will all be
positive, and may be called m, n, . . . p, g, since they are in number the same
as M N, . . .. P, Q—irrespective altogether of the number of B, C, .. .. E, F.
In fact, M and m, N and #, . . . . &c., lie (as near one anotlier, in pairs; as we
please) on the several turns of the coil which intersect the arc A M .. ..
QG. Andm, n,....&c., are on the opposite side of that arc from B, C,....F.

§ 33. There are numberless other special rules, but those just given are
among the simplest, and they are in general sufficient for coils with only a
moderate number of intersections. With the present notation it is not easy to
classify them, or to show how they may be exhibited as particular cases of
more general rules. We will therefore, for the present, employ them only for
the simplification (where possible) of a few diagrams of knots. But it must be
particularly noticed that the simplifications above are mainly such as tend to
remove continuations of sign from a scheme, none of them but the first being
applicable to a scheme whose signs present no continuations.
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176 PROFESSOR TAIT ON KNOTS.
§ 34. Ezamples.

LIAEBFCGDAEKFLGDHBKCLH|A
-+ ++ -+ -+ —-F+—-+—-—+—-——=+—+

This is, of course, rendered irreducible by changing the sign of B. It is
figured Plate XVI. fig. 1.

[If we were to change the signs of F, I, H, the knot would acquire a great
increase of beknottedness, and would consist, in its simplest form, of a pentacle
and a trefoil knot linked together, as in Plate XVI. fig. 25.]

(@) Now
.EBF EKF B K
++ + -+ - - —
become .
...B....K ..... KB
(] + + - =

(6) Two intersections being thus lost, the knot has now the form, Plate X VI.
fig. 2, with the scheme

ABCGDAKLGDHKBCLH|A
—+ -+ -+ + +—F+ - — —+—+
- Now in

with G before or D after, we can at once get rid of K, L, if A be put close
to G.

(¢) Hence the scheme becomes

BCAGDAGDHBCH|B
+——+ —+— + - — 4 +

and the knot is as in the figure 3, Plate X V1.
Now
HB....HB....goout(§29).
- - + +

(@) The scheme is now

CAGDAGDC|C
——+ — 4+ —+ +

so that C goes out by § 28, and we haw}e finally

AGDAGD |A
the trefoil knot. *
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II. The knot figured in Plate X VI fig. 4 has no beknottedness.
III. That in fig. 5 is reducible to the trefoil.
These are left as exercises to the reader.

Part IV.
Beknottedness.

§ 35. Recurring to the two species of five-crossing knots discussed in § 18,

. we easily see that there is less entanglement or complication in the first species
than in the second. For if the sign of ¢ither of the two crossings towards the
top of the first figure be changed, it is obvious that it will no longer
possess any but nugatory crossings. But if we change the sign of any one
crossing in the pentacle, that crossing, and one only of the adjacent ones, become
,nugatory, so that the knot becomes the trefoil with alternating + and —.
This, in turn, has all its intersections made nugatory by the change of sign of
any one of them. Thus one change of sign removes-all the knotting from the
first of these knots, but two changes are requlred for the second.

In W_ha,t follows the term Beknottedness will be used to signify the peculiar
property in which knots, even when of the same order of knottiness, may thus
differ: and we may define it, at least provisionally, as the smallest number of
changes of sign which will render all the crossings in a given scheme nugatory.
This question ‘is, as we shall soon see, a delicate and difficult one. It is
probable that it will not be thoroughly treated until one considers along with it
another property, which may be called Knotfulness—to indicate the number of
knots of lower orders (whether interlinked or not) of which a given knot is in
many cases built up. But this term will not be introduced in the present paper.

§ 36. It may be well to premise a few lemmas which will be found useful
in examining for our present purpose the plane projection of a knot.

(o). Regarding the projection as a'wall dividing the plane into a number of'
fields, if we walk along the wall and drop a coin into each field as we reach it,
each field will get as many coins as it has corners, but those fields only will have
a coin in each corner whose sides are all described in the same direction round.
For we enter by one end of each side and leave by the other. The number of
coins is four times the number of intersections ; and two coins are in each corner
bounded by sides by each of which we enter, none in those bounded by sides
by each of which we leave. Hence a mesh, or compartment, which has a coin
in each corner has all its sides taken in the same direction round ; and we see
by fig. 6, Plate X VL, that this is the case with twists in which the laps of the
cord run opposite ways, not if they run the same way. Compare this with the
remarks of § 35, as to the two species of 5-fold knottiness.

VOL. XXVIIL PART L 2z
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178 PROFESSOR TAIT ON KNOTS.

(B). To make this process give the distinction between crossing over and
crossing wnder, we may suppose the two coins to be of different kinds,—silver
and copper for instance. Let the rule be :—silver to the right when crossing
over, to the left when crossing under. Then, however the path be arranged, of
the four angles at each crossing, one will have no coins, the vertical or.opposite
corner will have fwo silver or two copper coins, the others one copper or one
silver coin each.

It is easily seen that.a reversal of the direction of going round leaves the
single coins as they were, but shifts' the pair of coins into the angle formerly
vacant: also that in all deformed figures the circumstances are exactly the
same as in the original. Hence we may dividé the crossings into silver and
copper ones, according as two silver or two copper coins come together. And
the excess of the silver over the copper crossings, or vice versd, furnishes an
exceedingly simple and readily applied test (not, however, as will soon be seen,
in itself absolutely conclusive of identity, though absolutely conclusive against
it), which is of great value in arranging in family groups (those of each family
having the same number of silver crossings), the various knots having a given
number of intersections. '

()-. Or, still more simply, we may dispense altogether with the copper coins,
so that, going round, we pitch a coin into the field to the #ight at each crossing
over, to the l¢ft at each crossing wnder. When the coins are in the same angle
the crossing is a silver one, when in two vertical angles it is copper. Each of
these three processes has its special uses.

_ §87. This process, thus limited, is obviously intimately connected with that
required for the estimation of the work necessary to carry a magnetic pole along
the curve, the curve being supposed to be traversed by an electric current.
Hence it occurred to me that we might possibly obtain a definite measurement
of beknottedness in terms of such a physical quantity : as it obviously must be
always the same for the same knot, and must vanish when there is no beknot-
tedness. To make the measure complete, we must record the numbers of fion-
nugatory silver and copper crossings separately, with the number to be deducted
as due merely to the coiling of the figure. This last is a very important matter,
and will be dealt with later.

§ 38. When unit current circulates in a simple circuit, it is known that
the work required to carry unit magnetic pole once round any closed curve
once linked with the circuit is &=4s. Instead of the current we may substitute
a uniformly and normally magnetized surface bounded by the circuit. The
potential energy of the pole in any position is measured by the spherical aperture
subtended at the pole by the circuit ; but its sign depends upon whether the north
or south polar side is turned to the pole. Hence the pole has no potential
energy when it is situated in the plane of the circuit but external to it, and the
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potential energy is =27 when the pole just reaches the plane of the circuit

internally.
In fact the electro-magnetic force exerted by an element da of a unit

current, on a unit north pole placed at the origin of a, is
* Vada
Ta3
or, as we may write it,

V.diTl"z .

This is identical in form with the expression for the differential whose
integral, taken round a closéd circuit, is AMPERE’s Directrice.*

Hence the element of work done by the closed circuit while the pole de-.
scribes a vector da, is

Vad, 1
SW=—S.50f 14 _§ Safiav .

But, if dQ be the spherical angle subtended at a by a little plane area ds,
whose unit normal vector (drawn fowards the origin of a) is Uw, obviously

Q= SU”U—“ds_ —S8.Urv ods.

Now, in the general formula (Trans. R. S. E. 1870, p. 76)

SVoda=[dsV.(VU»V)a,
put

1
O'—VTa
and we have
Vada 1 1\
'TaT:de(vazTa —VSUVVE)

= fdsUvVv? %;-!' vQ.

Now the double integral always vanishes while Ta is finite, and we have there- -
fore

SW = /‘S“S“d“——s.aavsz:m.

That is, the work done during any infinitesimal displacement of the pole is
numerically equal to the change in the value of the spherical angle subtended
by the circuit. The angle is, of course, a discontinuous function, its values
differing by 4w at points mdeﬁmtely near to one another, but lying on opposite

* Electrodynamics and Magnetism, § 5-8, Quarterly Math, Journal, 1859.
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sides of the upiformly and normally magnetized surface whose edge is the
circuit. There is, however, no discohtinuity in the value of the work, for the
element of the double integral is finite, and equal to 47, when Ta=0.

Gauss * says (with date January 22, 1833) :—* Eine Hauptaufgabe aus dem
Grenzgebiet der Geometria Situs und der Geometria Magnitudinis wird die sein,
die Umschlingungen zweier geschlossener oder unendlicher Linien zu zdhlen.”
And he adds that the integral

/f (&' — ) (dyde — dzdw’) + (yf — ) (dedx’ — dud?) + (2 —2) (dady’ — dyda’) ,
' (@'—2f+ G -y *+E -2

extended over both curves, has the value

4mm,

where m is the number of linkings (Umschlingungen). This is obviously the
same as the integral of 8W above, viz. .—

/ S.adada
JJ  Ta*
extended round each of two closed curves, of whi'ch da and da are elements.

§39. A very excellent investigq_tjon, by means of Cartesian co-ordinates,

will be found in CLERK-MAXWELL’S Electricity and Magnetism §§ 417-422. Tt is

. _there shown that the above int.e‘gral may vanish, even when the circnits are
inseparably linked together. In fact m may vanish either because there is no
real linking at all, or because the number of linkings for which the electro-
magnetic work is negative is the same as that for which it is positive. For
our present application this is of very great consequence, because it shows that
the electro-magnetic work, under the circumstances with which we are dealing,
cannot in all cases measure the amount of beknottedness. In fact the processes,
soon to be described, enable us, without trouble for any given linkage, to find the
value of m in‘GAUSS’ formula ; but there are specia,l ambiguities when we try to
apply the process to knots.

§ 40. To construct the magnetized surface which shall exert the same action
on a pole as a current in any given closed circuit does, we may |
either suppose a surface extending to infinity in one direction
(say for definiteness, upwards from the plane of the paper), and

o having the circuit for its edge; or we may form, as in the figure,
a finite autotomic surface of one sheet, haying the circnit for
its edge, In dealing with the fwo curves of Gauss’ proposi-
tion, our procedure is perfectly definite ; hut when one and the same curve is
to be the current and also the path of the pole, there is an ambiguity in esti-

* Werke, Gottingen, 1867, v. p. 605.
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PROFESSOR TAIT ON KNOTS. 181

mating the electro-magnetic work. To clear this away we require a definite
statement of how the pole moves along the curve itself. For if its path screw
round the curve =47 must be added to the work for each complete turn. As
an illustration, suppose we bend, as in the figure, an
india-rubber band coloured black on one side, so
that the black is always the concave surface, and so
that one loop is the perversion of the other, we find
on pulling it out straight that it has mo twist. If both loops be made by
overlaying, when pulled out it becomes twisted through two whole turns. This
illustrates the kinematical principle that spiral springs act by torsion. An
excellent instance of its connection with knots is to be seen in the process
employed in § 11. For if we have portions of a cord, as in the diagram
(Plate XVI. fig. 7), the pulling out of the loop in the upper cord changes the
arrangement, as shown in the second figure.

A practical rule, which completely meets the GAUSSIAN problem, may easily
be given from the consideration of the cylindrical magnetized surface above men-
tioned. Go round the curve, marking an arrow-head after each crossing to
show the direction in which you passed it. Then a junction
like the following gives +4w for the upper branch, and
nothing for the lower (which, on this supposition, does not
pass through the magnetic sheet). Change the crossing from
over to under, and this quantity changes sign. The junction figured above
would, in our first illustration, be a silver one. But a still simpler process is
to go round, as in § 36 (y), putting a dot to the right after each crossing over,
and vice versd.

§ 41. Now, in order that our rule when applied to krots may give no work
where there is no beknottedness, we must make the required expression such as
to vanish whenever all the intersections are nugatory. Those which are nugatory
only in consequence of their signs are in pairs, silver and copper, and will take
care of themselves, as we see by special examples like the
following. Hence the only part to correct for is that de- >//©<\ v
pending on the number of whole turns, and the sketch of
the india-rubber band above shows that the work at the vertex of each such
partial closed circuit is simply not to be counted, 7e., that the 4w, which
would be reckoned for each such crossing by our rule (positively or negatively
as the case may be), is to be considered as made up for by the corresponding
screwing of the pole round the curve.

§ 42. There must be some very simple method of determining the amount of
beknottedness for any given knot; but I have not hit upon it. I shall there-
fore content myself with a few remarks on the subject, some of which arc
general, others applicable only to certain classes of forms. There seems to be

VOL. XXVIII. PART L 3A
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182 PROFESSOR TAIT ON KNOTS.

little doubt that the difficulty will be solved with ease when the true method of
attacking amphicheiral forms is found.

1. To form from a given projection the knot with the greatest amount of
beknottedness, it is clear that we must in general so arrange the crossings over
and under as to make a// the crossings simultaneously silver or copper ones.
And when this is done, a projection will give greater beknottedness for the same
number of crossings the smaller is the number of crossings which have to be
left out of account. Thus the simple twists (or clear coils with two turns) are
the forms which, with a given amount of knottiness, can have the greatest be-
knottedness. For in them (see § 41) only one crossing has to be left out of
‘the reckoning. Even a regular plait if of more than two strands cannot have so
much beknottedness as it would acquire with the same amount of knottiness if
two of its strands were first twisted together, then a third round these, and so
on. And thus also entirely nugatory forms like the two first cuts in § 1 can have
no.beknottedness, for a// their crossings have to be left out of the reckoning.

As an illustration, take the figure (Plate XVI. fig. 8) where the supposed
number of loops may be any whatever. The free ends must, of course, be
Joined externally.

If we make the crossings alternately + and — it will be seen at a glance
that a change of one sign (i.e, that of the extreme crossing at either end)
removes the whole knotting ; so that there is but one degree of beknottedness.
The crossings in this figure are in three rows. Those in the upper row are all
copper (the last, of course, becomes silver when its sign is changed), and their
number is 7 the number of loops. Each of the other rows has z—1, and
all of them are silver. Thus when the one sign is changed there are n—1
copper crossings, and 2 z—1 silver. By pulling out the right hand loop we
change z to n—1, so that one copper and two silver crossings are lost. After
n—1 operations like this there remains only one (silver) crossing. Tt is easy to
see from this that the crossings to be omitted in the reckoning of beknotted-
ness (asin§ 41) must be the lower row. To prove that it is so, study the
beknottedness when the crossings are made so that the upper row are copper,
silver, copper, &c., alternately, and those of the two other rows, silver, copper,
silver, &c., alternately. It will be easily seen that with five loops there are two
degrees of beknottedness, &c., and thus that our rule is correct. Itisa curious
problem to investigate the torsional and flexural rigidities of a wire bent in this
form.

To give the greatest beknottedness to a knot with the same projection, it is
obvious that all we have to do is to make the copper crossings into silver ones,
i.¢., change the sign of each of the upper row of crossings. This gives fig. 9.
With five loops it has four degrees of beknottedness.

Another excellent illustration is given by the coils of the class figured in
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Plate XV. figs. 16 and 17, which have been already described (§27). A full
investigation of the higher knottinesses of this class (especially when fully
beknotted) would well repay the trouble it would involve.

As they are all amphicheiral, and in each case the crossings are divisible
into two sets, those of each set being in all respects alike, while those of different
gets differ only as to silver or copper, it is no matter (so far as testing be-
knottedness is concerned) which crossing we suppose to have its sign changed.

In the 8-fold amphicheiral of fig. 16 the change of any one sign reduces the
whole to the irreducible trefoil knot (§ 16), right orleft-handed according as we
have changed one of the four outer, or of the four inner, crossings’in the figure.
Hence it has zwo degrees of beknottedness. But if we change the signs of one
set of crossings (Plate X VL. fig. 24) so as to make all the crossings alike silver
(or copper), we find the knot irreducible, though with continuations of sign ;
but with zkree degrees of beknottedness. And it is easy to see that it can now
be analysed into two right-handed trefoil knots linked together as shown in the
other part of the figure. But the linking is left-handed. Had it been right-
handed we should have had + and — alternately, and thus we could not have
transformed back to the form with continuations of sign (§ 4).

Similar remarks apply to the 10-fold amphicheiral plait (Plate XV. fig. 17).
Change of any one sign reduces it to the third form of 6-fold knottiness (y, § 8),
which has only one degree of beknottedness. Hence the 10-fold plait has but
two degrees of beknottedness when its signs are alternate. If we make all its
crossings silver (or copper), as in Plate XVL. fig. 25, it has fowr degrees of be-
knottedness ; and the reason is obvious from the other half of the figure, where
it is seen to be made up of a pair of irreducibles—a pentacle and a trefoil, once
linked together. Thereis one degree of beknottedness for the trefoil, one for the
link, and two for the pentacle. The trefoil and pentacle are right-handed, the
link left-handed, else we should not have had the continuations of sign which
the figure must show.

A very curious illustration of this is to be found in the excepted cases, where
the number of crossings is a multiple of six. From the two figured (Plate XV.
figs. 15, 18) it is obvious that all of these are formed by three unknotted closed
curves, no two ¢f which are linked together, yet the whole is irreducible, having
alternate signs. Hence we require a third term to complete our descriptions—
knotting, linking, locking (?%).

To give the greatest amount of belinkedness to these figures, let us suppose
the ovals taken all the same way round, and arrange so that all the crossings
shall be silver. Then we have continuations of sign (Plate X VL. fig. 26) as in
the knots of the same series. But whereas Plate XV. fig. 15, if made of wire,
is particularly stiff, the new figure is eminently flexible. This seems to have
been practically known to the makers of chain armour.
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The 9-fold knot of Plate XVI. fig. 15 has its crossings so drawn as to be
all copper. Three must be left out of reckoning for the coiling, so it has #hree
degrees of beknottedness.

But if we made the crossings alternately + and — we should find zero for
the corrected electro-magnetic work—three copper and three silver crossings
remaining. Change, then, the sign of any one of the three outer or inner
crossings, and the whole reduces to the 4-fold knot. Hence it has #wo degrees
of beknottedness.

If the crossing whose sign is changed be neither an outer nor an inner one,
the result is a very singular 8-fold knot (irreducible, though having ‘continua-
tions of sign), differing from that of fig. 24, Plate XVL, in the fact that its com-
ponent trefoil knots are unsymmetrically linked together. And it has but one
degree of beknottedness, while that of fig 24 has three. ‘

I have called attention to this example because of its bearings on the ques-
tion of the numbers of different irreducible knots having the same projection,
which we meet with as soon as we reach 8-fold knottiness.

2. To remove all beknottedness from a projection it is only necessary to
make every crossing in its scheme + (or —) when it is first met with, reading
from any point whatever. For then the several laps of the coil are, as it were,
paid out in succession one over the other. When the beknottedness of a
scheme so marked is calculated (as in § 41), it will be found that there is
always at least one choice of a set of crossings such that, when these are
omitted from the count, the electro-magnetic work is zero.

As an illustration take the very simplest form, the trefoil knot, with the
suffixed signs determined by this rule. The scheme is

+ 5 |
+ Qo+
+ 9 |
Iy |
| 4+
| |

A.
+

Now, by § 41 we are entitled to leave out of count either A, B, or C. Leaving
out either A or B gives zero for the electro-magnetic work, as it ought to be;
but leaving out C gives — 8 =.

3. The only way in which we can have the intersections + and — alter
nately while every letter is + on its first appearance, .., when there is no
beknottedness, obviously the wholly nugatory scheme

A A BB, &ec.
+—+—

§ 43. To illustrate these methods let us take again the 5-fold knots (as in
§ 18) whose schemes are

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 09 May 2017 at 17:48:25, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0080456800090633


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0080456800090633
https:/www.cambridge.org/core

PROFESSOR TAIT ON KNOTS. 185

++++++++++
ADBECADCERSB]|A,
—+—+—+ —+—+
ADBECADBEC |A.
—+ —+—+ -+ -+

The lower signs refer to over or under, the upper to the electro-magnetic work,
or to the silver-copper distinction.

Hence to determine the electro-magnetic work we must divide each scheme
into independent circuits, no one of which includes a less extensive one; and
omit from the reckoning the work for the terminal of each such circuit, and for
each of the intersections which is not included in any one of the separate circuits.
There are usually more ways than one of doing this. Sometimes these agree
in their results ; but the rule for choosing which to omit is to take them such
that with their proper signs, and the rest with any signs whatever, they may
be capable of making each letter positive on its first appearance. But there
are cases even when the knot is not amphicheiral in which this process cannot
be carried out. These occur specially when a part of the knot forms a lowel
knot with which the string is again linked.

In the first of the two schemes above there is but one independent non-
autotomic circuit, which may be taken as

ADBECA.

In this all the intersections are included, so that the whole work is to be found
by leaving out that for A only ; i.e., it is — 16 =,
But in the second scheme we may take the two circuits

BADBand CADC,

and E is not included in either. Hence we must leave out of count the work
for B, C, and E. Thisis found to satisfy our test, and thus the whole work
is only — 8 =.
This is an instance in which the estimate by the electro-magnetic process
exactly agrees with the result of simpler considerations, as given in § 35 above.
§ 44. It will be found that the alteration of five signs is sufficient to remove
the knotting from the annexed figure, and the stages of operation of the various
modes of reduction show that this form can be regarded as
made up of simpler knots intersecting one another on the same
string. These separate knots are virtually independent, and to
change a// the signs in any one of them does not in cases like
this necessarily simplify the knot. Uncorrected the work is
— 13 x 47 Corrected it is — 10 x 4 7, which agrees with the removal of the
beknottedness by change of five signs only.
VOL. XXVIIL PART I
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186 PROFESSOR TAIT ON KNOTS.

If the sign of the. one unsymmetrical crossing be altered, four changes of
sign will suffice; for the, uncorrected work is — 11 x 4 ; corrected it is
— 8 x 4, corresponding to four changes of sign.

§ 45. It is clear from what precedes that the GAUSSIAN integral does not,
except in certain classes of cases, express the measure of what may be called,
by analogy with § 35, Belinkedness. It may be well to examine a simple form
of link with all its possible arrangements of sign to see what the integral really
gives in .each of these. Let us choose for this purpose two lemniscates having
four mutual crossings, as in the edges of the band shown in fig. 13, Plate XV.

If we suppose the signs to be made alternately + and —, as in Plate XVI.

fig. 10, the form is a six crossing one, and irreducible. The silver or copper
character of the self’ crossings does not depend upon the directions in which we
suppose the lemniscates to be described, that of the mutual crossings does. We
thus have, from another point of view than that of § 41, a proof that these are
to be left out of account in the reckoning. '
' The four crossings of the zwo curves are copper, if these curves are supposed
to be described in the same way round ; those of the separate curves (which
do not count) are silver. Hence the work is —16 =, or.two degrees of belinked-
ness. :

Change the sign of any one of P, Q, R, S, that and the adjacent one slip
off, U and V become nugatory. The linkage is the simplest possible, and the
integral is 8 .

Change the sign of either or both of U and V. In either of these three
cases both become nugatory, and the whole takes the form of two 'doubly-
linked ovals, with the integral = — 16 7. (Plate XVI. figs. 12, 13.)

If the signs of both R and S be changed the value of the integral is
obviously 4 (2—2) m, for R and S have become silver, while P and Q remain
copper.

If in addition the signs of U and V be both, or neither, changed, only one
crossing is got rid of, and the link may be put in the form (Plate XVT. fig. 14).
It canmot be farther reduced, because the crossings are alternately over and
under.

But if the sign of one only of U, V be changed, it will be seen that there is
no linking (Plate XVT. fig. 11). Here the integral vanishes because there is
really no work, not as in the last case, where there are equal amounts of positive
and negative work.

§ 46. This gives a hint as to the reckoning of beknottedness from the silver
and copper crossings in the cases where we have found a difficulty. After
omitting from the reckoning the crossings which belong merely to the outline
of the figure, there must remain an ¢ven number of crossings (§ 22). Hence,
whatever numbers be silver and copper respectively, the excess of the one of

. v
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these over the other must be an even number (zero included). In general,
half this number is the beknottedness. But when the knot, or even part of it;
is amphicheiral there is usually more beknottedness than this rule would give.
And, in particular, there may be beknottedness when the number is zero. In
this case the number of silver (and of copper) crossings is even, and is double
the degree of beknottedness.

As I have already stated, I have not fully investigated this pomt and there-
fore for the present I content myself with giving two instructive examples from
the six-fold knots. The observations which will be made on these contain at
least the germ of the complete solution. ‘

The form y (of § 8) is not amphicheiral. As there drawn, it has four copper
and two silver crossings, the latter being the intersections of the loop with the
trefoil ; but the scheme shows that two copper crossings must be omitted from
the reckoning, one of these being necessarily that which is uppermost in the
figure. If the sign of this last be changed, the knot opens out, so that it has
but one degree of beknottedness. Hence, in this case, the two copper and two
silver crossings correspond to one degree of beknottedness only. But if we
change the sign of any ome of the other three copper junctions the knot sinks
to the 4-fold amphicheiral, retaining its one degree of beknottedness.

In the amphicheiral form B (of § 8) there are three silver and three copper
crossings. As the figure is drawn, these are to the right and left of the figure
respectively ; and either crossing at the end of the lower coil may be left out, along
with any one of the three on the other side. Thus there remain, as in the former
case, two silver and two copper ones. This corresponds to one degree of beknot-
tedness, as in the last case, for the change of sign of either crossing at the end of
the lower coil unlooses the knot. But if any one of the other four crossings
(alone) have its sign changed, the whole becomes a right or left-handed trefoil
knot, retaining, as in the former example, its one degree of beknottedness.

To give the greatest beknottedness to these forms, we must alter two signs
in (y) and three in (8). In each case one crossing is lost, and the form becomes
the pentacle (§ 7) with its two degrees of beknottedness.

PagrT V.
Amphicheiral Forms.

§ 47. These have been defined in §17, and several examples have been
given, not only of knots, but of links, which possess the peculiar property of
being transformable into their own perversions.

The partition method (§ 21) suggests the following mode of getting amphi-
cheirals :—Since the right-handed and left-handed compartments must agree

Downloaded from https:/www.cambridge.org/core. Cornell University Library, on 09 May 2017 at 17:48:25, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0080456800090633


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0080456800090633
https:/www.cambridge.org/core

188 PROFESSOR TAIT ON KNOTS.

one by one, and since (§ 20) the whole number of compartments is greater by 2
than the number of crossings, the number of crossings must be even. Let it
be 2n, and let p, p,, . . . . P.i1 be the partitions. Then our selection must be
made from the numbers which satisfy

}71+]72+ PR +p,,+1=412,

no one being greater than the sum of the others. If a set of such can be
grouped as in § 20 so that the other set for the complete scheme shall be the
same numbers with the same grouping, we have an amphicheiral form. The
words in italics are necessary, as the following example shows ; for here the
black and white compartments have the same set of partitions but not the
same grouping, and the knot is not amphicheiral:—

5

But a different grouping of the same set of partitions gives the amphicheiral

form below f

But an easier mode of procedure, though even more purely tentative, is the
following :—If a cord be knotted, any number of times, according to the

pattern below,
‘/ m&

it is obviously perverted by simple ¢nversion. Hence, when the free ends are
joined itis an amphicheiral knot. Its simplest form is that of 4-fold knottiness.
All its forms have knottiness expressible as 4z.

The following pattern gives amphicheiral knottiness 2+ 6n :—

| %
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And a little consideration shows that on the following pattern may be
formed amphicheiral knots of all the orders included in 6z and 4+ 6n :—

=R

Among them these forms contain all the even numbers, so that there 4.
least one amphicheiral form of every even order.

Many more complex forms may easily be given. See, for instance, Plate
XVI. figs. 18, 19, 20. Some are closely connected with knitting, &c,

An excessively simple mode of obtaining such to any desired extent is to
start with an amphicheiral, whether knot or link, and insert additional crossings.
These must, of course, be inserted symmetrically in pairs, each in the original
figure being uccompanied by another which will take its place in the perversion
or image.

Thus, taking the simplest of all amphicheirals, the single link (Plate XVI.
first of figures 27), we may operate on it by successive steps as in the succeeding
figures.

The second, third, and fourth are formed from the first by adding, the fifth
and sixth from the fourth by removing, pairs of crossings. The third, like the
first, is a link ; the others are knots. '

" Figures 28, Plate X VL, give another series, of which the genesis is obvious.
The protuberances put in the first figure, for instance, show how it becomes
the second. The fifth of fig. 27, and the second and fourth of fig. 28, all alike
represent the amphicheiral form (B8) of § 8. But we need not pursue this
subject.

§ 48. It will be seen at a glance that the first pattern in last section gives
for two loops (i.e., four crossings) the knot of § 6 ; while the third pattern as
drawn is simply 8 of § 8. In this form of the knot, the two dominant crossings
(§ 46) are those in the middle, and mere inspection of the figures shows that
the whole knotting becomes nugatory if the sign of either of these be changed.

It might appear at first sight that amphicheirals of the same knottiness,
formed on such apparently different patterns as the two first of last section,
would be necessarily different. But the very simplest case serves to refute this
notion. For the lowest integers which make

An=2+6n’

give 8 as the value of either side. Figs. 22, 23, Plate X V1, represent the corre-
sponding amphicheirals, apparently very different, but really transformable into
one another by the processes of § 11. Fig. 21, Plate X VL., represents another

8-fold amphicheiral form, suggested by a somewhat similar pattern. I hope to
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190 PROFESSOR TAIT ON KNOTS.

return to the consideration of this very curious part of the subject, and at the
same time to develop a method of treating knots altogether different from
anything here given, which I recently described to the Society.*

After the papers, of which the foregoing is a digest, had been read, I
obtained from Professors LisTiNg and KLEIN a few references to the literature
of the subject of knots. It is very scanty, and has scarcely any bearing upon
the main question which I have treated above. Considering that LISTING’s
Essay was published thirty years ago, and that it seems to be pretty well
known in Germany, this is a curious fact. From Listing’s letter (Proc. R. S. E.
1877, p. 316), it is clear that he has published only a small part of the results of
his investigations. KLEINt himself has made the very singular discovery that
i space of four dimensions there cannot be knots.

The value of Gauss’ integral has been discussed at considerable length by
Boeppicker (by the help of the usual co-ordinates for potentials) in an Inaugural
Dissertation, with the title, Beitrag zur Theorie des Winkels, Gottingen, 1876.1

An Inaugural Dissertation by WEITH, Topologische Untersuchung der Kurven-
Verschlingung, Zirich 1876, is professedly based on ListiNg’s Essay. It con-
tains a proof that there is an infinite number of different forms of knots! The
author points out what he (erroneously) supposes to be mistakes in LISTING’S
Essay; and, in consequence, gives as something quite new an illustration of the
obvious fact that there can be irreducible knots in which the crossings are
not alternately over and under. The rest of this paper is devoted to the
relations of knots to RIEMANN’S surfaces.

* Proceedings, R. S. E., May 7th, 1877.

t Mathematische Annalen, IX. 478.

7 Professor FiscEER has just shown me an enlarged copy of BOEDDICKER’S pamphlet above
mentioned. Twenty pages are now added, mainly referring to the connection of knots with RIEMANN'S
surfaces, and the title is altered to Erweiterung der Gauss'schen Theorie der Verschlingungen.
Stuttgart, 1876.

ERRATA.

Page 167. In the lower group of figures the numbers II. and IV. are to be interchanged.
Also the cut marked III. is merely a form of V. The correct symbol for

II1. differs from these by having the 2 betaween the two lines joining 5 and 4.
» 185. Interchange the words ** first” and ¢“second ™ in lines 20 and 25 respectively.
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