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Abstract—In our study, a Generalized Finite Element Method (GFEM) was applied for forward problem modeling of Electrical Impedance 

Tomography (EIT). The EIT forward model is normally based on the conventional Finite Element Method (FEM). One of the major 

problems of complex geometry shape or 3-D EIT is its high demand in computation capability power and memory. High precision both in 

numerical calculation and in data acquisition is required for obtaining the reconstruction images for a small anomaly. To calculate the 

forward problem accurately, a conventional FEM model with large number of nodes and elements is required. We proposed the Generalized 

Finite Element Method (GFEM) for EIT forward problem. With the introduction of GFEM, a smaller number of nodes compared with FEM 

are needed. In the forward solution it is capable of achieving better or the same accuracy with less computational time and memory. The 

results demonstrate the efficiency of the GFEM in EIT simulation. 

Keywords-electrical impedance tomography; Generalized Finite Element Method (GFEM); forward model 

I. INTRODUCTION 

Electrical impedance tomography uses electrodes placed on the surface to make measurements and then an 

image of the electrical conductivity distribution within the body is reconstructed with an algorithm. It is a 

relatively novel low-cost non-invasive imaging technique that has evolved over the past 30 years. And EIT 

shows the potential to be of great value in clinical diagnosis[1-2].The inverse problem of EIT is badly ill-posed. 

Small errors brought by solution of the forward problem can lead large errors in reconstruction. The finite 

element method is the main approximation approach to solve forward problem.  

II. FORMULATION 

A. Generalized Finite Element Method 

The generalized finite element method comes from manifold method [3] is a developed general method to 

analyze material response to external and internal changes in stress originally. And now it has been used in 

electromagnetic computation and analysis [4-5]. In this method, the node is generalized, and so it can have more 

than two or three generalized degrees of freedom, and those degrees of freedom are not required to have their 

own definite physical meaning necessarily. At each generalized node, we can take a polynomial or series to 

define a generalized type of nodal interpolation function.  

Let us suppose 
h

S  is the conventional FEM space, and a Lagrange interpolation function 

 Tn21  
 is used, then the field variable 
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we get the following from above, 
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of interpolation function has its origin i


, and 
iD


 is the generalized vector of degrees of freedom with the 

form of  Tmiiii

i ddd 2,2,1, 

D . 

We call the node with more degrees of freedom generalized nodes. When a zero-order generalized nodal 

interpolation function 
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finite element method
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With a two-order generalized type of nodal interpolation function 
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B. EIT Forward Problem 

A low-frequency EIT forward problem is modeled as (6). The electric field is conservative, and the conduction 

currents dominant with respect to their displacement counterparts lead to the equation: 

01          in
h

S                   (1) 

where is the gradient operator,   represents the static electric field;   is the resistivity of the body;   is 

the electric potential; 
h

S  represents the body to be imaged. Electrodes are modeled with boundary conditions 

as the complete electrode model [7]. For one triangular element, there are three generalized nodes. Then the field 

variable 
h

U  in the element could be written as 
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C. Method of Weighted Residuals 

For EIT problem, it is difficult to derive the governing equations of the GFEM with variational principle. So 

the method of weighted residuals was implemented to derive the governing equations of the GFEM. The method of 

weighted residuals is as follows.The field variable is represented as a combination of piecewise polynomial 

interpolation functions after a discretization: 
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potential. The weak form of the governing equation in the method of weighted residuals could be proceeded by 

deriving through the multiplication of Laplace’s equation 1 by a arbitrary test function 
iv  and integration over 

the domain, 
h
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boundary integral is carried out for elements underneath electrodes. The left side of 18 is for the entire mesh. 
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III. RESULT AND DISCUSSION 

To validate the results of GFEM, a circle forward model with 16 electrodes, is used. The circle has radius of 

1 m. The 16 electrodes attached on its boundary as shown in Fig. 1. In Fig. 1. (a) is the zero-order GFEM model 

that is a conventional FEM model which contains 545 nodes, 1024 elements; and (b) is the one-order and 

two-order GFEM model which contains 313 generlized nodes, 576 elements.  

We set the contact impedances of the electrodes to 0.01 
2m  in the simulation. The adjacent pair current 

patterns and adjacent measurements protocol are used. In Fig. 2, the normalized voltage values of electrodes 

results are shown. Dividing the maximum value of voltage on electrode in the same current pattern, the 

normalized voltage is obtained. 

-0.0003

-0.0001

0.0001

0.0003

 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-101

inject

drop out

      
0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of the measurement simulation

A
m

p
lit

u
d
e
 o

f 
e
le

c
tr

o
d
e
 v

o
lt
a
g
e
 

0-order

1-order

2-order

 

a. zero-order GFEM   b one/two-order GFEM model  

Fig. 1. Two GFEM models                    Fig. 2. Normalized voltage values of electrodes measurement 
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The simulation result is obtained using the zero, one and two-order GFEM basis functions, The results show 

that the three orders agree very well with the norm error less than 0.0026.  
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(a)               (b)               (c) 

Fig. 3. Computed voltage with different orders GFEM for one current pattern 

(a)zero-order, (b) one-order, (c) two order 

The computed voltage with different orders GFEM for one pattern is demonstrated in Fig. 3. We could 

obtain the same even better computed results with less nodes when the one-order or two-order GFEM is used.  

IV. CONCLUSION 

The generalized finite element method has been developed and validated for the EIT forward model. 

Numerical simulation results show that GFEM is able to achieve the same or better accuracy with conventional 

FEM. In summary, we have shown the GFEM is an efficient and promising method in forward problem solution 

for electrical impedance tomography. 

V. ACKNOWLEDGEMENT 

This work was supported in part by the National Natural Science Foundation of China under Grant No. 

50937005 and No. 51077040, the Natural Science Foundation of Hebei province, CHINA under Grant 

No.E2011202026 and No. E2009000085, the Science and Technology Research Project for Universities of 

Education Department, Hebei Province, CHINA under Grant No. Z2010125. 

VI. REFERENCE 

[1] R. H. Bayford, “Biomedical impedance tomography (electrical impedance tomography),” Annual Review of Biomedical Engineering. vol. 

8, 2006, pp. 63-91 

[2] Hassan A M, El-Shenawee M. "Review of electromagnetic techniques for breast cancer detection", IEEE Rev Biomed Eng. vol 4, 2011, 

pp.103-18. 

[3] Shi, Gen Hua. “Manifold Method of Material Analysis”, Transactions of the Conference on Applied Mathematics and Computing (9th) 

Held in Minneapolis, Minnesota 18-21 June 1991, Ad-A252 140, pp. 51-76 

[4] Chuan Lu, Balasubramaniam Shanker. “Generalized Finite Element Method for Vector Electromagnetic Problems”. IEEE 

TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 5, 2007, pp. 1369-1381 

[5] Alexander plaks. “Adaptive and generalized finite element methods in applied electromagnetic analysis”, Ph. D. Dissertation. University 

of Akron,  

[6] L. Zhu, S. Giani, P. Houston and D. S. Otzau. “Energy norm A-Posteriori Error Estimation for hp-adaptive discontinuous Galerkin 

methods for elliptic problems in Three Dimentions”, Mathematical Models and Methods in Applied Sciences (M3AS), online. 

http://www.worldscinet.com/m3as/m3as.shtml, 2011.  

[7] Somersalo E., Cheney M., Isaacson D., “Existence and uniqueness for electrode models for electric current computed tomography,” 

SIAM J. Appl. Math., vol. 52, issue 4, 1992, pp. 1023-40. 

 

 

 


