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Abstract 
Electrical Impendence Tomography (EIT)[1] has incomparable advantages such as noninvasive, 

radiation-free, fast imaging speed, cheap cost, etc., attracted more and more researchers to 

improve its performance, to seek its practical application. Lots of great invention has been done 

to get more stable and clearer EIT images. However, its blur image, caused by weak measurement 

signals, limited number of independent measurements and the native ill-posed inverse problem, 

is always a headache for its application in both medical and industrial area. In this article, the 

authors try to use pre-knowledge based on the position information and the size information to 

reduce the interested imaging region, and lock it in the objects and their surrounding region. The 

simulation results show that the proposed method can get more accurate contour and 

conductivity of the object. Some phantom experiments are provided to further validated the 

proposed restricted region of interest (RROI) method. Conclusion and discussion will be given in 

the end. 
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1. Introduction 

The classic Sensitivity Coefficient Method (SCM) is widely used as a stable EIT image 

reconstruction method. Based on the Compensation Theorem [2,3], it build the sensitivity 

coefficient matrix[2], with only the first order component in the Taylor’s expansion being 

considered. The iterative procedure shows that the method is convergent and uniqueness. 

Consequently, in this research, SCM is preferred as the basic algorithm. A new idea with 

restricted region of interest (RROI) is proposed to improve the “image resolution”, and 

meanwhile do not increase the complexity of the model, and significantly reduce the 

computation load.  

 

2. Brief Introduction to SCM 
Murai and Kagawa[4] proposed to use the Sensitivity Theorem derived by Geselowitz[2] and 

Lehr to obtain the transfer impedance change Z∆  for the pairs of electrodes (A,B) and (C,D) 
when the conductivity of the field changes fromσ toσ σ+ ∆ .  

 
 
 
 
 

Figure 1. A dual-port model of SCM 
It gives the variation of the transfer impedance as  
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Taylor’s expansion is then used to give the simplified form for ( )ψ σ σ∇ + ∆ . The linearized 

Z∆ is given as [4,5] 
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This shows the general expression of sensitivity coefficient matrix. 
 

3. Restricted Region of Interest (RROI) 
Assuming a homogeneous field with a target object in it, the ideal result of the EIT inverse 

problem is to get a clear target object contour with accurate conductivity value, and other parts 

of the field (background) have a homogenous conductivity value and do not change during the 

iterative procedure. However, the background in the reconstructed image is not homogenous 

because the iteration procedure is impacted by the measurement error and random calculation 

error and modeling errors, etc. The error in background conductivity will decreases the 

reconstruction accuracy of the object, both in conductivity and contour. If the error in 

background is forced to be zero, theoretically the reverse problem should have more accurate 

solution. In this paper, the region of interest is restricted during the iterative procedure of the 

image reconstruction based on the priori knowledge of the position and size of the object(s). The 

idea is explained in Figure 2. 

 

 

 

 

 

 
(a)                     (b) 

Figure 2. The model of the restricted region of interest (RROI) method 

(a) The model of the real target;  

(b) The model of the reverse problem with the rough position and size information 

The discrete form of the SCM can be described by the matrix equation given in Eq. (3):  

1 1[ ] [ ] [ ]m n n mS Zσ× × ×∆ = ∆                           (3) 

where m is the number of independent measurements; n is the number of elements in the finite 
element model. If there is an object in the field which is surely located in a reduced range 
covered by p of finite elements, then σ∆ in all other (n-p) elements should be equal to zero in 
the ideal reconstruction results. If the σ∆ is rearranged that the p elements are next to each 

other, the new σ∆ can represent by 1[ ,... ,0,...0]T
pσ σ σ∆ = ∆ ∆ . So Eq. (3) can be rearranged 

as: 
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which is equivalent to: 
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Hence the dimension of SCM algorithm is reduced to the order of p. In theory, if p ≤ m, the 

inverse problem should have a defined solution and the image resolution in the ROI is increased. 

 

4. Simulation Results 
To test the effects from the restricted region on the SCM image reconstruction process, some 

conductivity distribution models have been setup via FEM and their forward solutions are used to 

test the proposed RROI algorithm.  

In order to get high accuracy in forward problem solution, a relative dense finite element 

mesh with 16 electrodes is used in the following study.  

(1) A model having a target object with conductivity of 0.13mS/cm in the background of 

0.12mS/cm, as shown in Figure 3(a). 

 

(a)                      (b) 

Figure 3. (a) FEM model; (b) Reconstructed image by SCM algorithm 

The Figure 3(b) shows the image from the iterative SCM reconstruction over the entire field. 

The convergence criterion is 0.001σ∆ < . The boundary of the object is blurring. The average 

conductivities of the object is 0.1223, which has 5.92% relative error.  
From the same FEM model shown in Figure 3(a), images reconstructed by RROI method with 

ROI defined in Figure 4(a)(b)(c) are shown in Figure 4(d)(e) & (f) respectively. The ROI are 
obtained with different thresholds from the SCM result.  
 

 
(a)                    (b)                    (c) 

 
                   (d)                    (e)                     (f) 

Figure 4. The RROI and reconstructed images of a single object 
(a)-(c) the different sizes of restricted ROI; 

(d)-(e) the reconstructed images from corresponding ROI shown above 

Compared with Figure 3(b), Figure 4 (d) (e) & (f) shows better contour accuracy of the object. 
And the smaller the ROI, the closer the object conductivity is to its true value. The average 



conductivities of each reconstructed object are listed in Table 1. 

Table 1 The reconstructed and true conductivities of the single object 
         value 
case 

Reconstructed value True value Relative error 

Normal 0.1223 0.1300 5.92% 
RROI of Figure 4(a)  0.1250 0.1300 3.85% 
RROI of Figure 4(b) 0.1245 0.1300 4.23% 
RROI of Figure 4(c) 0.1300 0.1300 0% 

 (2) A FEM model having 2 target objects with conductivities of 0.13mS/cm and 0.11mS/cm 

respectively in the background of 0.12mS/cm, as shown in Figure 5(a). 

 

(a)                (b) 

Figure 5. (a) FEM model; (b)Reconstructed image by SCM algorithm 

The corresponding image reconstructed by iterative SCM over the entire field is shown in 

Figure 5(b), with convergence criterion of 0.001σ∆ < . Again, the boundary of the object is 

blurring. 
Similar to Figure 4, restricted ROI regarding FEM model of Figure 5(a) is defined with 

different thresholds and shown in Figure 6 (a) (b) & (c). 
 

 
(a)               (b)                 (c) 

 
                         (d)                (e)                  (f) 

Figure 6. The RROI and reconstructed images of two objects 
(a)-(c) the different sizes of restricted ROI; 

(d)-(e) the reconstructed images from corresponding ROI shown above 

Compared with Figure 5(b), Figure 6 (d) (e) & (f) again shows better contour accuracy of the 
objects. And the smaller the ROI, the closer the objects’ conductivities are to their true values. 
The average conductivities of each reconstructed object are listed in Table 2. 

 



Table 2 The reconstructed and true conductivities of the two objects 
         value 
case 

Reconstructed 
value 

True value Relative error 

 Object1 Object2 Object1 Object2 Object1 Object2 
Normal 0.1219 0.1180 0.1300 0.1100 6.23% 7.27% 

RROI of Figure 6(a)  0.1233 0.1165 0.1300 0.1100 5.15% 5.91% 
RROI of Figure 6(b) 0.1244 0.1154 0.1300 0.1100 4.31% 4.91% 
RROI of Figure 6(c) 0.1293 0.1105 0.1300 0.1100 0.54% 0.45% 

The results show in Table 2 reconstructed with the same convergence criterion no matter if 

it reconstructed over the entire field or a restricted region. The results indicate that the relative 

errors of the objects conductivities decrease when the size of ROI is reduced. Reconstructions 

from RROI have higher reconstruction efficiency than reconstruction over the entire field. In 

other similar simulations, it has been found that the average conductivity of the object will be 

more close to the real value when the ROI is defined more close to its real shape. 
 

4. Experiment Results 

To check the effectiveness of RROI, some phantom experiments using a copper bar and a 
nylon bar as the objects have been performed. 

 
                                 (a)                 (b)             

Figure 7. Experiment Phantom(d=30cm)  
(a) A nylon bar(d=4cm); (b) A nylon bar(d=3cm) and a copper bar(d=2cm) 

 
                  (a)                        (b)                      (c) 

 
(d)                         (e)                      (f) 

Figure 8. the comparison of normal SCM and RROI 
(a) & (d) are reconstructed images by SCM over the entire field; (b) & (e) are the restricted image region defined 

by the single step SCM with a threshold; 
(c) & (f) are the reconstructed images based on RROI defined by (b) & (e) respectively. 



Figure 8 shows the SCM reconstruction results over the entire field and over a restricted 
region (RROI). The results from RROI have relative better contour accuracies compare with the 
results reconstructed over entire field. However, the measurement noises have significant 
influence to the image reconstruction with RROI. Although the Tikhonov regularization method[6,7] 
is used in the image reconstruction, when the RROI decreases to a certain extent, the image 
reconstruction tends to divergent. The noise suppression and high precise of measurements are 
critical to the proposed RROI method.  

 
5. Discussion and Conclusion 

A new reconstruction method based on RROI is proposed. Variations using FEM simulation 
results and phantom measurements have demonstrated that RROI has many advantages and 
summarized in the follows: 
(1) RROI decreases the dimension of inverse problem and hence reduces the computation load; 
(2) The reconstructed conductivity based on RROI is more close to the true value compared to 
the reconstruction over the entire field when the same convergence criterion is used; 
(3) The measurement noise could make the image reconstruction based on RROI divergent. Noise 
suppression and highly precise measurement is critical to image reconstruction based on RROI. 

In conclusion, the RROI is helpful to make EIT image more accurate and clearer. 
Demonstrations with tissue models and animal models are necessary and will be performed soon 
to further validate the effectiveness of the propose image reconstruction method based on RROI. 
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