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Abstracts 

The inverse reconstruction of EIT is severely nonlinear and ill-posed, which makes the 

resulting images unstable with a low resolution. The introduction of inverse boundary 

reconstruction makes possible to utilize prior information on the conductivity of inclusions, 

and enhance the computational performance. The calculation of Jacobian matrix is a key issue 

for iterative algorithms, as it bridges the map from boundary movements to changes on 

measurements. This paper presents a fast algorithm to calculate the Jacobian matrix for the 

inverse boundary reconstruction in EIT using the reciprocity theorem. Results are compared 

with those obtained by finite difference method, which show the performance of the algorithm. 
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1. Introduction 

Electrical Impedance Tomography (EIT) is a technique to obtain the electrical impedance 

distribution by applying different patterns of electric currents at the periphery and measuring 

the resulted voltages. It enables the production of images of biological tissues in body, as they 

display different electrical properties. It also possesses a non-intrusive nature, and advantages 

in cost, speed and safety. For these reasons, EIT is a powerful tool in clinical diagnosis and 

monitoring, such as lung diseases, heart function, beast cancer, blood accumulation and 

stomach emptying. There is also a simplified technique in industrial process imaging and 

geophysics prospecting, called Electrical Resistance tomography (ERT), which only used the 

real part of measurements. The two techniques are same in mathematical theory. The forward 

evaluation are both governed by Laplacian equation and driven by boundary conditions of 

Complete Electrode Model (CEM). 

The inverse reconstruction of EIT, referred as Calderon Inverse Conductivity Problem [1], is 

severely nonlinear and ill-posed, which makes the resulting images unstable with a low 

resolution. In recent years, a class of algorithm has received wide attention, which aims to 

determine the locations and shapes of inclusions assuming a piece-wise conductivity 

distribution. Thus, the inverse problem is called Inverse Boundary Reconstruction. This 

variation has advantages as follows. 

1) Usage of prior information on conductivity of inclusions 

The usage of prior information is an important measure to cope with the ill-posed nature arisen 

in EIT reconstruction. In many applications, the conductivity distribution is piece-wise and the 

values can be measured in advance. This prior information will be integrated in modeling the 



inverse boundary reconstruction schedule. However, the traditional Inverse Conductivity 

Reconstruction will not consider it, since the conductivity value is what the inverse solvers are 

expected to output.  

2) Enhancement on computational performance 

Since the inverse problem concerns only on boundary location of inclusions, the choice of 

Boundary Element Method (BEM) to solve the forward evaluation is reasonable, The BEM 

only requires discretization on boundaries, which leads to a much smaller size of algebraic 

equations comparing to domain-based methods. 

This paper focuses on calculating the Jacobian matrix, which bridge the map from boundary 

movements to changes on measurements, for the inverse boundary reconstruction in 2D EIT. 

This issue is of much importance, since it is a basic prerequisite for most iterative algorithms. 

Although there exist methods directly determine the boundaries, such as Monotonicity [2], 

Factorization [3] and Enclosure [4], they are only suitable for simple cases under rigid 

assumptions. Duraiswami [5] applied BEM to EIT boundary reconstruction using Finite 

Difference Method (FDM) to compute the Jacobian matrix, which requires an additional solve 

of the forward problem for each independent movement direction, and thus the calculative 

speed is limited. Otten [6] developed the direct linearization method with numerical 

integrations on boundary elements; this idea was improved greatly by Xu [7] using analytical 

quadratic BEM and strategies on the computational aspect. In this paper, we present a fast 

algorithm to calculate the Jacobian matrix using the reciprocity theorem. 

2. Jacobian matrix calculation using the reciprocity theorem 

An EIT sensor consists of an array of electrodes (typically 16 electrodes) that are distributed 

along the inner periphery of a non-conducting pipe at equal intervals. The data acquiring 

system adopts a special strategy to generate electric field and collect boundary voltage 

measurements. A constant current of low frequency is applied to an adjacent pair of 

electrodes, and the voltages measured successively from each pair of adjacent electrodes. The 

current is then switched to the next pair and the voltage measurements are repeated. This 

procedure is repeated until a full rotation of electric field around the cross-section is 

completed. 

 

Fig. 1 Electric current driven patterns and conductivity distribution 

Consider a region Ω with its conductivity distribution σ=: {σ0 in background sub-region; σ1 in 

sub-region covered by an inclusion}, see Fig. 1. The inclusion can be insulating or perfectly 



conducting, however, the conductivity of homogeneous background should be generally 

conducting due to the principle of EIT. Let Φ (Ψ) the potential distribution and JΦ (JΨ) the 

current density throughout the region driven by current pattern IΦ (IΨ), we get their relationship 

from Green’s theorem as follows. 
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If the conductivity distribution changes from σ to σ’ due to a movement on a mesh point B, 

one gets 
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where Φ’ and J’Φ are changed potential distribution and current density corresponding to σ’. 

However, the driven current is the same as the previous (I’Φ=IΦ). Then, considering the 

voltages on electrodes are constant, one gets 
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In order to obtain the Jacobian, one need calculate the limit of  
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where J is the Jacobian coefficient. We assume the current density distribution throughout the 

region does not vary considering the slight movement, and then gets 
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where α and β are the angles ABB’ and B’BC, respectively. Operations ∂/∂n and ∂/∂τ are 

derivatives in tangential and normal directions. 

3. Results 

In order to test the performance of the algorithm, consider a simple case with a circular 

inclusion. The sensor is 12.5 cm by diameter, and sixteen 1 cm-width electrodes are planted 

along the periphery. The plate and electrodes are equal in height (3 cm) thus the problem can 

be addressed in two dimensions. The amplitude of driven currents is 5 mA. The conductivity 

of homogeneous background is set to 662 mS/cm, as that of the tap water. Contact resistivity 

is set to 30 Ω cm
2
. The circular inclusion is 3 cm by radius, with its conductivity half of that 

of background. The outer periphery is meshed by 160 elements for the computation, while the 

inner is meshed by 90 elements. Quadratic analytical BEM is used to solve the forward 

problems, see Ref. [7] for details. Consider a mesh point in the inclusion which is supposed to 

move outward in the normal direction (with a tiny distance), computer the Jacobian 



coefficients with the algorithm above. The results are also compared with those returned by 

finite difference method which is time-consuming and precious, see Fig. 2. The difference 

between the results is less than 0.7%, which tells the precision of presented algorithm.  

 

Fig. 2 Comparison on Jacobian coefficients 

(Solid line: finite difference method; Circle markers: reciprocity theorem) 

4. Conclusions 

The introduction of inverse boundary reconstruction makes possible to utilize prior 

information on conductivity of inclusions, and enhance the computational performance. An 

effective algorithm to calculate the Jacobian matrix is of much importance, since it is a basic 

prerequisite for most iterative algorithms. A fast algorithm is presented, which is easy to apply, 

as the calculation is restricted to integrations on local elements. A test demonstrates its 

precision, the difference between the results is less than 0.7% compared with finite difference 

method. 
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