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Abstract. Electrodes are commonly used to inject current into the human body in

various biomedical applications such as functional electrical stimulation, defibrillation,

electrosurgery, RF ablation, impedance imaging, and so on. When a highly

conducting electrode makes direct contact with biological tissues, the induced current

density has strong singularity along the periphery of the electrode, which may cause

painful sensation or burn. Especially in impedance imaging methods such as the

Magnetic Resonance Electrical Impedance Tomography (MREIT), we should avoid

such singularity since more uniform current density underneath a current-injection

electrode is desirable. In this paper, we study an optimal geometry of a recessed

electrode to produce a well-distributed current density on the contact area under

the electrode. We investigate the geometry of the electrode surface to minimize the

edge singularity and produce nearly uniform current density on the contact area. We

propose a mathematical framework for the uniform current density electrode and its

optimal geometry. The theoretical results are supported by numerical simulations.
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1. Introduction

In biomedical applications such as functional electrical stimulation, defibrillation,

electrosurgery, RF ablation, and impedance imaging, we inject current into the human

body through a pair of electrodes or more. Electrodes are usually made of highly

conductive materials and biological tissues have moderate conductivity values of less

than a few S/m. For a typical electrode configuration, a pair of electrodes are attached

on the surface of the human body.

As analyzed by Wiley and Webster [9], there exists a singularity of the current

density along the edge of the surface electrode. This may cause painful sensation and

burn under the dispersive electrode in electrosurgery, for example. Concentration of

current density along the periphery of the electrode should be avoided in defibrillation

and RF ablation where more uniform energy transfer over a wide local region is desirable.

Previous studies on the uniform current density electrode Geuze [1], Langberg [4],

Ksienski [5], Rubinstein et al [6], Suesserman et al [7] and Tungjitkusolmun et al [8]

suggested empirical designs without a rigorous mathematical analysis; they improved

the uniformity of current density by altering either the electrode geometry or material

property based primarily on numerical simulations. Providing a rigorous mathematical

analysis of the uniform current density electrode, in this paper, we describe a novel

design of such an electrode which is quite different from any of the previous empirical

designs. Analyzing the singularity of the current density along the electrode perimeter,

we will propose a design using the layer potential technique.

2. Mathematical model of uniform current density electrode

To simplify the electrode design process, we consider the following half space model.

Let Ω = R3
− and D be the hydrogel layer. We denote by Γ ⊂ ∂Ω the skin contact

surface. Then we can express the geometry D with a function of two variables x and y.

Assume that σ is homogenous, say σ = 1 in both Ω and D. We also assume that the

boundary ∂Γ is a simply closed smooth curve, Γ is symmetric with respect to x- and

y-axis and its gravitational center is the origin. Define D as D = {r = (x, y, z) : 0 ≤ z <

φ(x, y) for (x, y, 0) ∈ Γ}, where φ is a continuous function defined on Γ describing the

electrode contact surface E = {r = (x, y, z) : z = φ(x, y) for (x, y, 0) ∈ Γ}. The hydrogel

layer D is located vertically on the flat surface of Ω.

In the half space model, the governing equation is
∆u = 0 in Ω̃∫
E
∂u
∂n
dS = I, n×∇u|E = 0

∂u
∂n

= 0 on ∂Ω̃\E ,
(1)

where Ω̃ = Ω ∪ D and lim
|r|→∞

u(r) = 0 (see [2] and [3] or [10]).

To make the hydrogel layer as short as possible, we introduce an admissible set A
defined as A = {φ ∈ C(Γ) | minΓ φ = 0} . Our goal is to get a uniform current density
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along the contact surface Γ, that is,

to find an optimal φ ∈ A which minimizes Φ(φ) =

∫
Γ

∣∣∣∣∂uφ∂n
− αφ

∣∣∣∣2 dS, (2)

where uφ satisfies (1) and αφ = 1
|Γ|

∫
Γ
∂uφ

∂n
dS. Here the superscript φ in uφ represents the

dependence of the solution u on the geometry of the domain Ω̃, that is φ.

The key idea to solve the optimization problem (2) is to use the following

special potential: w(x, y, z) =
∫

Γ
1

4π
√

(x−x′ )2+(y−y′ )2+z2
dx

′
dy

′
. We now introduce a new

minimization problem which is closely related to the minimization problem (2):

to find an optimal φ ∈ A which minimizes (3)

Ψ(φ) =
1

2

∫
Γ

|φ(x, y) + w (x, y, φ (x, y))− w (0, 0, 0)|2 dxdy.

The above problem (3) is tractable because the objective functional depends on

φ explicitly. Indeed, the minimizer is obtained by solving the simple equation of

φ(x, y) + w (x, y, φ (x, y)) = w(0, 0, 0) for each (x, y) ∈ Γ.

By introducing ũ in Theorem 2.1 below, we can transform the highly nonlinear

problem (2) into a much simpler problem of finding a level surface of ũ; a solution of

(3) is simply the level surface {(x, y, φ(x, y)) | ũ(x, y, φ(x, y)) = ũ(0, 0, 0), (x, y) ∈ Γ}.
With this φ, ũ will satisfy the boundary conditions in (5). We should note that ũ is

independent of φ and ∂ũ
∂n

is constant over Γ.

Theorem 2.1. Suppose φ ∈ A is a minimizer of (3). Define

ũ(r) :=

{
w(r) in Ω

w(r) + z in D,
(4)

where D is set vertically on Ω. Then ũ satisfies
∆ũ = 0 in Ω̃

∇ũ× n = 0 on E
∂ũ
∂n

= 0 on ∂Ω \ Γ

(5)

and ∂ũ
∂n

= 1
2

on Γ. Moreover, E lies on the surface {r ∈ R3
+ : w(r) + z = w(0)}.

It is crucial to observe that we can trim the hydrogel layer D to produce a perfectly

uniform current density on Γ. For a positive ε ≈ 0, we denote Γε = {r ∈ Γ| dist(r, ∂Γ) >

ε}. To properly trim the lateral side Vφ of D so that ∂ũ/∂n = 0 along Vφ, we chop Vφ
using the trajectory of {

ζ ′(t) = ∇ũ(ζ(t))/|∇ũ(ζ(t))|
ζ(0) = p p ∈ Γε,

(6)

as depicted in Figure 1 (that is, the method of characteristics). Then, we have
∂ũ
∂nr

= nr · ∇ũ = 0, where nr is the normal direction of the trimmed lateral surface

of D.
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(a) 3D configuration (b) Cross section of (a)

Figure 1. Trimming process to produce a perfectly uniform current density.

3. Design examples

For practical reasons, we chose two kinds of contact surfaces including a rounded

rectangular surface and a circular surface. For the rounded rectangular surface, we set

the size of the rectangle as 1.1 and the radius of the 1/4 circle at the corner as 0.1. To

trim the edges of the electrodes, we chose ε = 0.01 and used the Euler method to solve

(6) to get Γε and Eε. After this trimming process, we obtained the optimal electrode

shapes in Figure 2.

Figure 2. Final designs of two uniform current density electrodes after applying

trimming process.

We present numerical simulations of current density distributions obtained using

two different electrodes including the circular electrode directly attached on the skin and

the circular uniform current density electrode shown in Figure 2. Figure 3 shows vector

plots of ∂u
∂n

along Γ for the two cases of (a) and (b). Table 1 summarizes computed

values of the ratio maxΓ ∂u/∂n
minΓ ∂u/∂n

over Γ.

Mesh size 1/20 1/30 1/40

Ratio for (a) 2.35 2.83 3.71

Ratio for (b) 1.22 1.30 1.31

Table 1. Values of the ratio maxΓ ∂u/∂n
minΓ ∂u/∂n over Γ for three difference mesh sizes. (a)

and (b) indicate the two cases using the simple and uniform current density electrodes,

respectively.
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   (a) (b)

Cross section of (a) Cross section of (b)

Figure 3. Plots of current density distributions ∂u/∂n along Γ computed by using

meshes with 1/40 size. The left and right plots correspond to the simple and uniform

current density electrodes, respectively.
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