Improved bibliographic reference parsing
based on repeated patterns

Guido Sautter & Klemens Bohm

International Journal on Digital @ 3
ISSN 1432-5012

Libraries

Int J Digit Libr
DOI 10.1007/s00799-014-0110-6

Digital Libraries

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag Berlin Heidelberg. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Int J Digit Libr
DOI 10.1007/s00799-014-0110-6

Improved bibliographic reference parsing

based on repeated patterns

Guido Sautter - Klemens Bohm

Received: 31 October 2012 / Revised: 30 January 2014 / Accepted: 6 February 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract Parsing details like author names and titles out
of bibliographic references of scientific publications is an
important issue that has received considerable attention
recently. However, most existing techniques are tailored to
the highly standardized reference styles used in the last two to
three decades. They do not perform well with the wide vari-
ety of reference styles used in older, historic publications.
Thus, they are of limited use when creating comprehensive
bibliographies covering both historic and contemporary sci-
entific publications. This paper presents a generic approach
to bibliographic reference parsing, named RefParse, which is
independent of any specific reference style. Its core feature is
an inference mechanism that exploits the regularities inherent
in any list of references to deduce its format. In addition, our
approach learns names of authors, journals, and publishers to
increase the accuracy in scenarios where human users double
check parsing results to increase data quality. Our evaluation
shows that our approach performs comparably to existing
ones with contemporary reference lists and also works well
with older ones.

Keywords Parsing - Bibliography data - Algorithms

1 Introduction

Bibliographies covering both historic and contemporary
publications in comprehensive ways are more and more

G. Sautter (X)) - K. Bohm

Karlsruhe Institute of Technology (KIT),

Am Fasanengarten 5, 76128 Karlsruhe, Germany
e-mail: sautter@ipd.uka.de

K. Bohm
e-mail: klemens.boehm @Xkit.edu

Published online: 27 February 2014

important in many scientific domains. In biodiversity, for
instance, some currently ongoing projects [8,25] aim at creat-
ing such bibliographies. While publication indexing services
like Citeseer! [6] and Google Scholar? are very helpful with
contemporary documents, they are less useful with histori-
cal ones, which might not even be available in digital form.
However, many historic publications have been cited many
times, so their metadata are available from the bibliographies
of other publications. Thus, there is a good chance to find a
digital version of at least some of the metadata.

Extracting bibliographic references in a more fine-grained
form than plain strings requires parsing. In particular, this
includes identifying individual attributes of the referenced
work, e.g., the paper title and the names of the authors. Only
this level of detail enables advanced processing of the data,
for instance detailed search, or identification and reconcilia-
tion of different reference strings that point to the same work
[12,14]. Examples of other, yet higher-level applications are
the disambiguation and identification of author names [9],
i.e., identifying the actual person an author name stands for
and online data integration in federated search applications
like DAFFODIL [4,16].

In a wider context, bibliographic metadata, which can
be parsed from bibliographic references, play an important
role for indexing and retrieval in digital object reposito-
ries like Greenstone? and Fedora.* In particular, the primary
objects stored in such systems are not necessarily full-text
indexable, for instance if they consist of (scanned) images
or movie clips. This makes their metadata the sole search-
able part, and thus indispensable for access. This scenario is

1 http://citeseerx.ist.psu.edu/index.
2 http://scholar.google.com.
3 http://www.greenstone.org/.

4 http://fedora-commons.org/.

@ Springer

http://citeseerx.ist.psu.edu/index
http://scholar.google.com
http://www.greenstone.org/
http://fedora-commons.org/

G. Sautter, K. Bohm

common in digital preservation, rendering metadata in this
field even more important. For preserved literary works and
other books in particular, as available from Google Books?,
Internet Archive®, Europeana’, or the Biodiversity Heritage
Library® [8], parsing a bibliographic reference extracted from
some other work is a convenient way of obtaining the meta-
data, in contrast to entering it manually. Another applica-
tion of bibliographic reference parsing is the extraction of
detailed references from publications, as done by Citeseer
[6] to determine which publication cites which other ones.
This may take place for the purpose of indexing as well as to
facilitate bibliometric analysis.

There are several essential terms we use throughout this
paper: a (bibliographic) reference string is the unparsed ref-
erence as a whole, as found in the references section of this
paper. The data elements are the individual attributes of the
referenced work, e.g., author names and year of publication.
The reference style is the arrangement of the data elements in
a reference string, i.e., their order and their separating punc-
tuation. A reference list corresponds to the references section
of a publication; it comprises one or more bibliographic ref-
erences formatted with the same style.

Several reference parsing algorithms [1,10, 18] have been
proposed in the recent past. There are two main categories: (1)
pattern-based parsers like ParaCite [18] use regular expres-
sion patterns to match the individual elements of biblio-
graphic references; these patterns are manually arranged
in meta-patterns that reflect the order of the elements in
reference style guides. (2) Training-based techniques like
[1-3,7,10,11,13,24,26] use supervised learning to generate
models of reference strings and the details they consist of
from pre-parsed training examples.

However, both sorts of parsing algorithms mostly aim at
the bibliographies of contemporary publications, which are
highly standardized and follow one of only a few styles. The
styles used for bibliographic references in the past are more
manifold, so there is a lot more variation. This significantly
increases the amount of training data required by training-
based techniques to achieve good results. Furthermore, older
references often make excessive use of abbreviations, which
pose additional morphological challenges to pattern match-
ing, and straightforward lookups in dictionaries and knowl-
edge bases are not feasible. In consequence, ensuring data
quality with the existing algorithms would require manual
corrections of significant extent.

To improve parsing accuracy for the bibliographies of his-
toric publications, this paper presents a new parsing algo-
rithm named RefParse. RefParse integrates and generalizes

3 http://books.google.com.
6 http://archive.org.
7 http:/europeana.eu.

8 http://www.biodiversitylibrary.org/.

@ Springer

approaches taken in previous works. In addition, it has sev-
eral distinctive novel features: (1) it handles entire lists of ref-
erences together. This facilitates exploiting the redundancy
contained in such lists, on several levels. (2) It is truly inde-
pendent of any particular reference style because it infers the
style at hand at runtime. (3) It makes data quality control
an integral part of the parsing process and learns from the
manual corrections by users.

Technically, RefParse builds on both categories of pars-
ing algorithms mentioned above, additionally incorporating
manual correction and online learning. In particular, Ref-
Parse integrates four basic mechanisms: (1) RefParse uses
regular expression patterns to match the individual elements
of bibliographic references, similar to ParaCite, adding fuzzy
dictionary lookups to recognize instances of data elements
learned from previously parsed references, also covering
abbreviated forms; (2) it represents the arrangement of the
data elements in meta-patterns, again similarly to ParaCite,
but dynamically infers the reference style in use instead of
requiring it to be entered explicitly before deployment; (3)
it optionally (in interactive mode) includes user interaction
to improve parsing accuracy; and (4) after user approval, it
learns concrete instances of specific data elements to recog-
nize them later, namely the names of persons (authors and
editors), periodicals, and publishers. The values of these ele-
ments are likely to reoccur in other reference lists from the
same scientific domain that might be parsed in the future.

The basic ideas behind RefParse are inspired both by
a thorough investigation of real-world data and by related
work. In particular, RefParse combines previous work as
follows: patterns, as used in [18], can reliably identify data
elements with distinctive morphological properties, such as
numeric elements, and these elements are helpful in delimit-
ing other elements from one another. However, such delimi-
tation tends to fail if the data elements relied upon are them-
selves ambiguous, e.g., in references whose title includes
numbers. To resolve ambiguous cases, RefParse aligns pos-
sible arrangements of data elements across entire reference
lists against one another, akin to [1,11], exploiting that all
references follow the same style. By doing so, it can tell,
for instance, that a four-digit number cannot be the year of
publication if it occurs in a position where a majority of the
references do not include numbers. Finally, RefParse uses
a hybrid of knowledge-based techniques [2,3] and hidden
Markov models [10,24,26] to extract names of periodicals
and publishers.

In more detail, RefParse works as follows: first, it finds
the data elements that are easy to identify based on morpho-
logical clues (Steps 1 and 2 below), so-called base elements.
Second, it disambiguates and verifies the positions of the
base elements in the reference style at hand by comparing
the references in a list to each other (Steps 2 and 3). Third, it
uses the base elements as auxiliary delimiters to extract the

http://books.google.com
http://archive.org
http://europeana.eu
http://www.biodiversitylibrary.org/

Improved bibliographic reference parsing

remaining data elements (Steps 4-6). In interactive mode,
i.e., with users correcting the parsing results, there is a fourth
stage in which RefParse prompts users for corrections and
then learns from their input (Steps 7 and 8). We explain all
the steps in detail in Sect. 4; here is an overview:

1. Identify possible values of the base elements, e.g., the year
of publication, the pagination, and possible lists of author
names. Besides morphological clues, also use dictionaries
of data element values learned in the past, e.g., for author
names.

2. Decide on the style of the author lists, e.g., the punctuation
scheme used for individual names and the order of first
name and last name. This works by means of a majority
vote on the position, punctuation scheme, and name part
order of all possible author lists. Consider only author
lists that match the inferred style in subsequent steps.

3. Generate all possible orders of the candidate data ele-
ments identified in Step 1, also observing punctuation
marks separating them. Then derive the actual order of
data elements by means of a majority vote. Afterward,
extract the actual values of the base elements based on
the identified element order.

4. Identify possible embedded references to volumes, con-
sisting of a volume title and potentially a list of editor
names. Parse these embedded references recursively.

5. Identify the names of periodicals, titles of proceedings,
and names and locations of publishers, whichever are
present in the individual references.

6. Identify the titles of referenced works. Titles are the last
data element identified because they exhibit the least reg-
ularity.

7. Ininteractive mode, have one or more users double check
the parsing result, to ensure data quality.

8. Remember data element values that are likely to reoccur
in other references, e.g., names of persons (authors and
editors), names of periodicals, and names and locations
of publishers.

This strict bottom-up approach renders RefParse mostly
immune to erroneous or incomplete references. Namely, it
works only with the data elements it actually finds candi-
date values for. In particular, this means that RefParse does
not make any assumptions as to which data elements should
be present. The latter is generally impossible to tell without
knowing which kind of work a given reference string refers
to, and RefParse does not make any assumptions in this latter
regard.

RefParse works on plain text reference strings, which it
tokenizes and dehyphenates internally before the actual pars-
ing begins. We are aware that formatted text, like RTF or
HTML, might contain further clues as to where specific data
elements start or end, namely changes in the font style or

even the font proper. However, RefParse does not exploit
such clues for the sake of generality; in addition, the seman-
tics of layout changes can vary considerably.

Our evaluation on a large body of reference lists from
the biosystematics domain from the last 200 years shows
that RefParse performs comparably to or better than previ-
ous approaches for contemporary reference lists, and that it
also works well with historic ones. The latter is due to the high
degree of flexibility RefParse has with regard to the reference
style. Its results are already better in fully automated mode,
i.e., without user interaction and runtime learning, achiev-
ing 94.3 % word accuracy on average. When users correct
the parsed references, RefParse can extend its dictionaries
at runtime. This increases word accuracy to 96.6 % in our
experiments, meaning that users have to make corrections
for only <4 % of the words. The latter makes RefParse very
promising for community-backed construction of compre-
hensive bibliographies for entire scientific domains, like the
bibliography of life effort currently undertaken as part of the
ViBRANT project [25].

This paper extends a previous, shorter paper [22] at the

content level in two ways: first, the solution described here is
more refined than the earlier one. For instance, we now inves-
tigate a dictionary-related phenomenon we had observed in
the short version and devise countermeasures. Second, this
paper features a description and evaluation of RefParse in
interactive mode, an extension that adds online learning capa-
bilities and is particularly important in real-world applica-
tions.
Paper Outline Section 2 describes the basic types and ele-
ments of bibliographic references and presents problematic
cases. Section 3 discusses related work. Section 4 presents
our generic approach to bibliographic reference parsing,
which we systematically evaluate in Sect. 5. Section 6 con-
cludes.

2 Basics of references

This section describes the basics of bibliographic references
in our context. From a sample of the documents we strive to
extract detailed references from, we have compiled the types
of works references can point to, the data elements they com-
prise, and the frequency of the data elements. To ensure the
generality of our data model, our lists of data elements and
types of work closely follow the widely used and largely uni-
versal BibTeX [19]: the list of types overlaps considerably
with the one of BibTeX, but is not a subset of it; because they
often comprise the same or nearly equivalent data elements
in practice, we conflate several types. On the other hand, Bib-
TeX does not cover references to volumes of periodicals. The
list of data elements is a subset of the one of BibTeX. Again,
we conflate several elements for practical reasons. This is
because they are harder to distinguish morphologically than

@ Springer

G. Sautter, K. Bohm

based on the other data elements they occur in the same refer-
ence with: for instance, while both names of periodicals and
names of publishers are generic proper names, the former
usually occur together with a volume number, and the latter
without. On the other hand, RefParse can handle a broader
variety of data element values (especially person names) than
covered by the BibTeX guidelines; this has turned out nec-
essary to handle existing data.

Table 1 lists the reference types and data elements Ref-
Parse works with, together with examples and a mapping to
BibTeX. In addition, the remainder of this section discusses
some of the data elements and their characteristics and pecu-
liarities in more detail.

The author names identify the creators of a referenced
work. Bibliographic references often give a combination of
a first name or initial and a last name (the same for edi-
tor names, if present). Depending on the country a person
comes from, last names in particular can be rather complex,
e.g., Spanish ones, not to mention double names. Depending
on the reference style, the first and last names can occur in
multiple orders and with various punctuation schemes, and
the order of occurrence can change within a reference. In
particular, the latter happens if the first author is given the
last name first, and all subsequent authors the first name first.

Author names can further include several optional parts
besides the first and last name: middle initials (e.g., “Alex U.
Thor”), leading initials (e.g., “S. Edward Cond”), or middle
names, affixes that refer to a generation (e.g., “Jr.” or “IV.”)
or anoble title (e.g., “Duke of York™), or infixes like “van” or
“von der”. Depending on the reference style, these optional
parts may occur in several positions and with various punc-
tuation schemes. See Tables 1 and 2 for additional examples.

The author names are present in almost all bibliographic
references. However, there are a few noteworthy exceptions:
(1) they can be omitted if they are the same as the ones of
the work whose reference precedes the given one in a refer-
ence list; (2) web pages may not have explicit authors in a
bibliographic sense, or they are unknown, as is the case with
Wikipedia articles; (3) references to publications like official
reports of government agencies rarely include author names.
In these cases, we have to avoid mistaking some other part
of the reference string for author names.

References to journal volumes or articles almost always
comprise the name of the periodical. These names usually
rather uniquely identify the periodical by themselves, i.e.,
without requiring the actual publisher of the periodical in
addition. This holds at least for major periodicals and at least
within individual scientific domains. The names of periodi-
cals issued by (scientific) institutions often include the name
of these institutions or parts thereof. Periodical names are
proper names and thus usually in title case. They can be very
short, down to single words (e.g., “Nature” or “Science”), but
they also can comprise eight or more words (e.g., “Transac-

@ Springer

tions of the Royal Entomological Society of London”). Espe-
cially the latter periodical names are often abbreviated, with
stop words like prepositions and determiners omitted (e.g.,
“Trans. Roy. Ent. Soc. Lond.”). Apart from dots in abbrevi-
ations, periodical names close to never include punctuation
marks.

In references to publications that consist of multiple phys-
ical volumes, part designators indicate in which of them to
find the referenced work. They are highly common for peri-
odicals, but can occur for books and manuscripts as well.

There is no consistent or even compulsory designator
scheme for individual physical volumes of periodicals. Here
are the most common variants (Personal Correspondence
with Terry Catapano, Columbia University Library, New
York, NY, USA):

— Physical volumes have consecutive volume or issue num-
bers.

— Physical volumes are bundled into logical ones (e.g., by
year of publication), distinguished by consecutive issue
numbers that can run across logical volumes or start over
at 1 with each new volume. Especially in the latter case,
there can additionally be a numero that increases with
each physical volume across logical volumes.

— Physical volumes are numbered like in the previous bul-
letin, but with the roles of volume and issue numbers
swapped.

Volume, issue, or numero designators are usually num-
bers, mostly Arabic, less commonly Roman ones. Preceding
respective labels like “vol.”, “issue”, or “no.” are not uncom-
mon. If two part designators are given, most commonly vol-
ume and issue, they often occur without labels, next to one
another, with the issue designator in brackets.

There can be even more subdivisions in periodicals, e.g.,
series. Further, books and manuscripts can the printed in mul-
tiple volumes or fascicles, respectively.

3 Related work

The problem of parsing individual data elements out of bib-
liographic reference strings has received considerable atten-
tion in the recent past. The approaches fall into two general
categories: (1) pattern-based parsers like [18], and (2) parsers
generated from training data by means of machine learning.
The latter approaches again fall into three subcategories: (2a)
classic machine learning-based parsers using statistical mod-
els [7,10,13,24], (2b) parsers relying on knowledge bases
created from training data [2,3], and (2c) parsers based on
sequence alignment algorithms [1, 11], which were originally
developed for protein sequence alignment.

Improved bibliographic reference parsing

suonensny[
UM ‘sam3y (9j0u)
ON ON ON ON ON ON juonbarg L1 ¢ddorg UONBULIOJUT JUSIUOD)
SOX arey arey ey ey ey arey 10d 1o TIN Auy (14n) Joynuapt [eNSIq
ON juonbaig ON ON juonbarg ON Ioyne 39§ (1011pa) 1031pH
Kuo
Sonsst
ON SR ON eroads ON SR ON I 23S (3pPN[00Q) [T} AWNJOA
ysep
Kq poyeredos
sIaquinu
(orqery
ON juonbai ON SOX ON SOA ON Apsowr) om[, (so3ed) uoneurdeq
[29®]
(s[resop s Afqrssod
10J 1X9) 299) ‘roquinu (Qwnj[oA)
ON SR SR JSUSS SIY) Ul JON (o1qery ApSoIn) J1012U31S9p 1Bd
reunol
Jo ansst [eroads reuanol “JSIH ‘1eN “Inof
se paysiqnd Jo onsst [eroads ‘Teumof gaIA (reuanol)
ON s3urpaasouad Jp se paysiqnd J1 SR SR ON ON 90URI0G “QInjeN QuIkU [BIIPOLId]
(uoneodo| [(uonninsur) Anunod (ssaippe)
QOUAIRJUOD Y} 3q 1oystiqnd jo JI0/pue d1e)s YIm uoneorqnd
ON os[e ued) juanbarg ey arey QUIBU UT JOU JI| SOX Aqqrssod ‘K30 Auy Jo aoe[q
BpLIO[] (Tooyos
Jo "ATu() ‘ssaig ‘aonnjnsur
"ATU[) pIeATEH ‘roysiqnd)
ON arey ey ey ey (umounyun jou Jr) SO ‘uewney] ueSIOA Qureu 1ysiqng
(0012 0091] (1eak)
umouy WOIy Iquunu uoneorqnd
XY J1 SOA SOA SOA SOA SOX SOA J1qery JISIP-IN0J JO JBx
3ugf Aue
(.pepnun,, JAey ‘Suryihue
Kuo M pymnsqns urejuod ued
SOA SOA SOA SOA sonssI [e1oadg 9q UBd) SOX SOA ‘sonLIe[N3aI ON (opn) apiL,
‘N VY I IOy, ueA
(uonisod 1oyne (uonsod “If () 'V ‘I0YJ, ueA
ur paoerd Joyne ur ‘UeA () Y “If ‘T0Y],
nq ‘sIo)pa (S1031p2 9q pooerd s1031po “If ‘UBA) "V Ioy],
umouy J| SOX. U21J0) Sox SOX. OS[e UBd) SOX. SOX. 2Qq OS[e Ued) SOX “If IOYJ, UBA ") 'Y (ToyIne) JoyINy
(s3urpaaooidur) (uonooroour (stsayprasewr
1oded (s3urpaoooid) (oronue) oronIe (suou) awnjoA “yooqur) ‘sisaypyd
(suou) TN s3uIpaaooId s3urpaasoid [eumoyr [euwmoyp 191deyd yoog J00q) Joog JIeuralI 1o (sowreu
A3ojoydrows XoL1a1d)
(sewreu X1 qrg) 01 SOUAIJAI UT JUALINIIO) /sordurexyg JUSWR[R BIR(

SOOUQIRJAI 9ANOAdSAI UT SJUSWII[S BIEp Puk syIom Jo sadA, T I[qeL

pringer

As

G. Sautter, K. Bohm

Table 2 The name Alex U. Thor

Name part order
in different styles

First name style

Name style ID Examples

Last name last

Last name first

last name last

Last name first

Written out

Written out

Initials

Initials

FL-N Alex U. Thor Alex Thor
Alex U. THOR Alex THOR
Thor, Alex U. Thor, Alex
THOR, Alex U. THOR, Alex
FL-1 A. U. Thor AU Thor

A.U. THOR AU THOR
LF-1 Thor, A. U. Thor, AU

THOR, A. U. THOR, AU

Thor AU THOR AU

LF-N

Pattern-based parsers like ParaCite [18] rely on morpholog-
ical clues to identify the individual data elements in biblio-
graphic reference strings. They represent the reference style
as meta-patterns concatenated from the patterns for the indi-
vidual elements. Patterns are well suited to identify certain
data elements based on morphological clues, e.g., years of
publication, person names (authors, editors), part designa-
tors, or names of periodicals and publishers. However, the
meta-patterns have to be created manually at configuration
time. This renders the approach incapable of self-adapting to
reference styles not covered by the training data. In conse-
quence, RefParse uses patterns only for the identification of
individual data elements whose instances have a distinctive
morphological structure. It uses other means to identify the
remaining data elements, which we describe in Sect. 4, and
it infers the reference style automatically at runtime.

Classic machine learning-based parsers use statistical mod-
els to identify the individual data elements in bibliographic
reference strings. There have been several approaches using
hidden Markov models [10,24,26], as well as finite state
transducers [13]; ParsCit [7] in turn uses conditional random
fields. The major weakness of all these approaches is the need
for parsed training data for supervised learning, which must
cover all reference styles the parser is to process later on.
While such data are readily available in sufficient amounts
for many contemporary reference styles, this is not the case
for the multitude of older styles used in historic publications,
where obtaining a sufficient number of representative train-
ing examples can become a major bottleneck and cost factor.

Knowledge-based parsers [2,3] follow a somewhat different
approach: instead of statistical models, they create knowl-
edge bases from their training data. FLUX-CiM [2] divides
reference strings into blocks at punctuation marks and then
classifies these blocks by means of lookups in a knowledge
base. Cortez et al. call it unsupervised because the data they
populate the knowledge base with is readily available for their
test sets. However, FLUX-CiM actually does require parsed
training data. This makes it supervised learning, no matter

@ Springer

whether that data is readily available or not, and in addition
the training data have to be from the scientific domain as the
references to parse. The latter is to make sure that at least
some percentage of the knowledge base lookups actually
results in a match. Respective data cannot be assumed to be
readily available for the reference lists found in historic publi-
cations. In addition, FLUX-CiM achieves its lowest accuracy
for the most important data elements, namely the title of the
referenced work and the name of the periodical it has been
published in. Further, the evaluation by Cortez et al. only
covers two contemporary reference styles and uses homoge-
neous test sets exclusively consisting of references to arti-
cles published in periodicals and conference proceedings. It
is unclear how FLUX-CiM would perform on heterogeneous
reference lists that also comprise references to other types of
publications listed in Sect. 2: references to books and book
chapters in particular are very common in life science pub-
lications. An additional problem with historic reference lists
is that they often include abbreviated data elements, which
(1) have internal dots that interfere with the blocking and
(2) make knowledge-base lookups highly challenging. The
latter means that abbreviations need to be matched against
knowledge-base entries, which are usually not abbreviated.
Approaches that focus on contemporary reference lists do
not address this problem. INFOMAP [3] creates a hierarchi-
cal, domain-specific template base from its training data. In
the parsing process, it matches the reference strings against
these templates. These researchers have focused exclusively
on references to articles published in periodicals in their eval-
uation [3]. As mentioned before, however, reference lists of
life science publications often are more diverse. Again, the
performance on heterogeneous reference lists like the bibli-
ographies of real-world publications is unclear.

Despite its drawbacks when used as the main basis for
parsing, the knowledge-based approach is promising for data
elements whose instances are likely to occur multiple times.
In particular, RefParse can use dictionaries of person names,
names of periodicals, and publisher names and locations,
facilitating recognition of names seen previously. Further-

Improved bibliographic reference parsing

more, RefParse can use statistics on the probabilities of words
to be part of periodical or publisher names to find the bound-
ary between either of the latter and the publication title. This
is particularly helpful with references whose periodical or
publisher name is not in the respective dictionary as a whole,
but includes words that are frequent in such names. However,
RefParse does not depend on these dictionaries and statistics,
and thus does not require training data; it uses them solely as
a means of improving parsing accuracy. In interactive mode,
i.e., when users double check and correct parsing results, Ref-
Parse extends both the dictionaries and the statistics at run-
time. If available, readily compiled dictionaries from external
sources can be integrated as well. To handle abbreviations,
dictionary lookups use a respective fuzzy matching mecha-
nism. Lookups in the statistics on individual words in turn
do not do so. This is because this would be too ambiguous
and thus too likely to incur errors.

Sequence alignment based parsers [1,11] employ algorithms
originally developed for protein sequences; the classes of
individual words, numbers, and punctuation marks take the
place of the base pairs. They rely on a large base of tem-
plates generated by means of supervised learning. Alignment
matches the reference strings to parse against these templates
and extracts the most similar one. The latter then specifies
how to split the reference strings into the individual data ele-
ments. As with the machine learning techniques discussed
above, the main drawback of sequence alignment parsers is
their need for parsed training data. It has to include examples
for all possible reference styles to make sure the parser has a
respective template available. A second drawback is that data
elements with widely varying instances, such as the title, are
highly challenging for alignment. This is because they need
to match a template from the training set. A third weakness
is that only the best matching template is considered for each
reference string; when parsing a list of references that follow
the same style, it seems more promising to select the tem-
plate that is the best match from a global point of view, i.e.,
for all references in synopsis.

RefParse uses the alignment approach to identify the posi-
tion and delimiting punctuation of data elements that occur
in many reference strings within a list, and whose possible
instances can be identified based on morphological clues.
In particular, these elements are the list of author names,
the pagination, the part designators, and the year of publica-
tion. Data elements whose instances vary widely across ref-
erences, e.g., titles, are not subject to the alignment. RefParse
extracts them later on and thereby avoids having to deal with
their variety at this stage. RefParse then generates all possible
arrangements for all identified data elements from all refer-
ences in a list and then selects the globally best one by means
of mutual alignment. The underlying assumption is that all
references in a list follow the same (to-identify) style. This

mechanism is different from [1,11] in that it does not match
the alignments against a pre-existing set of templates learned
ina training phase, but against one another. In addition, it con-
siders multiple arrangements per reference string. As a con-
sequence, RefParse is truly independent of any training data
or particular reference style. Furthermore, RefParse does not
depend on matching references against previously learned
templates, where missing data elements can prevent a match
and thus incur errors [24]. It works strictly bottom-up, start-
ing from the data elements it finds candidate values for, and
without making any assumption which data elements should
be present. The latter naturally varies depending on the kind
of work a reference refers to. Not making any assumption in
that regard inherently also renders RefParse mostly immune
to erroneous or incomplete references.

4 The refparse algorithm

This section explains the RefParse algorithm in detail. First,
we introduce three running examples to illustrate our expla-
nations. Second, we explain the basic design of RefParse and
the rationale behind it, and finally we go through the parsing
process step by step.

There is one basic assumption behind RefParse: all bib-
liographic references in the respective section of a publica-
tion are formatted in the same way. This applies both to the
formatting of lists of person (author/editor) names and to
the order of the individual data elements in the references.
This assumption is reasonable: a thorough investigation of
the Plazi Corpus (a corpus of over 1,000 real-word docu-
ments from the last 200 years, see Sect. 5.1) has not revealed
any counterexamples.

The design of RefParse is the result of a thorough inves-
tigation of both real-world bibliographic reference data and
the specific strengths and weaknesses of previous approaches
to bibliographic reference parsing. RefParse is geared toward
maximum result accuracy in real-world application scenar-
ios. Our evaluation and experimental comparison to related
work (cf. Sect. 5) shows that RefParse does meet this design
goal.

4.1 Running examples

This section introduces three running examples we will use
to illustrate the explanations to come. Each one represents
a class of cases that might even appear constructed at first
glance. However, they are too frequent in practice to be
ignored.

Example 1 is a reference to a single page journal article; it
illustrates the ambiguity of numerical elements and helps
explain how RefParse disambiguates them:

@ Springer

G. Sautter, K. Bohm

Thor, AU, Cond, SE. This is the article title. The Particular
Journal 1976 (1998): 1987.

In particular, each of 1976, 1988, and 1987 could be the
year of publication, but one actually is the volume number
and one the pagination. It is impossible to figure out which
one is which without making any assumptions regarding the
order of these data elements or their intermediate punctua-
tion. It is a core design feature of RefParse to not make such
assumptions to achieve maximum generality.

Example 2 is a reference to a conference paper; it illustrates
the occurrence of numbers that are not numerical elements,
but parts of others (the proceedings title, in this case), and
how RefParse avoids mistaking them for numerical elements.

Thor, AU. The paper title. In: Proceedings of the 19th
International Conference on Things and Stuff (ICTS 2012),
The Venue, 2012.

Example 3 is areference to a book that includes a DOI some
parts of which resemble a pagination element; it illustrates
the pitfalls encountered in references to contemporary pub-
lications and how RefParse avoids falling into them.

Thor, AU. The book title. Somewhere: The Publisher, 201 1.
doi:10.1000/182-184.

We will refer to any of these examples where it eases
understanding.

4.2 Basic design

The basic ideas behind RefParse are inspired both by thor-
ough investigation of real-world bibliographic references and
by the experiences and evaluation results reported in related
work. In particular, some data elements exhibit a highly dis-
tinctive structure and thus are easy to identify by means of
patterns. Very high field accuracy values (cf. Sect. 5.1) for
respective elements corroborate this assumption. The most
prominent element with this characteristic probably is the
year of publication, a four-digit Arabic number. In addition,
it occurs in many references. This makes it a reliable means
of delimiting other data elements whose structure is less dis-
tinctive, e.g., author names and title.

However, investigation of real-world data also shows that
such a delimitation scheme often causes trouble with refer-
ences that comprise more than one four-digit number, e.g.,
as a part designator or as part of the title or volume title, as
in Example 2. The same applies to other numeric elements
as well, namely pagination and part designators. The actual
semantics of a number, i.e., which data element it belongs to,
in general is only clear in its context, and the context may be
confusing as well occasionally.

To illustrate the latter, look at Example 1: it is impossible
to reliably tell even for a human which of the three numbers
is the volume number, which one the year or publication, and

@ Springer

which one the page number. Their order gives some clues,
but they are insufficient to be sure.

While this ambiguity is not unlikely for individual refer-
ences, it rarely occurs across an entire reference list. Because
all references in a list follow the same style, their data ele-
ments have the same position. Thus, comparing possible
arrangements of data elements across a reference list can
resolve ambiguous cases.

Now, suppose the reference from Example 1 occurs in a
bibliography together with the following one:

Cond, SE. Some other article title. Another Journal 16
(1995): 23-28.

In this latter reference, it is rather obvious that 16 is the
volume number, 1995 the year of publication, and 23-28 the
pagination. This clarifies the order of the numerical elements
and thus facilitates understanding the semantics of the num-
bers in Example 1. We refer to this clarifying reference as
Example 1a in the following.

Capitalizing on this observation, RefParse works as fol-
lows: first, find the data elements that are easy to identify
based on morphological clues (Steps 1 and 2 below), referred
to as the base elements. Second, disambiguate and verify the
positions of the base elements in the reference style at hand,
exploiting that all references in a list follow the same style
(Steps 2 and 3). Third, use the base elements as auxiliary
delimiters to extract the remaining data elements (Steps 4-6).

RefParse can work in two modes: in fully automated
mode (Steps 1-6 only, Steps 7 and 8 are omitted), it works
autonomously, like any other reference parsing system; in
interactive mode (Steps 1-8), it has users double check and
correct parsing results to ensure data quality in practical
deployment; it furthermore learns from user corrections.

4.3 Parsing steps

RefParse works in eight steps, as visualized in Fig. 1. It
processes all bibliographic references from the bibliography
section of a publication together. The references go through
the parsing process in parallel, i.e., one step runs on all ref-
erences before proceeding to the next step. The first six steps
run in both fully automated and interactive mode, and the last
two steps in interactive mode only.

In the following explanations, the term references gener-
ally refers to the references that make up the bibliography
section of a publication; preceding reference means the one
preceding the one under investigation in the reference list,
i.e., the one right above it. The parsing of Example 1 in the
context of a similarly formatted list of references (represented
by Example 1a) illustrates how RefParse works.

Step 1: Base element extraction This step identifies possi-
ble instances of the base elements, i.e., years of publication,

http://dx.doi.org/10.1000/182-184

Improved bibliographic reference parsing

gg&ar?fci 1. Base Element Candidate 2a. Author List Candidate 2b'sA'i'ﬂ;:; List
List(e.g. Extraction numerc Assembly numeric ma'o?ite v:th on
bibliography extract candidate —s{ €lements & concatenate of > alaments £ au[hjor n‘éme e
of some author names, | o author | author nameswith L ! author lists | and position Oyf
publication) numeric elements el matching style auF;hor list
¥ T
1 I
recursive call 1 }
! N 4. Host Reference ; S«Reference Style Author lists
I Extraction Numeric - — e *] & candidat
Has host SO A elements & majority vote on || < candidate
reference? sof i author lists positions and Al
references wit separator punctuation elements
editors lists, etc.
Y 4 of elements
T
¥
5. Periodical / Reference 6. Title Extraction
Publisher Extraction strings with identify title —
identify periodical all details largest still
names, proceedings but title unassigned part of
titles, and publishers reference string
. f
8. Learning
Completely add names of User verified 7. User Feedback
parsed persons, publishers, || parsed users double-check Interactive
references and periodicals to references & correct parses of mode?
respective reference strings
dictionaries

R

Fig. 1 The RefParse algorithm

part designators, and pagination, as well as possible author
names. The rationale is that these data elements have a dis-
tinctive morphological structure and at the same time occur in
many references. The distinctive structure allows to reliably
identify possible data element values by means of patterns.
The high probability of occurrence ensures that there are
several examples of the actual data element positions in the
reference style in use. This is essential for the majority vote
used in Step 3, to identify the positions and deal with ambi-
guities. All patterns used in this step are designed to match
any possible value of the data elements they are intended
to match, to avoid misses. The ambiguous cases occasion-
ally resulting from this approach are tolerable in this stage;
Step 3 will deal with them. Note that the patterns exclusively
match individual data elements, not the reference string as a
whole.

RefParse relies on patterns for the numerical elements:
years of publication are four-digit Arabic numbers; pagina-
tions are either single Arabic numbers, or pairs of them with
a dash in between; part designators are numbers, both Ara-
bic and Roman, and sometimes single capital letters. If the
interpretation of a number is ambiguous, all possible inter-
pretations are considered. To illustrate, a four-digit number
becomes a candidate for any of the numeric elements; num-
bers with preceding part designator labels like “vol.” or “no.”
become candidates only for this data element.

Even though the numerical base elements are easy to
extract because of their structure, there are a few ambigu-
ous cases to filter. Namely, we have to avoid finding candi-
date values for data elements that do not actually exist in a
given reference. Numerical parts of digital identifiers are a
particular problem here, like the DOI in Example 3: the part
182—184 perfectly resembles a value of the pagination ele-
ment. Ordinal numbers and years that belong to book titles,
the titles of proceedings volumes in particular, are problem-
atic as well: the /9 in Example 2 is quite close to where the
volume number would be in a reference to a journal article,
but it is a part of the title of a proceedings volume in this
case.

To avoid this kind of ambiguity, RefParse extracts URLs,
digital identifiers, ordinal numbers, and conference abbrevia-
tions (like /CTS 2012 in Example 2) even before the candidate
values for the numerical base elements. It then sorts out any
candidate values for the latter that lie inside any of the former.
Because the structure of URLSs, digital identifiers, and ordinal
numbers is even more distinctive than that of plain numbers
sought for in isolation, this filtering is extremely unlikely to
result in missing any actual numerical base elements, while
preventing many false positives.

For author names, RefParse uses several different patterns,
each reflecting an individual formatting style. The space of
styles has two dimensions: the patterns distinguish the order

@ Springer

G. Sautter, K. Bohm

of first and last name, and whether first names are written out
or generally given as initials. It can happen that parts of the
references match several name styles: the pattern matching
Alex THOR in Table 2, for instance, will also match Thor
AU because both strings have the same morphological struc-
ture. Alex THOR could also be short for Tom H. O. R. Alex,
with Alex being the last name, and AU could be the last
name in Thor AU. To avoid errors, parts matched by patterns
for several name styles become candidates for all of them.
The patterns are designed to match both first names and last
names consisting of multiple parts, with intermediate infixes,
hyphenated double names, etc. Table 3 provides examples of
the candidate names extracted from a given author list. Fur-
thermore, there are patterns for author repetition marks (usu-
ally one or more dashes) that indicate that the authors are the
same ones as in the preceding reference, and for the special
string “etal.”. The distinction of styles helps in Step 2, namely
to only concatenate author names with matching styles.

To reduce computational complexity, our implementation
of RefParse does not use patterns that extract potential author
names as a whole in a single pass. It rather uses patterns
that extract the individual parts of author names discussed
above. Afterward, meta-patterns combine these parts to full
potential author names. Figure 2 explains the patterns for the
first and last names in detail; the ones for initials and blocks
thereof are trivial. Infixes and affixes are extracted by means
of dictionaries rather than full-fledged patterns.

Before assembling the individual parts to complete poten-
tial author names, RefParse performs several intermediate

aggregations to obtain further candidate parts: In particular,
it aggregates (1) potential first names with adjacent ones, as
well as with initials, to form additional first names, (2) poten-
tial last names with adjacent ones, as well as with adjacent
infixes, to form additional last names, and (3) potential last
names with adjacent affixes to form yet additional last names.

The meta-patterns that finally assemble the individual
author name parts to potential author names correspond to
the author name styles listed in Table 2. For some of the
latter, there are several meta-patterns. This is to reduce the
complexity and still cover all possible positions of infixes
and affixes.

The meta-patterns for author names in the last-name-last
styles are relatively straightforward:

— <firstname> <infix>? <lastname>(\, ? <affix>)?
— <initials> <infix>? <lastname>(\,? <affix>)?

The ones for author names in the last-name-first styles have
to cover more variation, especially regarding the placement
of infixes and affixes; see Table 1 for examples of placements
of the latter:

- <infix>? <lastname>(\, ? <affix>)?\, <firsthame>
- <infix>? <lastname>\, <firstname>(\, ? <affix>)?
— <lastname>\, <firstname>(\, ? <infix>)?

(\, ? <affix>)?
— <lastname>(\, ? <affix>)?\, <firstname>

(\, ? <infix>)?
- <infix>? <lastname>(\, ? <affix>)?\, <initials>

Table 3 The names Alex U. Thor, Steve E. Cond, and Tom Hird listed in different styles

List style Example Names found in Step 1 (grouped by style)

LF-1 LF-N FL-1
LF-1, FL-I Thor, AU, SE Cond, T Hird Thor, AU AU, SE Cond, T AU, SE Cond Cond, T Hird SE Cond T Hird
LF-1 Thor, AU, Cond, SE, Hird, T Thor, AU Cond, SE Hird, T AU, Cond SE, Hird -
LF-1, FL-I Thor, AU, SE Cond, and T Hird Thor, AU AU, SE AU, SE Cond SE Cond T Hird
LF-I Thor, AU, Cond, SE, and Hird, T Thor, AU Cond, SE Hird, T AU, Cond SE, Hird -

RefParse uses the following pattern to extract potential last names:

I([A-Z][a-Z]+)

([A-Za-z][a-z]*\")
)?
[A-Z]([a-z]+[[A-Z]+)

(([A-Z][a-2]+)|([A-Za-z][a-z]"\")) ?[A-Z]([a-z]+|[A-Z]+) (\-(([A-Z][a-2]+) | ([A-Za-z][a-z]*\")) ?[A-Z]([a-z]+|[A-Z]+))?

To explain, the individual parts of this pattern have the following functions:
a prefix like Mc, Mac, etc.
a prefix with an apostrophe, like O', I, d', del’, etc.

the main part of the last name, capitalized or in all-caps
(\-(([A-Z][a-z]+)[([A-Za-z][a-z]*\")) ?[A-Z]([a-Z]+|[A-Z]+))?

First names are simpler; we do not need to consider the apostrophe prefixes, and no all-caps spelling, either:
([A-Z][a-z]+)?[A-Z][a-z]+(\-([A-Z][a-z]+)?[A-Z][a-z]+)?

the same, with an initial dash, to capture double names

Fig. 2 Author name extraction patterns explained

@ Springer

Improved bibliographic reference parsing

— <infix>? <lastname>\, ?<initials>(\, ? <affix>)?
— <lastname>\, ?<initials? <initials>(\, ? <infix>)?

In addition to the patterns and meta-patterns, RefParse can
use a dictionary of person names to look up the candidate
author names. While increasing accuracy, however, this addi-
tional source of knowledge is not required for RefParse to
work.

After Step 1, RefParse has the following candidate combi-
nations for the reference from Example 1 (a few are omitted
to retain readability):

— For the author names:
Last name first, initials: Thor, AU; Cond, SE
First name first, initials: SE. This
First name first, full first name: The Particular Journal

— For the numerical data elements:
Year: 1976 1998 1987
Part designator: 1976 1998 1987
Pagination: 1976 1998 1987

At the same time, RefParse gets the following for Exam-
ple la:

— For the author names:
Last name first, initials: Cond, SE
First name first, initials: SE. Some
First name first, full first name: Another Journal

— For the numerical data elements:
Year: 1995
Part designators: 16 1995 23 28
Pagination: 16 1995 23-28

Step 2: Author list assembly and selection This step identifies
the list of author names in each reference. It works in two
phases.

First, the assembly phase creates all possible lists of author
names for each reference from the possible names found in
Step 1. It concatenates only names with matching style, i.e.,
with the same order of first and last name and the same way
of giving the first name. There is one exception with regard
to the order of the first and last name: it may be the last
name first for the first name of a list and first name first for
all subsequent ones. Between two concatenated names, there
has to be a separating punctuation mark and/or a conjunction.
Author repetition marks (see above) can only be the first part
in an author list and “et al.” can only be the last one.

Second, the selection phase chooses the most likely author
list for each reference from the possible author lists created
in the assembly phase. Its underlying assumption is that ref-
erence lists are consistent with regard to the style and posi-
tioning of the author lists, i.e., the style of the author list is the
same in each reference in a list and it has a similar position
in each one.

After the assembly phase, RefParse has the following can-
didate author lists for Examples 1 and 1a, respectively:

— Last name first, initials: Thor, AU, Cond, SE
First name first, initials: SE. This
First name first, full first name: The Particular Journal

— Last name first, initials: Cond, SE
First name first, initials: SE. Some
First name first, full first name: Another Journal

Note that the only difference to the state before the assembly
phase is that consecutive author names of the same style are
concatenated to form author lists.

In more detail, RefParse scores each author list style to
assess how likely it is the one in use. It then chooses the
style with the highest score. Figure 3 formalizes the scoring
function in pseudo code. Informally, RefParse considers an
author list style more likely to be the one used in a given
reference list

1. the more references contain an author name list of that
style, i.e., the more references it matches an author name
list,

. the less ambiguous the matches are;

. the more potential author names it matches,

4. the smaller the gaps are between matched potential author

names;

5. the more similar the distance is between potential author

lists and the start or end of reference strings,

6. the more distinctive the style is.

[SSIN)

Points 1-3 are intuitive. The motivation for Point 4 is
the observation that author lists solely consist of author
names with only specific punctuation marks and conjunc-
tions between them. Point 5 is based on the observation that
author lists are next to never located in the middle of ref-
erence strings. In particular, they are not located between
title and periodical name or publisher, which are the other
two detailed attributes whose values considerably vary in
length. Thus, the distance of the author lists to one end of
the reference strings in a reference list is relatively constant.
It depends on the reference style, whether this is the start or
the end. Point 6 reflects that the less distinctive an author list
style is, the more likely it is to yield false positives. In the
above illustrations based on Example 1, the periodical names

@ Springer

G. Sautter, K. Bohm

varrl =
var als :=
var numRefs(rl) :=

the reference list being parsed
author list style being scored
number of references in rl

supportRefs(als, rl) :=

number of references als has at least one match in

support(als, rl) := total number of author list matches of als across all references in rl

supportNames(als, rl) :=

total number of author names contained in author lists counted by instCount(als, rl)

bridged(als, rl) := number of non-punctuation tokens between author names in lists matching als

firstNameStyle(als) :=
namePartOrder(als) :=

SD(als, rl) :

first name style als follows, namely | for initials or N for full first name
name part order als follows, namely FL for first name first or LF for last name first

across all reference strings r € rl the distribution of the distances (in tokens) between the start

of r and the first match of als in r (SD for start distance)

ED(als, rl) :

across all reference strings r € rl the distribution of the distances (in tokens) between the end

of r and the last match of als in r (ED for end distance)

/I compute the score indicating how likely an author list style als is the one in use in a reference list rl

function scoreAuthorListStyle(als,) {
if (supportRefs(als, rl) * 3 < numRefs(rl)) return 0;

// hard limit for Point 1 (matches in too few references)

// compute base scores from distances to start and end of reference string (the scores are the higher (1) the less
variation there is in the distance distribution, i.e., lower its entropy is, Point 5, and (2) the more references als
has a match in, Point 1, H(...) is the Shannon entropy of the distance distributions)

var startDistScore := 1/ (H(SD(als, rl)) + (1 / supportRefs(als, r]))?)

var endDistScore := 1/ (H(ED(als, rl)) + (1 / supportRefs(als, rl))?)

var score = max(startDistScore, endDistScore)

if (firstNameStyle(als) = N) score = score / 2
if (namePartOrder(als) = FL) score = score / 2

// use whichever base score is higher

// Point 6 (penalize low distinctiveness of full first name)
// Point 6 (penalize low distinctiveness of first name first)

if (numRefs(rl) * 2 < support(als, rl)) score = score / 2 // Point 2 (penalize high ambiguity, > 2 matches per reference)

score = score * supportNames(als, rl)
score = score / bridged(als, rl)
return score

}

Fig. 3 The scoring function for author list styles

are false positives for the first name first, full first name style.
To prevent such errors, RefParse favors last name first over
first name first. This is because the former has a more dis-
tinctive punctuation. It also favors initials over full first name
for the same reason.

Finally, this step selects the actual author list for each
reference from the candidates, based on compliance with the
style justidentified and its position in the reference. The latter
helps to distinguish lists of author names from lists of editor
names in the middle of a reference, which usually follow the
same style as the author lists.

In the running examples, RefParse selects last name
first, initials as the author name style. This is because
(1) this style has the most potential author names,
namely three, Thor, AU and Cond, SE in Example 1
and Cond, SE in Example la, while the other styles
only have two potential author names, and (2) yields
the author lists that are in total closest to the reference
boundaries, namely the starts of the reference strings

@ Springer

// Point 3 (reward high number of names)
// Point 4 (penalize large gaps between names)

in this case. The rationale is that in the vast majority of
reference styles, the author lists are located very close
to the beginning of reference strings, preceded by at
most a reference number (like in this paper) and the
year of publication. In the remaining reference styles,
the author list is toward the end of the reference strings,
succeeded at most by the year of publication. We have
not found any style placing the author list in the middle.

Step 3: Reference style inference This step identifies the way
the reference style in use arranges the numerical data ele-
ments identified in Step 1 and the author lists identified in
Step 2. This includes both the positions of these elements and
their separating punctuation. This again works in two phases:

The assembly phase generates all possible arrangements
of the data elements identified so far, i.e., numerical data ele-
ments and author lists. A four-digit number, for instance, is
(1) a possible year of publication, (2) a possible part desig-
nator, e.g., a volume number of a periodical, or (3) neither
of the two. The latter reflects the fact that numbers can also

Improved bibliographic reference parsing

occur as part of publication titles, for instance. This phase also
considers that some data element might not be present in a
reference, even though Step 1 has found a candidate instance.
Thus, it also generates additional arrangements with one or
more such elements left out. The elements this applies to are
the ones whose values are numbers or number ranges, namely
year of publication, part designators, and pagination.

This bottom-up approach to reference style inference ren-
ders RefParse naturally immune to missing data elements,
e.g., a reference to a journal article lacking the pagination.
RefParse simply works with the data elements it finds can-
didates values for. From another angle, at this stage of pars-
ing there is no knowledge or assumption regarding the type
of work a reference refers to, and thus no knowledge about
which data elements should be present if the reference to be
complete. Hence, missing data elements do not affect Ref-
Parse at this stage.

The selection phase chooses the most likely arrangement
of data elements for each reference. It scores all candi-
date arrangements generated in the previous phase based on
multiple criteria. Figure 4 formalizes the respective scoring

function in pseudo code. Informally, RefParse considers an
arrangement and punctuation scheme to represent the ref-
erence style in use in a given reference list that is more
likely:

1. the more data elements it contains,

2. the more references it is possible for, both regarding data
element positions and inter-element punctuation; and

3. the closer the data elements stand together, the larger the
individual chunks of the reference string are that remain
unassigned.

The idea behind Point 1 is to favor candidate arrangements
covering many data elements. Point 2 exploits that all ref-
erences in a list follow the same (if unknown) style, so the
instances of their data elements occur in similar positions
within the references. It further considers that punctuation
between individual detail attributes is an integral part of refer-
ence styles, and thus matching punctuation is a good indicator
for a plausible arrangement of detail attributes. The motiva-
tion for Point 3 is twofold: (a) aside from reference strings

detailed abstraction, representing order of data elements, unassigned chunks between, and

medium abstraction, representing order of data elements and unassigned chunks between them

var dea = the data element arrangement to score
abst(dea) := an abstraction of dea, coming in three variants:

punct(dea) :=

punctuation around them

summary(dea) =

order(dea) := coarse abstraction, representing only order of data elements
maxUnassigned(dea) := number of tokens in the longest unassigned chunk
DEAS := set of all data element arrangements generated for the reference list
elementCount(dea) := the number of data elements in dea
frequency(abst(dea)) := the number of references the abstracted arrangement occurs for

subsumes(deaBig, deaSmall) :=

true if deaBig contains at least all the elements in deaSmall, and the elements are

in the same order in both, ignoring additional elements in deaBig

function scoreFuzzy(dea, abst()) {
var sf = 0;
for (cDea in DEAS) {
var csf = 0;
if (abst(dea) = abst(cDea)
cfs = elementCount(dea)? * frequency(abst(dea))
else if (subsumes(cDea, dea))
cfs = elementCount(dea)? * frequency(abst(dea))
sf = max(sf, csf)
}
return sf

}

function scoreDataElementArrangement(dea) {
var score =0
score += scoreFuzzy(dea, punct())
score += scoreFuzzy(dea, summary())
score += scoreFuzzy(dea, order())
score += maxUnassigned(dea)
return score

}

Fig. 4 The scoring function for data element arrangements

// Points 1 and 2 (reward exact match higher than fuzzy one)

// Points 1 and 2 (still reward fuzzy match)

// Point 3

@ Springer

G. Sautter, K. Bohm

with an embedded host reference, the only two remaining
detail elements are title and periodical name or publisher;
each of them forms a continuous chunk of the reference
string. (b) In most reference styles the latter two are adja-
cent to one another and thus even form a single chunk at this
stage of parsing.

Finally, this step extracts the actual instances of the data
elements by matching the positions of the candidate instances
against the selected arrangement.

In the running examples, all this would work in the
following way: Example 1 does not provide any clues
regarding the element order. In particular, all three num-
bers are suitable values for all three numerical data ele-
ments. RefParse generates candidate arrangements for
all six permutations, as well as arrangements omitting
the part designator and/or pagination. For the reference
string from Example 1, RefParse generates the follow-
ing arrangements:

1 <authorList>_<year>_ <partDesignator>
_<pagination>

2 <authorList>_<year>_ <pagination>
_<partDesignator>

3 <authorList>_<partDesignator>_ <year>
_<pagination>

4 <authorList>_<partDesignator>_ <pagination>
_<year>

5 <authorList>_<pagination>_ <year>
_<partDesignator>

6 <authorList>_<pagination>_ <partDesignator>

_<year>

<authorList>_<year>_ <partDesignator>

<authorList>_<partDesignator>_ <year>

<authorList>_<year>_ <pagination>

10 <authorList>_<pagination>_ <year>

11 <authorList>_<year>

O 00

The reference string from Example la, on the other
hand, is a lot clearer, resulting in fewer candidate
arrangements:

1 <authorList>_<partDesignator>_ <year>
_<pagination>
<authorList>_<partDesignator>_ <year>
<authorlList>_<year>_ <pagination>
<authorList>_<pagination>_ <year>
<authorList>_<year>

W AW

Because it scores the highest, RefParse then selects the
arrangement 1 from the latter list (number 3 in the for-
mer one), namely:

<authorList>_<partDesignator>_<year>_<pagination>

With this inferred information, RefParse can now inter-
pret the numbers in Example 1: 1976 is the part desig-

@ Springer

nator, 1998 the year of publication, and 1987 the page
number the referenced work has been printed on. The
numbers in Example 1a are unambiguous from the start:
1995 is the year of publication, 23-28 the pagination,
and 16 the part designator. However, it might have been
the case that one of the numbers does not belong to any
of the numerical elements, but rather is part of the title
or publisher name.

Step 4: Host reference extraction This step identifies possi-
ble embedded references to volumes that consist of multiple
data elements themselves and thus require parsing. Table 4
provides examples of embedded references, one to a book
and one a proceedings volume. This step mostly aims at ref-
erences to books embedded in references to book chapters,
but there also are other cases, e.g., special issues of periodi-
cals. The most common case of embedded references is a list
of editor names and a volume title, followed by the name of
a publisher or a periodical. Typically, a preposition like “in”
precedes the list of editor names, often separated with a colon.

RefParse handles the embedded references found in this
step recursively, processing them through Steps 1-3, 5, and
6. The rationale is that embedded references follow the same
style, just as the top-level references they are embedded in.

Note that technically any pair of a periodical name and
a part designator also constitute a reference to a volume.
However, such pairs do not exhibit the complexity found
in embedded references to books and thus do not require
recursive handling.

In neither of Examples 1 and 1a, RefParse finds any
indicator of a host reference, like a list of editors or the
indicator string In:, so it proceeds with Step 5.

Step 5: Periodical and publisher extraction In the references
Step 4 has not found an embedded reference; this step identi-
fies the names of periodicals, the titles of conference proceed-
ings, and the names and locations of publishers. It considers
only those parts of the references that are not assigned to any
data element yet. These unassigned parts mostly consist of
the above data elements and the title of the referenced works.

Periodical name and publisher have very similar mor-
phological properties and most references include either the
name and location of a publisher or the name of a periodical.
Note that we have not observed one case where both co-occur
in one reference, and thus our algorithm does not consider this

Table 4 References with embedded references to volumes

Reference to Example (embedded references in bold)

Book chapter ~ Thor, A. U. 2011: The title of the chapter. In: Itor, E.
D. (Ed.): The book title. Publisher, Place: 8-15
Proceedings Thor, A. U. 2011: The paper title. In:Newton, G. et
paper al. (Eds.): Proceedings of VLDB 2011, Seattle,

WA, USA

Improved bibliographic reference parsing

case. Embedded references to proceedings given completely
with editors and/or publisher (see Table 3 for an example)
are extracted in Step 4, this current step does not need to
consider them. Standalone proceedings titles in turn exhibit
the same morphological properties as names of periodicals.
Thus, we do not need to have separate steps to extract names
of periodicals, the titles of conference proceedings, and the
names and locations of publishers, respectively. This extrac-
tion takes place in one step.

In general, all instances of the data elements sought in
this step are in title case (i.e., all words start with a capi-
tal letter, usually except for stop words like determiners and
prepositions), and RefParse uses patterns exploiting this mor-
phological property to identify them. Furthermore, we have
not observed any co-occurrences of abbreviated title case
words and stop words, so our algorithm ignores this case.
Names of periodicals are either written out in full, including
intermediate stop words like prepositions and determiners,
or they are abbreviated, omitting the stop words. RefParse
exploits this to find the boundaries of potential abbreviated
periodical names: namely, it cuts off abbreviated title case
blocks at tokens preceded or followed by stop words. This
happens for each reference in isolation, not for all references
together. The reason is that the use of abbreviations is often
inconsistent throughout a reference list. The decision rests
on specific considerations like how much space is left in a
line. So this step cannot rely on redundancy to determine the
style of the data elements sought. The following example
illustrates how RefParse finds the boundaries of abbreviated
title case blocks:

Consider the following reference string, comprising the
(fictional) periodical name Exploration and Discovery
of Tropical Faunas in abbreviated form. Steps 1-3 have
already identified the author list and the base elements:

Thor, A. U. (1921) Results of the British expedition to
the Amazonas region of Brazil. Expl. Disc Trop. Faun.
15: 8-55.

The part of this reference that has not been assigned to
any data elements yet is Results of the British expedi-
tion to the Amazonas region of Brazil. Expl. Disc Trop.
Faun. From the presence of the part designator 15, Ref-
Parse concludes that the referenced work is an article
published in a periodical, and therefore seeks the name
of the latter in the above string. It finds the abbreviated
title case block Expl. Disc Trop. Faun. Morphologi-
cally, Brazil could be part of this title case block as
well. However, it is preceded by the stop word of with-
out any intermediate punctuation, and thus RefParse
concludes that Brazil is not part of the abbreviated peri-
odical name.

It can happen that a reference includes more than one title
case block, i.e., a sequence of words in title case. RefParse
handles such cases using the following heuristic. If a ref-
erence contains an abbreviated and a non-abbreviated title
case block, the former becomes the periodical name or pub-
lisher. We have observed that titles of referenced works are
extremely rarely abbreviated in reality, whereas abbrevia-
tions are relatively common for periodical names. If there are
two or more unabbreviated title case blocks, the one closest
to a given part designator becomes the periodical name. Here,
the underlying observation is that in real-world references to
journal articles, the part designators usually follow immedi-
ately after the journal name. If no part designator is present
either, the rightmost title case block becomes the publisher
name as a last resort, based on the observation that the pub-
lisher usually is closer to the end of a reference, in particular
after the title.

In Examples 1 and la, RefParse finds the title case
blocks The Particular Journal and Another Journal as
candidate periodical names, respectively. As both are
the only title case blocks that have remained unassigned
thus far (author names have been identified as such in
Steps 2 and 3), the choice is clear.

In addition to the patterns and the selection heuristics based
on the observations described in the previous paragraph, Ref-
Parse can use a dictionary of periodical and publisher names
in this step. In addition, a statistics on how often individual
words occur as part of such names and how often they occur
elsewhere can help select the actual periodical or publisher
name from several title case blocks. The dictionary facilitates
recognizing title case blocks known to be names of periodi-
cals or publishers from prior training or online learning. The
statistics in turn model human intuition. In particular, this
helps RefParse to recognize periodical names based on the
presence of words frequently occurring in them. For instance,
it would suggest that Journal of the Science Museum of Some-
where, even though unseen as a whole so far, is very likely a
periodical name because it starts with Journal, just as many
other periodical names do. While increasing accuracy, how-
ever, these additional sources of knowledge are not required
for RefParse to work.

Step 6: Title extraction This step finally identifies the title
of the referenced works. While the title arguably is the most
important data element in bibliographic references, it is also
the one whose instances exhibit the least regularity. In many
reference styles, contemporary ones in particular, titles are
noteven in title case. This irregularity is the reason to identify
them last, namely as the longest continuous part of a reference
that has remained unassigned in all previous steps.

@ Springer

G. Sautter, K. Bohm

In Examples | and 1a, the remainders that are selected
as the titles of the referenced works are This is the
article title and Some other article title, respectively.

There is a notable exception to the length-based rule, how-
ever, namely with references to online resources. RefParse
does not consider unassigned parts as the publication title if
they mainly consist of dates. The following example illus-
trates the rationale behind this restriction:

Inreferences to web resources, the plainly length-based
heuristic can incur errors, namely in case of a very short
title. Consider the following reference to a Wikipedia
article:

Bibliography. Wikipedia, the Free Encyclopedia http://
en.wikipedia.org/wiki/Bibliography (accessed April
Ist, 2012).

The URL has been identified in Step 1, the publisher
name Wikipedia, the Free Encyclopediain Step 5. Now,
plainly choosing the longest part that has remained
unassigned thus far as the title would result in selecting
accessed April 1st, 2012 over Bibliography and thus
incur an error. The date-based filter ensures choosing
the actual title, namely Bibliography.

Step 7: User feedback In interactive mode, RefParse prompts
users to double check parsing results and correct possible
errors. This increases data quality in real-world deployments.
Figure 5 shows such a dialog; each individual detail attribute
RefParse extracts is encoded in a different color for easier
distinction. Users can correct the parse by selecting pieces
of the reference string and right clicking. The context menu
then offers the actions available for the current selection. The

Check Bibliographic Reference Details - (12 of 21) _X_]

explanation across the top of the dialog is intended to render
using the dialog as simple as possible.

Step 8: Learning After users have double checked parsing
results, RefParse can assume that there are very few remain-
ing errors, if any. Thus, it is possible to use the parsing results
as training examples to extend the dictionaries of person
names, publisher names and locations, periodical names, and
proceedings titles.

Remembering instances of other data elements for reuse in
future parsing is unlikely to help: titles are relatively unique
and thus are unlikely to reoccur. The possible instances of
numeric data elements cover the entire language generated
by their underlying alphabet of digits. Thus, morphological
clues are sufficient to identify them reliably.

4.4 The infix match problem

In a preliminary evaluation we have observed an issue with
dictionaries of periodicals and publisher names. This issue is
counterintuitive at first glance: using dictionaries can actually
be harmful to the parsing result. The underlying problem of
this phenomenon is as follows: matches of dictionary lookups
can prevent the complete periodical or publisher name from
being found. It occurs in references comprising lengthy and
relatively rare periodical names that have a shorter and more
common periodical name as an infix. We call the phenom-
enon the infix match problem (IMP for short), illustrated in
the following example:

Suppose that the dictionary of known periodical names
contains the string Nature. This is actually quite likely, due
to the importance of that periodical. Further, consider a refer-
ence to an article published in a volume of the North Dakota
Journal on the History and Development of Nature. While

What to do in this dialog? (click to collapse)

Please make sure that all the details of this bitliographic reference are marked correctly.

If multiple bibliographic references are clung together, annotate the details of the first one normally,
and annotate the first token of any subsequent one as nextRef to initiate a split.

If it is not a bibliographic reference at all, check the Not a Bibliographic Reference to indicate so.

!Book Chapter LI |~ Mot a Bibliographic Reference

author | | editor | M year | | title |

M volumeTitle || journalorPublisher | | pagination || part |
DOI || publicationurl | | nextRef |

Menozzi C.

Previous

Cancel | OK & Next I Reset |

. - Leipzig, 142 pp.

Zoom Control

o 5

Fig. 5 User feedback dialog

@ Springer

http://en.wikipedia.org/wiki/Bibliography
http://en.wikipedia.org/wiki/Bibliography

Improved bibliographic reference parsing

this journal does not exist in actuality to our best knowledge,
it perfectly suited to illustrate the IMP: a dictionary lookup
for Nature results in a match. Using the known value Nature
as the periodical name for that reference right away only
captures a small part of the actual periodical name.

There is a simple heuristic that can mitigate the IMP: in
most cases, the periodical name is surrounded by punctua-
tion marks or numbers. In particular, it is often preceded by
the terminal punctuation mark of the title, and it often has the
part designators following right after it. In such cases, dis-
carding dictionary lookup matches that lie in the middle of
an uninterrupted sequence of words prevents the IMP from
causing errors.

However, this heuristic does not work for references that
give the periodical name in an abbreviated form, which usu-
ally involves numerous dots. Suppose the periodical name
North Dakota Journal on the History and Development of
Nature is abbreviated as N. Dak. Jour. Hist. Dev. Nature. In
this case, the dictionary lookup match Nature is preceded by
the dot after Dev and likely followed by part designators.

The IMP is not specific to RefParse; it rather affects
all dictionary, statistics, and knowledge-based approaches
to bibliographic reference parsing. In particular, it affects
approaches that apply punctuation-based blocking tech-
niques, which are easily misled by the dots in abbreviated
periodical names.

To counter the IMP, RefParse uses an improved form of
blocking; namely, it extracts unabbreviated blocks akin to
existing approaches, but uses dedicated patterns to extract
abbreviated blocks as a whole. It then does dictionary lookups
only for entire blocks and for concatenations of successive
blocks. The latter is to capture names of periodicals and pub-
lishers that include punctuation marks, e.g., Springer, Berlin,
Heidelberg. In addition, RefParse uses a dedicated heuristic
for the titles of proceedings volumes: the said titles almost
always start with the word Proceedings or its abbreviation
Proc. and have the conference year close to the end. RefParse
thus generates a respective pattern, including the year of pub-
lication identified in Steps 1 and 3. If this pattern matches a
part of areference string, RefParse uses this part as an atomic
block, regardless of internal punctuation.

Based on our observations of real-world data, RefParse
then applies the following heuristics to assign the given
blocks to the title and the periodical name or publisher:

— The first block belongs to the title, which almost always
precedes the periodical name or publisher.

— If the title of a proceeding volume is present, it becomes
the periodical name, together with all subsequent blocks.

— The titles of articles published in periodicals rarely
include inner dots, only one at the end in several ref-
erence styles. In consequence, any further dotted parts
likely belong to the abbreviation of a periodical name.

RefParse exploits this for reference strings, Steps 1 and
3 have identified a part designator. This is because the
latter is a good indication that the referenced work is an
article published in a periodical. If a dictionary lookup
match is embedded in such a likely abbreviated periodi-
cal name, RefParse ignores it to prevent the known infix
match from incurring an error.

— On the other hand, names and locations of publishers are
very rarely infixes of others, so the IMP rarely affects
references to books and book chapters. Consequentially,
if Steps 1 and 3 did not identify a part designator, and
thus RefParse can rule out the presence of a periodical
name, it does use dictionary lookup matches.

5 Evaluation

In this section, we report on a thorough evaluation of the
RefParse algorithm. We use two test sets for our experiments,
a contemporary one to facilitate comparisons with related
approaches, and a historical one to challenge RefParse with
the diversity found in this kind of real-world data.

5.1 Test data sets and metrics

The Cora Corpus [15] is our contemporary test data set; it
has formerly been used in the evaluation of related work [10].
This corpus consists of 500 individual parsed references that
are not organized in reference lists. We have prepared the
references as described in [10], in particular breaking the
author field down to individual authors and moving separa-
tors between the fields.

The Plazi Corpus is our test data set, stemming from a
real-world document collection; it consists of nearly 25,000
bibliographic references extracted from the over 1,000 bio-
logical documents hosted by Plazi.” These documents have
been published over the course of the last 250 years. They
are written in five different languages (English, French, Ger-
man, Portuguese, and Italian). The works they reference are
mostly journal articles, proceedings papers, book chapters,
and entire books. Due to the long time span and the many
different origins, the reference styles used vary widely and
cover many of the idiosyncracies of historical bibliographic
referencing.

We assess the accuracy of RefParse at several levels of
granularity, using the same metrics as [13]:

— The word accuracy measures the fraction of the words
(including numbers and punctuation marks) of a biblio-
graphic reference string that are assigned to the correct
data element.

9 http://plazi.org/.

@ Springer

http://plazi.org/

G. Sautter, K. Bohm

Table 5 Results with the Cora

Corpus (standard deviation in RefParse-g (%) RefParse-d ParsCit (%) FreeCite (%)
brackets where relevant)
‘Word/token 91.5 89.8 % (0.6 %) 83.0 83.8
Field
Author 98.6 98.6 % (0.7 %) 95.7 95.7
Editor 74.6 78.6 % (6.3 %) 0 0
Title 79.0 74.5 % (1.3 %) 91.0 91.0
Year of publication 98.8 99.1 % (0.5 %) 96.7 96.7
Pagination 97.7 97.0 % (0.7 %) 88.9 1.6
Part dsignators 96.0 89.2 % (2.3 %) 66.7 96.0
Volume ttle 38.8 38.6 % (3.8 %) 46.3 50
Journal/publisher 68.0 61.6 % (1.8 %) 53.1 54.2
Instance 58.4 52.1 % (2.3 %) 234 12.2

— The field accuracy reflects how many of the data elements
of abibliographic reference string are identified correctly.

— The instance accuracy is the fraction of the bibliographic
references for which all data elements are identified cor-
rectly.

The implementation of RefParse used in our experiments is
available from https://git.scratchpads.eu/v/refparse.git under
GPLV3, complete with configuration files containing all the
patterns, etc.

5.2 Experimental setup

For each of the two test data sets, we have run four experi-
ments:

The first experiment is in fully automated mode, i.e.,
without user corrections and subsequent learning, and thus
with the dictionaries remaining empty throughout the exper-
iment. This facilitates comparison to pattern-based parsers
that do not make any use of learning. The results are labeled
“RefParse-g”, “g” for “generic”.

The second experiment is with domain knowledge, i.e.,
with dictionaries of person names, publishers, and periodi-
cals, as well as word-level statistics for the latter. We have
randomized document order, split the data sets in half, pre-
filled the dictionaries with the data element instances from
the first half, and then run the actual evaluation on the second
half. This facilitates comparison to learning-based parsers.
Because the division of the data sets influences the learn-
ing and thus the results, we have run this experiment five
times with five different randomized document orders and
have averaged the results. This setup is similar to a fivefold
cross-validation [5], but in fact more challenging. This is
because a standard cross-validation would use 80 % of the
data for training and only 20 % for test, whereas we divide
the data equally between training and test, thus using less

@ Springer

training data. The results are labeled “RefParse-d”, “d” for
“dictionaries”.

The third experiment is in interactive mode, i.e., with user
interaction and thus with online learning. We have simu-
lated user corrections by providing RefParse with the gold
standard document after measuring the accuracy of its out-
put, and before proceeding to the next document. As in the
previous experiment, the order of the documents determines
when RefParse learns which data element values and thus
influences results. We have thus run this experiment on the
same five randomized document orderings used in the sec-
ond experiment and have averaged the results. The results
are labeled “RefParse-i”, “i1” for “interactive”.

While the discussions of the first three experiments
already feature a comparison with figures reported in a related
work, the fourth experiment compares RefParse to the state
of the art by means of actual evaluation runs of competing
approaches on our two test corpora. In particular, we have run
our test data through a ParsCit [7] web service and a FreeCite
web service and have measured their result accuracy. The
results are labeled “ParsCit” and “FreeCite”, respectively.
They reflect the state of the art as currently available online.

5.3 Experimental results

Experiments with Cora Corpus (Table 5) In this experiment,
RefParse has to work with individual reference strings and
thus has no repeated patterns to exploit. This causes it to
degenerate into a purely pattern-based parser. Despite this
disadvantage, RefParse clearly outperforms both ParsCit and
FreeCite, even though the latter two were trained on the Cora
Corpus according to the descriptions on the web pages. Only
for the title and volume title, ParsCit and FreeCite are more
accurate than RefParse. The results for RefParse also are in
the ranges of the accuracy reported for other data sets in
related work. Note that the latter mostly measure parsing
quality as precision, recall, and f-score. However, these fig-

https://git.scratchpads.eu/v/refparse.git

Improved bibliographic reference parsing

Table 6 Results with the Plazi

Corpus (standard deviation in RefParse-g (%) RefParse-d RefParse-i ParsCit (%) FreeCite (%)
brackets where relevant)
Word/token 94.3 96.6 % (0.1 %) 96.6 % (0.1 %) 78.9 79.7
Field
Author 97.2 978 % (0.3 %) 97.8% (0.3 %) 88.3 88.0
Editor 83.7 852 % (5.2 %) 88.6 % (6.8 %) 0 0
Title 78.4 90.7 % (0.4 %) 90.1 % (0.4 %) 40.4 32.4
Year of publication 99.5 99.7 % (0.06 %) 99.6 % (0.09 %) 95.5 89.7
Pagination 99.3 99.3 % (0.09 %) 99.3 % (0.09 %) 20.4 0.3
Part designators 97.7 953 % (0.2%) 953%(02%) 42.0 64.3
Volume title 63.2 73.1 % (3.7 %) 74.1 % (3.8 %) 0.6 0.3
Journal/publisher 76.6 883 % (1.0%) 883%(1.0%) 543 44.3
Instance 69.9 82.0% (0.8 %) 81.8% (0.8 %) 65.6 34

ures are easily converted to accuracy, which we have done to
facilitate comparison. Namely, accuracy is equal to the prod-
uct of precision and recall, whereas f-score is their harmonic
mean:

accuracy := precision x recall

Experiments with Plazi Corpus (Table 6) Even without dic-
tionaries, i.e., solely relying on the structure inference and
morphological clues, RefParse clearly outperforms all pre-
vious approaches. The accuracy for the title and the jour-
nal name are considerably better than reported in [1] for the
plainly pattern-based ParaCite. We have to rely on the figures
reported in [1] because we have not found an operational
ParaCite service or an installation package. The improve-
ment in accuracy clearly emphasizes the benefit of structure
inference. With dictionaries, the accuracy increases for the
respective fields and for other fields as well. In interactive
mode, the results are similar to the experiments with train-
ing, even though the dictionaries are empty at the start of the
respective experiments and are populated only over time.

Significance of results The significance of experimental
results may suffer from statistical effects whenever exper-
iments involve randomization. In particular, this affects the
second and third experiment due to the random partition-
ing and the randomized document ordering, respectively. To
assess the significance of their results, we have computed
the standard deviation of our measurements. Tables 5 and 6
give it in brackets next to the averaged results, namely the
“RefParse-d” and “RefParse-i”” columns. For the experiments
with the Plazi Corpus in particular, the standard deviation is
very small for word and instance accuracy, as well as for
most of the individual fields. This corroborates the signifi-
cance and validity of our results. Only the editor and volume
title fields exhibit a somewhat higher standard deviation. We
hypothesize that this is because these two fields exist in rela-

tively few references. So, randomization might actually have
an impact there.

5.4 Performance of individual steps

Before discussing the evaluation results in general, we
address the individual steps RefParse consists of. In partic-
ular, we use the accuracies achieved in the individual fields
as indicators for the performance of the steps extracting the
respective elements.

— Steps 1 and 2. The accuracies RefParse achieves for the
base elements on the Plazi Corpus corroborate the valid-
ity of the approach to start with these elements. Espe-
cially, the accuracies for the morphologically highly dis-
tinctive elements year of publication and pagination are
extremely high, exceeding 99 % in each experiment. But
part designators and author names are extracted highly
accurately as well, always exceeding 95 and 97 % of
accuracy, respectively.

— Step 3. These results in combination also show the power
of reference style identification by means of mutual align-
ment of possible data element arrangements. In particu-
lar, if the latter would not be able to reliably identify
the reference style in use, the numerical elements would
be disambiguated erroneously, incurring far less accurate
results.

— Step 4. The accuracy achieved for the editor and vol-
ume title fields is a good indicator for the performance
of host reference extraction. There are equal improve-
ments regarding the editor field between the generic and
the training-based and the training-based and the online
learning modes, around 3 % each. This indicates the util-
ity of dictionaries for this field. The improvement in the
volume title field is a lot higher between the generic
and the training-based or learning modes. However, we
believe that this is mostly due to a gain in accuracy in

@ Springer

G. Sautter, K. Bohm

Step 5, for the same reasons as in the title field. See Step
6 below for an explanation.

— Step 5. The increase in accuracy in the periodical
name/publisher field between the generic mode (76.6 %)
and the modes that involve training or online learning
(88.3 % in either) indicates as well that using dictio-
naries and word-level statistics for this data element is
advantageous.

— Step 6. This also reflects in the accuracies RefParse
achieves for the title and volume title fields, with equally
high increases. Considering the fact that title/volume title
and periodical name/publisher are adjacent in many ref-
erence styles, this behavior is intuitive; namely, an erro-
neous split between these fields incurs errors in both, and
a correct one results in either field being extracted cor-
rectly.

— Steps 7 and 8. Do not extract any data elements, but rather
obtain corrections from users, and extend the dictionaries
from the human-approved parse results. Thus, there are
no performance figures to discuss.

Overall, the accuracy regarding the individual data ele-
ments proves the design of RefParse to be very well suited
to the problem. Namely, this is to move from easy to iden-
tify data elements to harder ones while exploiting repetitions
and redundancies between individual reference strings wher-
ever possible. In addition, the experimental results regard-
ing the individual modes demonstrate that, as expected, the
steps involving dictionaries and statistics benefit consider-
ably from training and online learning. This highlights the
suitability of the RefParse algorithm, especially in the inter-
active mode.

5.5 Discussion

With or without dictionaries, with or without training or user
interaction and incremental online learning, RefParse sig-
nificantly outperforms existing approaches. This generally
applies to both token and instance accuracy. For specific data
elements, namely title and volume title, either ParsCit or
FreeCite outperforms RefParse on the Cora Corpus. How-
ever, bear in mind that the Cora Corpus consists of unrelated
individual references. This causes RefParse to degenerate
into a mere pattern-based parser.

We speculate that the reason for the better performance of
ParsCit and FreeCite on the title and volume title fields lies in
the way the individual algorithms learn: ParsCit and FreeCite
use statistical models that indicate how likely a given token
belongs to the title, volume title, or any other field. RefParse,
on the other hand, only uses a statistic that indicates how
likely a given token belongs to the name of the journal or
publisher, and how likely this is not the case; it regards the
title and volume title fields as absolutely free text. Without

@ Springer

repeated patterns to exploit for identifying element bound-
aries, this very open approach can incur errors.

On the Plazi Corpus, where RefParse gets to work on entire
reference lists and thus finds repeated patterns to exploit, it
performs considerably better than both ParsCit and FreeCite
for each individual field.

The heuristics devised in Sect. 4.4 counter the infix match
problem effectively. The accuracy for the title, volume title,
and periodical name/publisher fields increases significantly,
both with training and with online learning. Namely, the
improved blocking scheme prevents dictionary lookups for
infixes of periodical names altogether. If none of the blocks
occur in a dictionary, in turn, the statistics indicating how
likely individual words are part of a periodical name help
determine which of the blocks is most likely to actually be
the periodical name.

Generally problematic are reference lists from low-quality
OCR, in particular lists whose punctuation is recognized
incorrectly or not at all. However, these cases pose extreme
challenges for blocking based parsers as well, so this problem
is not specific to RefParse. Problematic for RefParse in par-
ticular are reference lists that deviate from their style guide,
mostly due to sloppy editing. Other approaches are less sen-
sitive to this case: They do not exploit repeated patterns, and
thus they do not depend on reference lists to be formatted
uniformly in one style.

The real strength of RefParse shows in the interac-
tive mode: without any initial training, the result accuracy
increases quickly to very high levels. One might argue that
accuracy is less important if users double check and correct
the parsing results anyway. However, according to [21], the
accuracy given before user interaction has a strong influ-
ence on the accuracy of the final result, i.e., after user
interaction.

From another angle, however, this experiment also shows
that learning from user corrections—a form of online
learning—completely alleviates the need for labeled training
data. Because the latter is the major bottleneck of training-
based approaches and this constitutes a considerable advan-
tage. In addition, it results in a continuous improvement
and refinement of the statistics, which cannot happen with
pre-deployment learning. The practice to learn online while
processing data in a productive environment, as opposed
to pure pre-deployment learning, is relatively popular in
time series prediction [17], e.g., for stock prices, for the
above reasons. RefParse demonstrates that this approach
is also promising for bibliographic reference parsing, even
though the latter does not involve the sequence aspect of the
former.

Another recent development renders the online learning
approach implemented in RefParse yet more interesting:
community-based data collection and curation efforts have
become more and more popular in recent years [20]. Using

Improved bibliographic reference parsing

this approach to compile online bibliographies requires com-
munity members to contribute, i.e., upload bibliographic ref-
erences and to parse the ones contributed by others. In such
a scenario, the more accurate the parsing result presented
to users for checking, the less actual user intervention is
required to achieve a desired accuracy in the final result.
Because recognizing a correct parse takes less time than cor-
recting an erroneous one, this reduces user effort. Due to this
relationship, the strong performance of RefParse in the inter-
active mode makes it a very promising choice for community-
based efforts aimed at bibliography compilation.

6 Conclusions

The extraction of data elements like author names and titles
from bibliographic references of scientific publications is an
essential task in the compilation of comprehensive bibliogra-
phies. Parsing bibliographic reference strings into their indi-
vidual data elements also is a core prerequisite for advanced
processing of bibliographic data, like entity matching [12]
and duplicate reconciliation [14], online integration of data
from different sources [4,16], author identification [9], and
bibliometric analyses [6]. Furthermore, it facilitates the reuse
of bibliographic records as metadata for digital objects stored
in the respective repositories, in particular digital libraries
and digital preservation efforts.

Most existing techniques handle references individually,
one by one, and thus disregard the important additional infor-
mation that lies in the fact that all references in a bibliography
of a given work follow the same style. As a consequence, they
are only successful with the highly standardized reference
styles used in the last two decades; they cannot adapt to the
wide variety of reference styles used in older publications.

To reliably extract detailed data from both historical and
contemporary bibliographic reference lists, this paper has
introduced RefParse, a novel parsing algorithm. RefParse
is engineered based both on a thorough investigation of
real-world data and on existing approaches to bibliographic
reference parsing. In addition, RefParse has several dis-
tinctive new properties: (1) it handles entire lists of refer-
ences together to exploit the structural similarities that exist
between individual reference strings, (2) it infers the refer-
ence style at hand at runtime, which renders it independent of
pre-acquired knowledge and any particular reference style,
and (3) it can tightly integrate data quality control in the
parsing process by means of user interaction and learn from
corrections.

The blocking-based heuristics we have devised to over-
come the infix match problem work very well: with their
help, the use of training/online learning and dictionaries has
the intended effect, considerably increasing accuracy for the
titles, volume titles, and names of periodicals and publishers.

Our evaluation has shown that RefParse by far outper-
forms existing approaches with both contemporary and his-
toric reference lists. The online learning in interactive mode
yields considerable gains in accuracy, increasing instance
accuracy to 82 %. This is particularly helpful in large-
scale real-world applications, like the Biodiversity Heritage
Library [8] or RefBank [23].

Despite the high accuracy RefParse already achieves, we
also see room for further improvements. Namely, so far Ref-
Parse only works on plain text reference strings to achieve the
maximum generality possible. It thus ignores clues included
in reference strings that come in richer data formats like RTF
or HTML and could help to further increase accuracy. In
particular, reference strings that come in one of these richer
formats may include changes in font style or even font face
between different data elements, which might be used as
additional delimiters.

Acknowledgments This research has received funding from the Sev-
enth Framework Programme of the European Union (FP7/2007-2013)
under Grant Agreement No. 261532 (VIBRANT—Virtual Biodiversity
Research and Access Network for Taxonomy). The RefParse algorithm
is in productive use as part of RefBank (RefBank: http://vbrant.ipd.uka.
de/RefBank/), the platform of VIBRANT to build its Bibliography of
Life.

References

1. Chen, C.-C., Yang, K.-H., Kao, H.-Y., Ho, J.-M.: BibPro: a citation
parser based on sequence alignment techniques. In: Proceedings of
AINAW, pp. 1175-1180, Okinawa (2008)

2. Cortez, E., da Silva, A.S., Goncalves, M.A., Mesquita, F., de
Moura, E.S.: Fluxcim: flexible unsupervised extraction of cita-
tion metadata. In: Proceedings of JCDL, pp. 215-224, Vancouver
(2007)

3. Day, M.-Y,, Tsai, R.T.-H., Sung, C.-L., Hsieh, C.-C., Lee, C.-W.,
Wu, S.-H., Wu, K.-P,, Ong, C.-S., Hsu, W.-L.: Reference metadata
extraction using a hierarchical knowledge representation frame-
work. Decis. Support Syst. 43, 152-167 (2007)

4. Fuhr, N., Klas, C.P., Schaefer, A., Mutschke, P.: Daffodil: an inte-
grated desktop for supporting high-level search activities in feder-
ated digital libraries. In: Proceedings of ECDL, pp. 597-612, Rome
(2002)

5. Geisser, S.: Predictive Inference. Chapman and Hall, New York
(1993)

6. Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic
citation indexing system. In: Proceedings of DL, pp. 89-98, Pitts-
burgh (1998)

7. Giles, C.L., Councill, I., Kan, M.-Y.: ParsCit: an open-source CRF
reference string parsing package. In: Proceedings of LREC, Mar-
rakech (2008)

8. Gwinn, N.E,, Rinaldo, C.: The Biodiversity Heritage Library: shar-
ing biodiversity literature with the world. IFLA J 35(1), 25-34
(2009)

9. Han, H., Zha, H., Giles, C.L.: Name disambiguation in author cita-
tions using a k-way spectral clustering method. In: Proceedings of
JCDL, pp. 334-343, Denver (2005)

10. Hetzner, E.: A simple method for citation metadata extraction using
hidden markov models. In: Proceedings of JCDL, pp. 280-284,
Pittsburgh (2008)

@ Springer

http://vbrant.ipd.uka.de/RefBank/
http://vbrant.ipd.uka.de/RefBank/

G. Sautter, K. Bohm

12.

14.

16.

17.

18.
19.

. Huang, I.-A., Ho, J.-M., Kao, H.-Y., Lin, W.-C.: Extracting citation

metadata from online publication lists using BLAST. In: Proceed-
ings of PAKDD, pp. 539-548, Sydney (2004)

Kopcke, H., Rahm, E.: Frameworks for entity matching: a compar-
ison. Data Knowl Eng 69(2), 197-210 (2010). doi: 10.1016/j.datak.
2009.10.003

. Kramer, M., Kaprykowsky, H., Keysers, D., Breuel, T.: Biblio-

graphic meta-data extraction using probabilistic finite state trans-
ducers. In: Proceedings of ICDAR, pp. 609-613, Curitiba (2007)
Manguinhas, H., Borbinha, J.: Quality control of metadata: a case
with UNIMARC. In: Proceedings of ECDL, pp. 244-255. Alicante
(2006)

. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: A machine

learning approach to building domain-specific search engines. In:
Proceedings of IICAI, pp. 662—-667, Stockholm (1999)
Mutschke, P.: Enhancing information retrieval in federated bibli-
ographic data sources using author network based stratagems. In:
Proceedings of ECDL, pp. 287-299, Darmstadt (2001)

Palit, A.K., Popovic, D.: Computational Intelligence in Time Series
Forecasting: Theory and Engineering Applications (Advances in
Industrial Control). Springer, New York (2005). ISBN 978-1-
84628-184-6

ParaCite. http://paracite.eprints.org/

Patashnik, O.: BibTeXing—the original manual. In: Proceedings
of the IEEE, vol. 77 (1988)

@ Springer

20.
21.

22.

23.

24.

25.

26.

Rosner, H.: Data on wings. Sci. Am. 308(2), 68-73 (2013)
Sautter, G., Bohm, K.: High-throughput crowdsourcing mecha-
nisms for complex tasks. In: Proceedings of SocInfo, LNCS. vol.
6984, pp. 240-254, Singapore (2011)

Sautter, G., Bohm, K.: Improved bibliographic reference parsing
based on repeated patterns. In: Proceedings of TPDL, pp. 370-382.
Paphos (2012)

Sautter, G., King, D., Morse, D.. Towards a universal
bibliography—the RefBank approach. In: Proceedings of TDWG,
Beijing (2012)

Takasu, A.: Bibliographic attribute extraction from erroneous ref-
erences based on a statistical model. In: Proceedings of JCDL,
pp- 49-60, Houston (2003)

ViBRANT: Virtual Biodiversity Research and Access Network for
Taxonomy, grant 261532 in EU FP7/2007-2013

Yeates, S., Witten, I.H., Bainbridge, D.: Tag insertion complexity.
In: Proceedings of Data Compression Conference, pp. 243-252,
Snowbird, Utah (2001)

http://dx.doi.org/10.1016/j.datak.2009.10.003
http://dx.doi.org/10.1016/j.datak.2009.10.003
http://paracite.eprints.org/

	Improved bibliographic reference parsing based on repeated patterns
	Abstract
	1 Introduction
	2 Basics of references
	3 Related work
	4 The refparse algorithm
	4.1 Running examples
	4.2 Basic design
	4.3 Parsing steps
	4.4 The infix match problem

	5 Evaluation
	5.1 Test data sets and metrics
	5.2 Experimental setup
	5.3 Experimental results
	5.4 Performance of individual steps
	5.5 Discussion

	6 Conclusions
	Acknowledgments
	References

