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where Sy- is the adjoint of a^ in the determinant | «y | • K *a thus
generated by the TitX and QUt x. Its order and structure follow from
that of the general linear homogeneous group* on m indices in the
GF[pn].

35. THEOREM.—Forp>2 the largest suh-gro%ip common to Hm>niP and
•Bui,*,,. (for A-= 1) is /£„-],,.,„.

I t is clearly that sub-group of K,»,n,p which has the invariant
£, +;/,. Hence

"ii=^ii = l, «i/ = 5y=0 (j = 2, ...,m).

Writing these relations for the inverse of (1), Ave have

8 = « , , = 0 (i = 2, ...,m).

The substitutions of the sub-group have therefore the form
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This paper contains solutions of four elastic problems, all
originally suggested by hypotheses which might modify the velocity
of propagation of shocks along the surface of the earth. The first,
second, and third deal with gravitational effects ; hence, in these
tla-ee 1 have assumed the material incompressible in order to avoid
the difficulties that arise, even in the statical problem, if the material
be compressible (Love's Ehisttetty, Vol. I., Art. 127). In the fourth
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problem. I consider the effect of a thin skin, whose elastic constants
differ from those of the main body ; here gravity does not enter into
the problem and the material is supposed compressible.

The first, second, and fourth cases suppose the free surface to be
an infinite plane ; these are based on a paper by Lord Rayleigh
(Proc. Lond. Math. Soc, Vol. xvu.). From the first and second it
appeal's that when the length of waves is short enough for us to
regard the earth as plane the effect of gi'avity must be in all cases
small. The fourth solution shows that the effect of the skin must
be proportional to its thickness, and hence must be small.

The third problem solves the vibration of a sphere tinder its own
gravity. Here the modification introduced by gravity appears to bo
considerable, on using the approximate elastic constants of the
earth. The method adopted here is practically the same as Prof.
Lamb's, to be found in his well-known paper on a vibrating sphere
(Proc. Lond. Math. Soc, Vol. xin.) ; but I have used a slightly
modified form for the analysis, which reduces the labour of manipu-
lation and also gives a more convenient form of the period-equation.

It appeal's that gravity lias no effect if the order of the harmonic
disturbance is zero or unity ; when this order is 2, I have calcu-
lated a number of roots of the period-equation. In particular for a
sphere of the size, mass, and gravity of the earth, but with rigidity
about that of steel, thu gravest froo period is .!>i> minutes; th«
corresponding period without gravity is (56 minutes. If the rigidity
bo about that of glass, the periods arc 78 and 120 minutes, respect-
ively.

These problems Avei'O originally undertaken at the suggestion of
Dr. Larm'or, to whom I am indebted for many valuable criticisms.

1. Propagation of Waves titular Constant Gravity on the. Surface of an.
Infinite Incompressible, Elastic- Solid with an Infinite Horizontal
Face.

Following Lord Raylcigh's method (Inc. cit. supra), AVC have to
make but one modification, viz., the normal traction on the menu
free surface has to be just sufficient to support the weight of the
harmonic inequality, instead of vanishing. Thu proof of this state-
ment will be found in Lovo's Elasticity (Vol. !., Art. 178).

To shorten the work, I take the axis of x to be the direction of
propagation of the waves ; then, if z is vertically upwards, we take
all the displacements indopunduut of ;// and v = 0. Tlio ordinary

H 2
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equations of elasticity then become

at2

. ou , ow

dx dz

]fut, since the solid is incompressible, A, the dilatation, will be zero ;
however, \A will be finite, and let us put px = A.A, so t h a t ^ is a kind
of negative hydrostatic pressure. We then have the modified
equations

dht dp, . _2
p ^ = + " V l "

oh

A du , dw
V = 7T- + 7T--

Ux dz

asswme all the displacements to contain the factor ex-p(ipt + ilx);
so that the wave-length A.' = 2TT/1, and the velocity of propagation
is l/p. We then have, if

" >

whence we find V9jPi = *̂

Thms we take ft/p*' = (Pe" 's + Qe's) exp (tpi -|- ilv),

which is the general solution, if pl contains the exponential
exp (ipt + ilx). Now in the solid z ranges from 0 at the mean free
surface to —oo; consequently, if I be positive, we must take P = 0,
so that px may not increase indefinitely with the depth. Whence

c1 = Qe'*exp (tpt + ilx).
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Next, since v3î i = 0, a particular set of values of the displace-
ments will be

PK Ox

1 dPl

l*r Oz

to which we must add complementary solutions of the equations

On OW
7T- + V~
VX OZ

so that in all we find

« = 5 -£* -\-Ae" exp i (Ix+pt),
hK O.I}

w = - -1, ^f

where i7^L+sJ?=rO and

It is assumed that the real part of s is positive in order that ?/-, w
may not become infinite at z = — co; tho case when s is purely
imaginary will be considered later.

The conditions at z = 0 are
*\

XA-f 2 / A - - +gpiv = 0,
oz

xoz ox < .

the fii'st of which makes the normal traction on the mean free surface
just support the weight of the harmonic inequality, while the
second makes the tangential traction zero. Whence

(*B-PQ)+gP(B-lQ)=0,

But UA — — sB, and thus we have

- IQ (2 - *»/£) + (gP/fd) {B - IQ) + 2sB/l = 0,
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in the second of which we have put

Writing now KS/Z2 = £, we find, after eliminating the ratio B : Q,

(2 -O(2-£ + f7p//<Z) = 2 ( 2 / 1 7

or ( 2 - 0 s - 4 v/1 - i-t(9P/pl) = 0,

and hero \ / i — £ = s/Z, and so the real part of v ' l — ̂  is to be
positive.

When g = 0, the equation is the same as that found by Rayleigh
for an incompressible solid (loo. cl.1-. supra).

I now proceed to obtain an estimate of the magnitude of (gplfxV).
In the fifteenth Brit. Assor. llcpnrt, " On the Earthquake Phenomena
of Japan " (p. 58), wo find that approximate values near the earth's
Riirfaee are, in C.Gr.S. units,

P = 3, /i = (1-5) 10",

and the mean value of g is known to be 081 in these units. Now

and with the values above Ave find rotighly

2ir/i/f/p = (3-204) 10s;

also in centimetres the earth's mean radius a = (G"^?) 10s nearly.
Thus a rough estimate of (jpfrtl is 2k'/a.

Now it is clear that X/a must be small in order that we may treat
the earth ns approximately plane. Consequently the roots of my
period-equation cannot differ greatly from those given by Rayleigh.
Suppose, then, £0 to be a root of Kayleigh's equation, and now put

wo have then, approximately,

2« [ (W 0 )- i - (2-£ 0 ) ] - (gp/hd) Co = 0 ;

but 4(Wo)»=(2-f0) ' .

so that this becomes

2

Lord Rayleigh shows that, of the three values of £0 Avhich differ from
zero, only one is a solution of the problem, as the other two make
the real part of ^ 1 —£0 ( = .«/0 negative, which is inadmissible.
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This value of £0 is given by him as 0-91275, but my calculations have
led me to 091262. Taking this value, we have

4 (2-£ 0 ) - 2 - (2-£ 0 ) = 22956 nearly,

and so S£/£o = (0-2178) (gp/pl) nearly.

The velocity of propagation V = p/l — {\>%>\p)h; thus, if Fo = (^£0/p)*,
we have, to the same degree of accuracy as before,

( 7 - F 0 ) / F 0 = 3£/2£0 = (01089) (gp/fxl) = (0-213)(A'/a),

with the values of fi, p quoted above. Consequently the ratio
(V— VQ)/V0 must be a very small fraction in all cases to which this
method of approximation can be applied.

After the above solution had been completed, it was pointed out as
a moans of verification that the period-equation ought to lead to the
known value of the velocity of propagation of short waves on water.
Making ft small in the equation, I found as the first approximation
to £ the value flp/i^l, giving the velocity (Cfi/p)* = (g/ty = ({A'^T)*,
the well-known form. But this would clearly make (1—£)' imaginary,
and thus the terms neglected in £ would have to be complex, leading
to a complex period. Since this is inadmissible, it will be advisable
to examine the assumptions made above.

It now appears that when s is purely imaginary the values of u, w
may include terms in e~" as well as those in e*s, both sets being finite
at G — — co . This will introduce a new arbitrary constant; and
hence also an additional boundary-condition. To express this con-
dition in the simplest way, take the solid as a slab of thickness 2h0,
where h0 will be subsequently made infinite. I shall replace the
terms in eh, e", &c, by hyperbolic functions, and take the origin as
midway between the two faces of the slab. Thus we have

pJfiK" = A cosh (1z) +B sinh (Iz),

it, = r ~ + .Xj cosh (sz) -f X2 sinh (sz),
HK Ox

w = - —9 P- -f Zx cosh (sz) + Z2 sinh (sz).
A*K Oz

A l s o -<- + z- = 0,
dr. Oz

so we find UX^ + sZ^ — 0 and UXi + sZ1 = 0,

the factor exp (ipt + ilx) in pu u, w having been suppressed for brevity.



104 Mr. T. J. FA. Bromwich on the [Dec. 8,

I take as the boundary conditions

oz

— 4- —— 0

dz dx.

at each mean free surface z = h0 and z = — 7>0. Thus we have

(<c2- 2Z2) [A cosh (lhQ) + B sinh (Z ô) ] 4- 2s [Zx sinh (sh0) 4-£2 cosh (S7J0) ]
+ (SP/VO [ ^ i c o s n (5 '̂o) + ^a s i n h (s^o)

- Z { J. sinh (lh0) +B cosh (Z7i0) } ] = 0,

from the first condition ; and, from the second,

— 2iZ8 [.4 sinh (lhQ) 4- B cosh (Z/tJ ] 4-s [Xt sinh (s^0) 4- Xj cosh (^0) ]
4-̂ 7 [ Zx cosh (,y7i0) 4- #2 sinh (S/J0) ] = 0,

together with two similar equations which are the same as these
when the sign of h0 is changed. Substituting in the second of these
for Xv Xj in terms of Zv Z^ we have

-2Z8 [A sinh (lh0) +B cosh (lh0) ]

4- (2Z2-K2) [ Zx cosh (sh0) + Z2 sinh (s7i0) ] = 0.

Whence, changing the sign of h0 and adding and subtracting, we have

(K 2 -2Z 9 ) A cosh (Z//o) +2sZs cosh (sh0)

+ {gplfi) [Xcosh (s/0-Zi?cosh (Z7»o)] = 0,

Or9—2Z2) P sinh (Z7i0) 4- 2sZx sinh (sA.o)

+ (gp//j) [^3 sinh (s/?0)— Z-4 sinh (Z/?o)] = 0,

(2Z3-K3) ^, cosh (s/i;,) -2ZS5 cosh (Z7i0) = 0,

. (2Z3-*2) Z2 sinh (5//0)-2Zs^ sinh (Z7i0) = 0 ;

whence we find, eliminating Zlt Zv

- (2Z2- <c2)2 A coth (ZA0) 4- 4Z3s^ coth (sfc0) 4- (?p//i) l^B coth (Z ô) = 0,

- (2Z2-K2)3 B tanh (Z/i0) 4- 4Z3sJ5 tanh (s7«0) 4- (gp/f) In*A tanh (Zft0) = 0.

Eliminating the ratio A : B, we have*

[ (2Z2 - ^2)2 tanh (Ui0) -4l5s tanh (sh0) ]
x [ (2Z2—K-2;2 coth (lh0) -U

3s coth (s7i0) ] =

* On putting ff = 0 this reduces to two period-equations which agree with (38),
(47) of Lord Rayleigh'a paper " On the Vibrations of an Infinite Plate" (Proe.
Lond. Math. Soc, Vol. xx.).
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Now, consider the limiting form of this period-equation when h6 is
indefinitely increased; coth (lhQ) approaches the limit unity, so also
does coth (sh0), provided that the real part of s is positive. This
was the condition previously imposed on s ;. we shall hold over for
the moment the consideration of the case when s is purely imaginary.
Our period-equation is thus

and it will be seen that we must choose

in order that z = 4- h0 may be the surface at which the disturbance
is finite. This equation is the same as that found previously.

Next take s — is', where s' is supposed real. Then

s tanh (sh0) = — s'tan (s'h0), and s coth (sh0) = s' cot (s'A0) ;

these two expressions do not tend to limits independent of s' as 7/0 is
increased indefinitely. Thus here the period-equation must involve
h0; but we can obtain an approximate solution when fi is small. In
this case K will be large, provided p, p be supposed finite. Our
equation will then yield approximately

whence «c9 = gpl/p, or p* = gl,

which gives the velocity of wave propagation

This is the well-known result for the velocity of propagation on
water of waves whose length is short compai^ed with the depth.

It will be noticed that the equation originally found,

always gives a real value of (*8/O which lies between 0 and 1.
Apparently we should thus have in all cases a real value of s given
by this equation; but when the ratio (g/l,) : (fi/p) is greater than
unity it will be found that this value of s must be negative in order
to satisfy the period-equation, and this must be excluded according
to the original conditions. Hence, if (g/l) > (A*/P), i.e., if the velocity
of propagation due to gravity alone be greater than that of rotational
waves, then the more complicated period-equation just found must
be used.
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I t will be observed that in the physical application originally con-
sidered gp/fil was a small fraction, and consequently this point did
not present itself.

2. The effect on the previous problem due to an Ocean of Depth small
compared with the Wave-length.

For simplicity take the depth as uniform, so that the mean
boundaries are two infinite horizontal planes. Neglecting viscosity,
the motion in the water is irrotational; let $ be the velocity-potential
with 9$/8s as the velocity in the direction ds.

Retaining the axes and notation of the former problem, we write
at once, in the solid,

pJfiK* = Qelz exp {ipt+ilx),

u = r -& +Aesz exp {ipt + ilx),
l*K Ox

to = - ~ -& +Besz exp (ipt + ilx),
AtK dz

where UA + sB = 0 and s2-t-«2—V =• 0.

To determine <f> we have V2<£ = 0, and hence

<f> = [0cosh (Iz) +D sinh (lz)~] exp (ipt + ilx).

Next we have at z = 0 ~ = ——,
dz dt

which gives ID = ip (B—IQ).

At the free surface (z = hQ, when undisturbed) the pressure must be
constant. Thus

dz dP
or

gl [ 0 sinh (lh0) + D cosh (lh0) ] -p
% [ G cosh (lh0) + D sinh (Z ô) ] = 0.

Now lh0 ( = 2irhJ\') is supposed to be small; so, approximately,

sinh (lh0) — lhQ and cosh (Z ô) = 1;

whence gl (D + Clh0) -p'(G + DlhQ) = 0.
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At z = 0 we have the two conditions

. dw

. n CIO . f , x ,O(b n
p 1^ (p-p)w-p -f = °»

where, in the second condition, p is the density of the water; and
the effect of the water-pressure has been included. Thus

, ( Q )+g (pp)(Q + )-ipp'O = 0.

Now we have

0 tf-gVh,) = Bl (g-P%) = ip (g-

which gives, approximately,

the terms rejected being of order (gl2hjp2) in comparison with those
retained. Now (gPhJp*) is (gp/htyflK)^!'?), and, by what has been
already proved in the first section, (g^/pl) is a small fraction, while
lhn is also small. We thus have, on substituting for A and 0 in
terms of B, Q, 2Z»Q-(S

3-M*) .B = 0

and /x (K2-2Z2) Q+2HSB+ (gp-pyh^iB—lQ) = 0.

These give

Writing £ = n-jV1 as before, this becomes

Obviously, if p'/p = 0, or if lh0 = 0, we get back to the period-
equation found in the first section. Solving by approximation in
the same way, we get

which yields with £0 = 091262

( F - F o ) / F o = 8£/2£0= (0-109) fo>//il)- (0-099) (lhoP'/p).

Expressed in terms of the wave-length, with the same values of
fx, p as used above,

(V~VQ)/V0 = (0-213)(\ '/a)- (0-522)(p7p)(V\')-



108 Mr. T. J. TA. Bromwich on the [Dec. 8,

3. The Vibrations of an Incompressible Sphere under its oivn Gravity.

We shall neglect the central part of gravity in solving for «, v, w>
as its only effect is to introduce into the traction on the mean free
surface a term which is equal to the weight of the harmonic in-
equality (Love's Elasticity, Vol. I., Art. 173). But we must retain
the gravitational potential of the harmonic inequality, which we
denote by V, so that V contains terms of the same order as the
displacements.

We then* have the differential equations of motion

hhi d

tit o

p. dv ov ou> •

ox oy dz

the last equation holding on account of tlie incompressibility, and in
the others XA = pv a finite quantity. It at once appears that

Vap, = 0 since V2V = 0

by properties of the potential.
We thus get a set of particular integrals

\ox oy os>

where <j> =^ — (iJi + /' ^)/V'v'2>

and, as before, K2 = pp'1/^.

The complementary solutions are to satisfy

(y'- + K*-y Wj = 0,

(V^-f *.•-') v = 0,

(Vs + K~) wa — 0,

Oui Or., OIL:, .-.
-x r •„-- + -^-- — U.
Oa; Ow Oz
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I shall now introduce the hypothesis that the displacements are
symmetrical round an axis ; this is really perfectly general, for by
superposition of such solutions we can get every possible case. We
reject the displacements called by Prof. Lamb " those of the
first class," in which the displacement is in circles round the axis ;
and proceed at once to those of the second class, where the displace-
ment is in a meridian plane. In displacements of the first class there
is no radial motion; consequently the effect of gravity is nil.

For the future w, v will represent the radial and transverse dis-
placements in the directions of r, 6 respectively increasing ; the nota-
tion is that of three-dimensional polars. Then

_ cU _ l 3i//
dr r2 sin 0 9 0 '

r dt) r sin ti

where f == — (

as before; and the terms in \p give the complementary solutions
«2, t'2, w2 of the previous notation. Here ij/ satisfies

i n _ 33 . sin 6 d

which is the operator usually associated with a Stokes' stream-
function.

We then find that typical terms in <j>, if/ are, if Pn is Legendre's
coefficient of degree n in cos 6,

0 = ArnPne
iil\

where

\ x dx

1 fi *' . 1
""1.3.5 ...2n + l L 2 .2»+3 2.4.2n + 3.2fl + 5 "*J'

.accoi'ding to the notation of Prof. Lamb {Hydrodynamicst Art. 267).
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This value of \p is at once obvious by remembering that

cos w V r sin 6 I'

<i> being the azimuthal angle of polars.

We then have

u = wr*"1 [A + (n + 1) Bfa («r)] P,,e'",

v = r""1 [A + {(rc + 1) ̂ , («>•) +mK («r)} B] ^ V ' " .

From this value of u we see at once that V is of the form

where u0 is the value of u at r = a. Also >̂, satisfies V2 ,̂ = 0, and so
we put p, = /3itor"/a", where ft is a constant. To determine (3, we havo

/«ty =-(pl+pV),

and hence /iK3i4a + n [ft + 3gp/(2n +1)] [ 4 + (« +1) .Bi/',, (*:a) ] = 0.

The equations to be satisfied at the surface are now seen to be

~+flMt = 0,
d

and 3 / 1) \ , 1 3

)+
3 / 1) \ , 1 3tt n

dr \ rJ r 06

Substituting, we get the two conditions

n [ft + gP + 2/* (u -1 )/a] [̂ l + (« +1) Ity,, (m) ]

+ 2fiK-n (n + 1) B*p'u (m) = 0

and 2 (n—l)A + B [2 (»s— 1) fa (Ka)-2Ka\L'n(,«.i)-Kiu2fa (wt)] = 0,

in. the second of which if/'' (*ra) has been expressed by i//,, (ca) and
i//', (iat). Substituting for /8 in the first of these, AVO find

2n ( « - l ) [l+flfpa//i (2» + l ) ] [ 4 + (« + l) U^,, (sa)]

— *r8as l̂ + 2iL-aM (w-M)jB^',(ca) = 0.
For brevity put

B4>n(ica) = C, m = x, if/'n (Ku)/fa (•<:«) = X, ngpa/(2n + l) n = 8;

then we have

2 (n—l)(n + B)[A + (n+l) 0]-xiA + 2n (» + l) Xa;C == 0,
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while the second surface-condition becomes

2(n-l)A+O[2(ni-l)-l2Xx-xi] = 0.

On eliminating the ratio A : C and rejecting some superfluous
factors, these give

[ ] = 0 ,

which may be written

+ l)+nr/pa/(2M + l ) ^ - K W / 2 ( n - 1 ) = Q

By ])utting y = 0 we arrive at an equation, which ia the same as that
found by Prof. Lamb (Proo. Land. Math, tioc, Vol. xin.), when
allowance is made for tho fact that the value of if/n (K<I) which is
there adopted is [ 1 . 3 . 5 ... 2?t-f 1] times the value used above.

From tho form of the period-equation above it appears that n = 0,
n = 1 define modes of vjbration which are not affected by gravity.

It is of interest to see that the equation just found l-educes to the
form given previously when we considered an infinite solid with a
plane face. We take a, n as both infinite' and the harmonics as
sectorials ; then 2va/n = wave-length = 27r// of former work; so
n = al. Wo must now investigate the form of if/H when both n and
the argument are very great. I have not succeeded in finding a known
form either of if/u or of ,Tn^ in this case; accordingly f proceed to
determine a form by first principles. We have here that, with
(i = 7r/2, (r"^,,) e'"" = U is a solution of

(Va-f-f2) U = 0 and mo = luio = /.«•;

so we have rntyn = Ae"{'"a\

where s3 = '«"" + £*,

and the real part of a is positive, so that \j/,, may not be infinite
at r = 0.*

* Another method is as folioWH :—ty,, («>•) is a solution of

Now write r = a - z, and tmypotso z/a to bo small; tho equation for y will become

£-»!••*-•
ami wo find
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Differentiate now with respect to r and put r — a; we find

11 . K\I/', (tea)

a \pH (k-a)

•<l'n (m) _ s~ I

«A» i > ) ~~ K

Also ngpa/(2n-\-l) n = ngp/2fxl

in the limit; thus the period-equation becomes

2 (s—i!)/K-2a+ (2-\-gp/2fxl — K2/2Z2)/W = 0,

which is equivalent to

4Z (s—V) + K 2 (4>-\-gp/fil—K-/l2) = 0,

a n d Avith £ = K2/Z2,

as before, we find ( 2 - C)3 = 4 %/F~£ + (<7P/^0 &

the form already given in Section 1.

An additional verification is afforded by taking n extremely small;
wo ought then to find one of the periods the same as that given by
Kelvin's formula for a gravitating fluid sphere (Phil. Trans., 1863).

Taking fi as very small, p* being kept finite, k- will be very great,
and then, after multiplying up, the most important terms in the
period-equation contain the factor

ngpa/(2n+l) n-ppV/2 (n-1)ft,

and thus the approximate period-equation may be taken as

p* = 2n (n-1) g/(2u+l) a,

Avhioh is Kelvin's formula.

I now proceed to the discussion of the l'oots.of the period-eqnation.
We see that, n = 2 is the first harmonic which gives any difference
from the case without gravity ; and for the future this alone will be
considered. The equation is

2
= Q

x frrO8 + 2 / 5 a r l / 2
where y denotes gpa/p. This can be reduced to the equivalent form

tana; _ _ 24 (20 + y ) -4 (23 + y)x* + 6a:4

remembering that

\^%{x) = [(3—a;2) sin a;—3a; cos a;]/a;6.
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The second form will bo seen to reduco to equation (80) of Prof.
Lamb's paper previously quoted, on putting y = 0.

1 originally attempted to solve the equation by assuming a value
of y, and then using the method of trial and error. By this means I
calculated the roots marked (A) in the table subjoined. Hut it soon
became clear that, to trace the roots systematically, an easier plan
would be to evaluate the values of y corresponding to assumed values
of x. To do this I tabulated ij/3 (x), t/4 (a:), and deduced the values
of 2i/̂  ((c)/.xv//.j (x) corresponding to values of x, differing by 7r/10. Tho
calculation of y then offers but little difficulty. The periods were
deduced for a sphere of the same size as that of the earth, with the
same surface-:value of gravity, using the constants

a = (6-37) 108, g = (980) 103.

I proceed to make a few notes on my results. Taking fi about the
rigidity of steel, I calculate that y = 4*32, which gives a period about
55 minutes, as against 66 minutes found by neglecting gravity ; and,
with fx about the rigidity of glass, y = 15 nearly, which gives the
gravest period about 78'5 minutes, as against 120 minutes when
gravity is neglected. These are the cases of chief physical interest.

A general description of the variation of the roots with y may make
the table clearer. The lowest root is (>848.r)) ir when y = 0, accord-
ing to Prof. Lamb; this root increases with y, until y becomes f-o,
corresponding to a value of x between (165) -K and (l'70) T, the period
at the same time increasing to co . After this, until x = (I17420) 7r,
the value of y is increasing from —co to 0, which indicates that
these values of x cannot occur in any real case. We now come to a
series of second roots of the period-equation; here the value of y at
first varies rapidly for small variations of x, and for a value of x
between (2"8) it and (2*8257) v becomes co ; it then changes very
rapidly from —co to 0. The third, fourth, and lifth roots have the
same general properties, but it is remarkable that, as the order of the
root increases, so also does the value of y requisite to produce a given
period. Moreover it appears that, in the higher periods, tho variation
in the period is slight in comparison with tho variation in y; also,
as the order of the period increases, so does the range of values of
y for which the period differs but little from 94 minutes. It is in
tills sense that we must understand the period 94 minutes, as found
by Kelvin's result for a gravitating fluid sphere of tho same size and
gravity as the earth. Of course every value of y gives rise to an
infinity of periods, and the particular case of y = co , corresponding

VOL. xxx.—NO. 005. i
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to a fluid sphere, gives an infinity of infinite periods and a finite
period 94 minutes.

The table contains about two-thirds of the periods I have calculated,
those not inserted can be interpolated with sufficient accuracy.

TABLE of Periods of a Gravitating Elastic Sphere, with the same
.Radius and Surface-Gravity as the Earth, tabulated for varying
values of (gpn/p) -—

I,

A (I )

(2)

(3)
r,
A

0
3-8
4-32
6-8

109
139
1 8 0
24-6
36-5
56-2

0
15
27-3
40-9
53-2
<i6-5
8 4 0

118-0

HII/V.

0-8485
1-0
1-019
11
1-2
1-3
1-4
1-5
1-6
1-05

1-7420
1-794
1-9
2 1
2-3
2 5
2-7
2-8

Period in
Minutes.

0 ^
52-5
55
63 5
74
77
81-5
89

102
141

0
58
74
82
85-5
88
1)1

101 J

V

•5 d
o •+*

•g ^

2 "
"S "o

o
g

1s

(3)
L

(3)
L,

(3)
L

(3)

0
84-5
96

173
193-6

0
153
274

0
198
436

0
425

Kafir.

2-8257
2-9
3-0
3-8
3-85

3-8709
3-9
4-8

4-8974
4 9
5-9

5-9148
6-0

Period in
Minutes.

85 1
88 \Z
9 3 j |

ol "S
85 \ 9
93 J (S

o"j rC!
77 \&
95 j S

ol'S
92 J ^

REMARKS.

L iudicatca that the rout ia taken from Prof. Lamb's paper.
A these roots were found by u ditferent method from the rest.
(1) fi = that of steel.
(2) (gpa/n) - 15 nearly, if /x be that of glass, so the corresponding period is

about 78 minutes.
(3) in each of these intervals, the ratio (ffpa//x) changes very rapidly to + co f

— oc , and zero. I t thus appears that certain values of {Ka/ir) cannot appear in the
solution of this problem, viz., those which make (ffpa/p) negative. For instance, I
find that (tcn/ir) = W makes thiB ratio negative, and so the values from (1*7) to
(1*742) cannot appear.

Notation.—2-n/p = period, K~ »•= pp2/fi.

Three sets of curves are given to indicate graphically the results.
In Fig. 1, the curves show the relation between (gpa/p) and the
period ; they in all eases should go off. to infinity, but owing to diffi-
culties of computation it has not been possible to find the asymptotic
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directions. Moreover curves (4) and (f>) pass through the origin,
but my calculations do not give the exact shape near the origin,
which has been filled in by following the general outline of the first
three.

In Figs. 2, 3, the abscissa is (Ka/n), and the ordinates are the period
and (gpii/ij) respectively. Here all the curves go off to positive
infinity nearly vertically; and in Fig. 3 they return through
negative infinity to the horizontal axis, in a nearly vertical direction.
The negative part of the curves is not given, as it can have no
physical interpretation, merely arising out of the analytical solutions.

4. Propagation of Waves in a Thin Shell ivith Two Infinite Parallel
Faces, one i>f which i,s rigidly attached to an Infinite Solid.

The usual equations of small motion of an clastic solid in two
dimensions arc

v.v.

P rs = ( A + A » ) v

u vz

where A, fi are the elastic constants as defined in Love's 1'JlastfcHi/.
1 take the axis of x to be the direction of propagation of the waves,
and that of s perpendicular to the plane boundaries, which will be
the two planes s = 0, s = h0 in equilibrium. I suppose z = h0 to bo
the free surface, and. that h0 is positive, BO that z = —co gives the
other boundary of the infinite solid.

Also A is the dilation and is equal to

d.v. tis '

Now assume that u, in both contain the factor exp-t (lx-\-pt) ; so that
2TT/1 is the wave-length, and p/l the velocity of propagation. Then,

and K9 =

the equations given abovn will reduce to
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and so

Hence we assume that in the infinite solid

A/7i2 = Aerz,

10 = —

where r2 + 7t2 = V = S*+K\

and the real parts of r, s must be positive in order that u, to may
vanish at z — —oo ; the exponential factor exp i (Ix+pt) must bo
understood in all the terms on the right-hand side. From the value
of A, we have at once . . ._ _ n

Turning to the shell (whose elastic constants are supposed to be
different, say X', //', p), it will be seen that we are not restricted to
one exponential in 2, and for convenience I use two hyperbolic
functions.

We may then write, for the displacements in the shell,

A'//i'2 = B cosh (r'z) + G sinh (r'z),

u = — il [Bcosh (r'z) •+• G sinh (r'z)] +XX cosh (s'z) +X2sinh (s'z),

w — — r [B sinh (r'z) + G cosh (r'z)] + Zl cosh (s^) + Z, sinh (s'z),

by using the method of integration given by Lord Rayleigh in his
paper (loc. dt. supra), where we have put

a n d 7 t ' 2 - f r ' 2 = Z2 = K/2-t-s'
2.

Also, since A = - - + — ,
eta oz

we have i ^ + s'Z2 = 0, i7X2 + s% = 0.

In virtue of the rigid connexion between the two solids, we have, at
z ~~ ' M = M' a n d it> = z</,

i.e., —'UB + X1 — - UA + X,

-r'C+Zl —-rA +Z,
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Also we have dynamical surface-conditions at z = 0,

rdn . dw\ , fdu' , dio'\ton . ow\ . ton' , dio'\
v oz ax I ^ 0% ox I

and those at z = 7i0, the free surface, are

dz 9.u

The conditions at z — 0 yield

in which some reductions have been made by substituting for the
X'a their values in terms of the Z'a.

The conditions at z = h0 give, cifter expanding and retaining only
the first powers of ?•'//„, s'h0,

»0) = 0,

and here again we have substituted for the X'a in terms of the Z'a.

Thus we have

s'Zt - ho [(2Z3-*'2) Cr-2s'3Zt],

2lir'G-(2li-lc
m-) Zx =

and, substituting these values in the dynamical conditions at z = 0,
we get

[ (2 / . 8 -O Cr'-2s9Zl],

A-('2li-Ki) Z =

Now it must be observed that we have already rejected squares of h0,
and consequently it will be sufficiently accurate, when reducing the
right in the last pair of equations, to entirely reject h0 in the ex-
pressions lor Zv Zr
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Thus we take

(2Ja-K/3)Cr' -2s'3Zl = [(2J2-K'J)3-4JY3]

= CrV4/(2P-ic'a),

so that - (2J2 - K*) A + 2sZ = (fi'/fx ) hQ Or V 4 / ( 2 P - K'9) ,

Next we must express C, 7? in terms of .4, ^, and in doing so it will
not be necessary to retain 7i0, by the argument given befoi'e.

Now we have VB—s'Z^ = PA. -sZ,

r'C-Z^ rA-Z,

and, rejecting ft0, 2s Z^ = (2i3 — K'1) li,

(2Z2-K'3) ZX = 2P/0 ;

thus we find K*B - 2 Q/A-sZ),

As a last reduction I now eliminate Z from these values of B, G by
substituting in terms of A, still neglecting 7i0. Thence

an d K

Thus our equations connecting A, Z will become

Now, eliminating the ratio A : Z, we have

4Z2rs-(2r--K-2)2 = (p'/n) h0 [ ^^

Writing, as before, KP/I2 =

a n d hy^-r, fc

this becomes

and, to reduce this further, we may insert on the right values found
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by equating the left to zero ; and it will be found that, if

then &[(l

Thus 4 ( l - rO»( l -0 ' - (2 -O f

= 4zu« (Wo
is the new form of our equation.

To solve approximately, write

* = &+
and then we have

If, now, Fo be the velocity of propagation of these waves in the
elastic solid when free from the shell, and V0-\-8V he the velocity of
propagation now found, we have

and (

thus

approximately.

Lord Rayleigh has given the appropriate roots of

for four values of r ; and,using these values of £0> I have found roughly

8F/F0= (O13)ZAo[(///,)(l-r')-p7p], r = 0,

$y/F0 = (0-34) lh0 [ V / A O ( 1 - 0 - V / 3 / > ] , r = 1/3,

SF/F0 = (0-70) lh0 [( / /^)(l_r ' )-P72p], r = 1/2,

= (2-80) W,

It thus appears that the influence of a thin skin on the velocity of
propagation of waves of given wave-length can be only slight; hence
any application of Lord Rayleigh's results to determine the velocities
of earthquake waves cannot be expected to agree at all closely with
the values observed until we know something of the elastic constants
of the earth at depths comparable with the wave-length.
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Some Multiform Solutions of the Partial Differential Equations of
Physical Mathematics and their Applications. By H. S.
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INTRODUCTION.

This paper owes its origin to my work in the University of
Gottingen in the Summer Semester of 1897. The study of a
memoir by Professor Sommerfeld, then a Privat-docent in that
University, suggested to me the possibility, by a somewhat similar
method, of obtaining multiform solutions of other differential equa-
tions of physical mathematics. Their applications are not far to
seek. In conversation with Dr. Sommerfeld on the subject, he told
me that this field for research had been pointed out by him at the
close of his paper communicated on April 10th of that year to this
Society, and then in the press. However, as his time was fully
occupied with other work, he most generously urged me to take up
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the investigation, and offered me his help if at any time the ob-
scurities of the subject left me in difficulty. I desire at the outset
to express the sense of my gratitude for this great kindness, and for
the readiness with which he removed some of the difficulties which
faced me at the beginning of my work.

The papers to which I have referred, and to which fuller reference
will be made immediately, contain certain multiform solutions of the
equations ^ g^

VZ* Olf

and V2« = 0.

The solutions of the first are applied to the two-dimensional
problem of the Diffraction and Reflection of Plane Waves of Light
incident on an opaque semi-infinite plane bounded by a straight edge.
Of this problem Lord Rayleigh had stated some years before, in the
article on " Wave Theory " in the ttncyclopssdia Bntannica, that its
mathematical difficulties were so formidable that no successful
attempt had yet been made to solve it; while again, in his Theory of
Sound,* he has called attention to the claims of such questions in-
volving diffraction.

The solutions of the second equation find their application in such
electrical or hydrodynamical problems as deal with this boundary.

The advance made, in this paper, is the determination of corre-
sponding multiform solutions for the equations

a n d —— = K'V « ,
dt

and their application to problems in the theories of sound and con-
duction of heat. The solutions obtained are exact, and expressed as
definite integrals. The work is thus on a different plan from the
most important memoirs of Poincare, " Sur la Polarisation par
Diffraction,"! and La,mb, on " The Reflection and Transmission of
Electric Waves by a Metallic Grating,''^ in both of which the results
are obtained in series and by approximation.

* Theory of Sound, Vol. n. , p. 141, 2nd ed.
t Ada Mothemaiiea, Bd. xvi., p. 297 ; Bd. xx., p. 313.
% Proc. Load. Mulh. Sor., Vol. xxrx., p. 523.
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1. Extension of the Method of Images.
The method of images, taken from the domain of optics and applied

to the solution of certain problems in statical electricity, was soon
extended into other branches of applied mathematics. Instances of
its application occur in current electricity, hydrodynamics, and
the theory of the conduction of heat. The principle of the
method is the symmetrical extension* of the problem involved,
from the limited to the unlimited space. Thus the question
of the point charge between two planes at right angles is solved by
the consideration of the infinite space, and charges at the" four
symmetrical points. This symmetrical extension is obtained by
successively reflecting the original space in the bounding planes. By
this means the whole space is simply and completely filled up, while
the starting point is reproduced in the final reflection. Similarly
with the space between twofjinfinite planes meeting at an angle §*.
Here six reflections are required before we return to the region from
which we started. Fig. 1 shows the position of the poles for this

TPia. 1.—Position of charge and images for planes inclined at an angle Jw,
obtained by successive reflection.

qase, the shaded portions being those in which the positive cbai*ges
are placed.

The result for the angle — (m a positive integer) follows in the
same way.

When we attempt, by this method, to solve the problems in which

the angle between the planes is — (w, m positive integers), we

Anabjtische Fortsetzung.
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at once meet a difficulty; on reproducing the original space by
successive reflection, we have, in the end, more than one pole in the
region from which we started. In other words, the space is not
simply filled up, but we are compelled to traverse it 71 times before we
return to our starting point.

For •£* (Fig. 2) our space is covered two-fold, and we have six
reflections. These six are all necessary, as, though the second brings
us the complete revolution, the third does not take the starting point
back to its original position. The spaces are here shaded, or other-
wise, according as the positive or negative charges occur, and we find
ourselves with two poles in the region which ought only to possess
one.

Fio. 2.—Planes inclined at an angle -|ir.

The 'method of images, then, seems here to fail.

The fii-st successful attempt to solve any of these problems in
mathematical physics appears to have been made in 1894 by
Sommerfeld. This was published in a paper, " On the Analytical
Theory of the Conduction of Heat,"* Mathtmatische Annalen, Bd. XLV.
The ideas there introduced were extended to optics and electricity in
a paper in the same journal, Bd. XLVII., " On the Mathematical
Theory of Diffraction."f Some of the results of this paper had
already been communicated to the Konigl. Gesellschaftf der Wissen-
schaften zu Grfittingen, and appear in its Nachrichten in the com-
munications noted below.:}: The method is somewhat altered, and

* " Z u r analyti8chen Theorie der Wiirme-leitung," Math. Ann., Bd. XLV.
t " Mathematieche Theorie der Diffraction," Math. Ann., Bd. XLVII. A review

of this paper will be found in Voigt's Eompendinm der theor. Fhysik, Bd. n .
pp. 766-776.

{ " Zur mathematischen Theorie der Beugungtserscheinungen," Nuchrichtcn von
der Konigl.-Gesellsc/iaft der Wisscnschaften, Giittingen, 1894. " Zur Integration der
partiellen Differential-Gleichung v'2u + k-u = 0 auf Rieinanus'chen Fliichen," ditto,
1895.
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brought to bear* on potential problems, in a paper " On Multiform
Potential in Space "* communicated to this Society.

As used in this last paper, the method may be briefly stated thus.
We imagine that we are dealing not with the ordinary space but
with a Riemann's space. This is analogous to the Riemann's surface
of the theory of functions of a complex variable, and allows us to
look upon such many-valued functions in the ordinary space as
single-valued in the Riemann's space. In space we shall have
" branch-lines"f instead of "biianch-points"+; "branch-membranes "§
for " branch-sections."|| Every plane section of the Riemann's space
will give a Riemann's surface, and the branch-membranes and
branch-lines give place to branch-sections and branch-points. We
then attempt to find a multiform solution of the differential equation
—in this case V2« = 0—which shall be uniform in the Riemann's
space ; in other words, our problem, from the pure mathematical
point of view, is simply the integration of this partial differential
equation in a suitable Riemann's space. Finally, we obtain a func-
tion u which has the following properties :—

(i.) In the Uiemann's space outside the branch-lines it is single-valued,
finite, and continuous, except in the point P, where it is infinite as

—, B denoting the distance from P to the neighbouring point Q.
Mi

(ii.) Itsatisfies the differential equation V2« = 0 in the xohole Riemann's
space except in P, and in the branch-lines. In this condition is included
the fact that, except in these places, it has finite first and second differ-
ential coefficients.

(iii.) It vanishes at infinity.

By taking the images, and considering the space we have to deal
with as the Riemann's space, we obtain a potential function with
n poles; but, taking the physical space as that given by but one
" example "̂ f of the Riemann's space, we have the solution of our
problem.

For example, take the case solved by Sommei-feld, of the point
charge outside a semi-infinite conducting plane at zero poteiitial.

* " Uber verzweigfco Potentiale im Ilnum," Troc. Loud. Math. Sue, Vol. XXVIII.
t Verzweiguugxlinicn. J Vcrzweiyuiigspunkte.
§ Verzweigunysmembranen. || Verzweigungsschnilte,
IF J Z l
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Here the convenient Riemann's space has the edge'of the plane—
the axis of z—for branch-line, and the plane itself for branch-
membrane. Then, with cylindrical coordinates, we take the range

0 < 6 < 2ir

for the physical space ; and
—2TT < 6 < 0

for the imaginary space, the two building up the twofold Riemann's
space.

A solution is found, corresponding to the pole at (r, 6\ z'),

0<ff< 2TT,

and it is proved that there is only one solution with these properties.
Denoting this by u (&'),

w = w(0/)-M(-fl/)

is the required solution of the physical problem.
This paper contains some further extensions of this method.
From the pure mathematical point of view, it deals with the

solution on certain Riemann's surfaces, and, in corresponding
Riemann's spaces, of the following partial differential equations :—

+ + A 0

SI = 0,

dt

From the physical standpoint, it is concerned with problems in
which the ordinary image theory fails, and the space concerned has
to be looked upon as a Riemann's space (or surface), of which only
one example (or sheet) is considered.

2. Multiform Solution of the Eqtiation — \- | -K 2 « = 0,
3a;2 Oy*

without Infinity.
The solution discussed in this section forms the subject of the

paper on " Diffraction," in Math. Ann., Bd. XLVII., above [cited. The
results are so important—they solve the problem of the diffraction of
electrical waves incident on a semi-infinite plane conducting screen
—that it seems worth while to obtain the solution anew, and, in



1898.] certain Partial Differential .Equations. 127

obtaining it, more fully to explain the method hereafter to be employed.
Whereas, in these companion papers in Math. Ann. and Gott. Nac.h-
richten, the solutions of the two-dimensional oaso are obtained as
limiting results from three-dimensional work, just as Hossol's
Functions can be deduced from Spherical Harmonics, it is obvious,
from the paper on " Potential,"* that nothing hinders the application
of its method to the equation

~ h ~ H KM = 0.

rV d;f
A comparison of the work in this section with that in the paper

referred to will show to what an extent the problem is simplified.

In dealing with plane waves wo are accustomed to the solution

«0=e'*'c'"'C"'») (1)

which represents the disturbance due to waves coming in the direc-
tion (ti') from infinity.

If we introduce the complex variable «, and l e t / ( a ) stand for any
function of a,

taken over any path in the u-plano from which infinities are excluded,
is also a solution.

Then ^ f «»'«»<—) .^-.j du, (2)

taken over any circuit in the a-plane, surrounding the point a = 0'
and no other singularity of the integrand, is, b}r C'auchy's Theorem,
the same as «0; and we have an identical transformation. Wo may
deform this path—provided that in doing so we do not pass over any
of the singular points of the integrand.

There is no trouble here about bi-anch-pointsf because the function
to be integrated is uniform.

Since cos (a—0) = cos (a — 6) cosh h — i sin (a—0) sinh h,

when u — a-\-ib, we see that we may deform the path to infinity
along the imaginary axis, provided that

for b = + oo , sin (a—0) be negative,

and for b = — oo , sin (a — d) be positive ;

* Cf. 1'roc. Loud. Math. Sue, Vol. xxvm., p. 120.
f 1 'vrzweignuyttpunkte.
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for the real part of the exponential is e«»
>8i»(»-«)sinh6j a n ( j w n e n

b = -f oo , sinh 6 = + oo , while, when b = — oo, sinh b = — co .
Now we may consider, in the first instance, that in the physical

space | 6—6' | < TT. This only compels us to make our current co-
ordinate 6 lie within the range —(IT—6) < 6 < (TT + &).

In Fig. 4 the shaded portions repi^esent the parts of the a-plane
where our path may reach infinity. The curve drawn is a possible
deformation of the original circuit round a = 6'.

Fia. 3.—Breadth of strip, n ; deformation of circuit round a = 0';
| 0 -0 ' | < TT; ti = l.

The breadth of the strips is v. The parts of the path made up of
straight lines, dotted in the figure, are separated by 2TT. . This enables
us to leave these out of account, owing to the periodicity by 2w of
the integrand, and the fact that the corresponding parts are described
in opposite directions. The curved parts are to be asymptotic to
these lines. It will be easily seen that any other path, starting to
the left of the circuit round & and ending at distance 2JT on the right,
will be deform able into this.

These two curved branches we call, after Somnierfeld, the path
(A) corresponding to the value of 6.

We have here pi*oved that

e'tt—e"

Ycrzwelgungspunkte.
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over the path (A), is equal to
gui-cos («-»')

and this solution is uniform.

We noio proceed to the Multiform Solution.
Consider the function defined by

u = - i~ 0»-«.(a-.) « da (3)

the integral being taken over the path (A), in the a-plane, which
corresponds to the value of the current coordinate 6.

(i.) This function is a solution of our equation, sinco every element of
the integrand is a solution, and we have excluded the possibility of
infinite values. Also, when n = 1, it takes the form

— „. — ^Ur cos (8-9')
'0= «« = e"

(ii.) The function is multiform, and of period 2nirt in the ordinary sense;
but on tho n-sheeted Riemann's surfaco with the origin as branch-
point, and the line 6 = — (TT — H') as branch-section, it is uniform.

To prove this we must again have recourse to Fig. 3.
When wo put for 5, 6 + 2ir, the alteration on the path (A) is simply

to move it parallel to the axis of imaginary quantities through a dis-
tance 27r. Tims a change in 6 of 2mr, or n revolutions round tho
axis of z, moves the path (A) along the real axis of a through 2mr.

Now the integrand is periodic in 6 and of period 2mr; therefore tho
values assigned at each point of the path for 0-f-2»7r are the same as
those at corresponding points for 0. Thus the value of u for the
point (r, 0) is the same as for the point (r, 6 + \>wr).

(in.) It is finite and continuous for all real finite values of r.
That the function is continuous follows from the fact that a slight

change in 0 only displaces through an infinitesimal amount tho path
of the integration, and only alters tho integrand infinitesimally.
That it is finite follows from tho way in which wo havo chosen the
path.

(iv.) Further, at infinity in the first sheet, i.e. (r = oo , | 6 — 6' \ < IT),
n = u0, and, in the other sheets, u = 0.

In speaking of the different sheets of tho Riemann's surface,
wo only mean that at each complete revolution on passing over
0 =. — (TT —(/), or TT + 0, 'Sir + O', &c, we aro passing from one sheet
to the other.

VOL. xxx.— NO. G(M. K
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To prove the proposition it is sufficient to note that the paths (A),
corresponding to points on the second, third, &c, sheets, may be de-
formed to the rectilinear portions alone, as no pole of the integrand lies
in the portion of the a-plane enclosed. These portions lie wholly in
the shaded parts of the plane, and therefore, when r = co , vanish. On
the other hand, for points at infinity on the first sheet, u = u0, since,
in addition to the rectilinear portion, our path (A) gives a circuit
round the pole a = 6'. This is plain from Fig. 4.

FIG. 4.—Breadth of strip, w ; deformation of circuit round a = 6';

| 6 — 6' | < 7T; n = 3 .

(v.) If ?(,, u.,, n;), ..., u,x be the values of u at underlying points on the
liiemunns surf act—in other words, at the points (r, 8), (r, 8 + 2ir), $'c.—

To prove this we hsivo only to givu the accompanying figure con-
taining the paths corresponding to uu n2, ...,«„ for n = 3. These
paths may be joined at b = ± co , and we may introduce the recti-
linear portions separated by 2nir (i.e., 6TT) without altering the sum
«, + «2+.. .+«„. The integral over the completed path, by Cauchy's
theorem, is the same as H0, the only pole enclosed being at a = &'.

To sum up, we have found a function u which has the following
properties :—

(i.) It is a solution of our differential equation

-
Ox'

= 0.
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(ii.) It is uniform on the n-sheeted Uiemann's surface; or, in other
words, periodic of period 2mr in 0.

(iii.) It is finite and continuous for all real values of r.

(iv.) It is equal to u0 at infinity on the first iheet, i.e., when
| 6 — 6' | < 7r and r = co , u = e»"'C03 («-«'); On the other sheets it is

zero at infinity, i.e., when ir < | 0 — ff | < 37r, 3?r < | 0 — 6' \ < 5TT, ...,
(2n-3) 7T < | 6-6' | < (2n-l) *r, and r - oo , u = 0.

(v.) T/te n values at the corresponding points on the n sheets satisfy

the condition «, + «2+.. . -\-un = u0.

Calculation of the Value of u for n = 2.

It would be possible to calculate the value of u for a point on any
one of the sheets and for any value of n. However, the chief interest
of the problem lies in the case n = 2.

Consider any value of 0', and suppose that we wish to find the values
of u at underlying points on the Riemann's surface. We thus allow
0 to move from — (TT—6') to (3TT + W). On the first sheet

-(Tr-fT) <H <

on the second (TT + O') < 0 < (

Let the values of u at corresponding points be denoted by ?t, and uv

Then ul + i.i.2 = vv.

Also, «2 is easily evaluated. We replace the two curved portions
of the path (A) by the rectilinear parts, and these in turn by the
lines a = 0 + TT and H + ZTT, taken in opposite directions. Thus

_ ' | -i.rcoshft/ ± 1 \ ,
~ In J .„ I lZe»fC-»-»-)] l_e4I.-K-.-»-».«; l

_ i r e-,»,.coSh / i_ i . \ {

= . ]_ f" e - •" «»i«» I
4 7 T ] . , vm\{P'-ti-i

{db

db

-• c o s i ( f - 6 ' ) r e - f a ' " h ' - ° 2 ? I l i * _ rffc ; ( 4 )
7T " v ' I <-osh 6 + c o s (0 0 ) v y7T

- 0
cosh b + cos (0 — 6)

K 2
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therefore

u0 IT
 3 Jo cos

= Z,* say;

therefore

2^: - _ « Cos i (0-6') e•2i"•cos'ic-9'' e-2'"-

= - -COS A ( 0 - 1

therefore

= - - - el" --- B d\\ ;

re
I rVSr cos j («-»')

= ---J-c»'- e"'»lt?\+^, (5)
A Jo

therefore

where Xo is the value of X for r = 0.

This is easily found to be ^, i.e.,

I e~'x dX, or I e~'x d\.
W J,, \'iT J _,„

J,V r-T
Henco « a = ? f . o — - - I e"'x'f7'\, (6)

a n d «, = 7f0
 fiJ"- f+ T e'tV d\, (7)
^/7T J

where T - V/2K»: COS ± (0-0').

It is to be noticed that the value n^ is that at the point (r, 0 + 2TT)
in the second sheet, since v} is found for the point (r, 0). Reducing
this to the current coordinates, wo have on the second sheet, at (?•, 0),

c'1"

the snine form ns for n at the point (r, 0) on the first sheet.

* (•/. Math. Ann.. B.I. XLVII., p. 3»8.



1898.] certain Partial Differential Equations. 133

Thus ive have found that
• [«»• cos ( e - ^ + l-O [T

u = ! e"IXtdX, (8)

w&ere T = v'SJicr COS f (0 - 6 ' ) ,

w a finite and continuous solution of the equation

which is periodic in 6 and of period 4TT ; and that at r = GO ,
| 0—6' | < w, it takes the form e"

rc°»(9-9'i) while, when

rr < \ 0-& \ < 3TT,
it is zero.

Since our solutions are reduced to the same form and are of
period 47r, we are able to remove the condition that 6 lies between
— {IT—6') and (3a- -\-&), and take the more convenient range from — 2TT
to 4-2n-. In considering the value at infinity of the function we
shall still need to note in which sheet of the surface the point lies ;
in other words, whether, for the required values of 0 and 0',
cos j (ti — 8') is positiye or negative.

This is the solution found by another method by Sommerfeld, in
his paper on " Diffraction."

3. Application to the Theory of Sound.—The Problem of the Diffraction
of Plane Waves of Sound incident on a Thin Semi-infinite liigid
Plane bounded by a Straight Edge.

Taking <f> for the velocity potential of the medium in which the
velocity of sound is F, we know that it satisfies the equation

^ = ^ V (9)

To solve this in the case of periodic motion we may assume

0 = real part of (u. e2i{'h)t), (10)

and we find for u the equation

where * 2 = = r~^-

Tbus our equation for two-dimensional motion takes the form of that
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of last section. The solution found is applicable to the case in which
we have plane waves of sound coming from the direction 6 = 6', and
incident on the plane, which we take as0 = O(O<r<oo).

This problem is fully discussed in Sommorfeld's paper.* The
waves there are supposed to be electro-magnetic or optical. The
solution is obtained by adding! the multiform solutions of period 4n-
for waves from the directions (#') and ( — 6'); i.e.,

„<(}.)/ f Videos Ks-C) fV£rco»|(«+i') \

\Ar \ J _„ J -» '

ivherc the physical siuicc is taken as tjiven by

o < e < 2TT,

and lolthin it n satisfies all ihe conditions.

Sommerfold finds approximations for tho results, when r is great.
Ho proves that the spauu has to be considered in five sections :
namely,

(i.) That from 6 = 0 to a pai'abola with the line (?r—0') as axis,
the polo for focus, atid extremely small parameter;

(ii.) The area enclosed by this parabola;
(iii.) The area between this parabola and a similar one at TT + 6' ;
(iv.) The area enclosed by this curve ; and, lastly,
(v.) That between this curve and 0 = 2n.

-0=0

Fio. 5.

• Math. Ann., Bd. XLVII., pp. 368, 3G9.
t In the sound problem we consider only the case in which the two solutions

are added. In tho optical there is also a physical interpretation of the results
obtained by subtraction.
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He finds, -when r is very great, that in these divisions A, B, 0 the
following approximations hold:

(A) <£ = cos 2*- f^-cos (6-0') + -) +cos 2n (^cos (0 + ? )+ - )
\ A T / \ A. T /

- î  {cos I2" U ~ 7 / + TJ V 7 (cosHfl+o + SsTF^)) I"
(12)

(B) «£ = cos 2n ( f cos (0-5') + -
\ A T

- 1 [c
cos * ( * - )

(13)

(14)
In /S, and ^2 we have to refer to the integrals.
These results throw light on the physical problem and illustrate

the fact that the continued presence of the incident gives rise to
reflected and diffracted waves.*

It is interesting to note that there is in the solution, as might be
expected, infinite velocity at the sharp edge r = 0. This is evident
from the value of u in the integral form, and the velocity components

will be found to contain —- .
v r

4. Multiform Solution of the Equation V2W+K3W = 0, toith an Infinity
at a Point at a Finite Distance from the Origin.

In the last two sections we have treated of a finite multiform solu-
tion of this equation in two dimensions which may be applied to the
problem of plane waves incident on a thin rigid semi-infinite plane
bounded by a straight edge. From the physical standpoint we ought
now to examine the case of a source of sound, or a vibratory source
of any kind, in two dimensions with the same obstacle. We should
have the same differential equation to solve, and our solution would
need to be of period 4?r in 6, and finite and continuous for finite
values of r, except at the point where the source is situated, where it

* See the remarks on these results, Math. Ann., Bd. XLVII., pp. 369, 370.
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must be infinite as log a, when % = 0. However, from the pure
mathematical point of view, the three-dimensional case is much the
simpler. No introduction of Bessel's Functions of the Second Kind
is necessary. We shall examine this now, and return to the two-
dimensional later.

To speak analytically, we desire a solution of the equation
V*M -f K2U — 0, with the following properties :—

(i.) In our n-fold Riemann's space with the axis of z as branch-line,
and the plane 6 = 0 as branch-membrane, it is to be uniform; in other
words, it is to be periodic in 6 and of period 2mr.

(ii.) It is to be infinite as ———» when R = 0, at the point (r\ 6\ z)

in the first example, where R stands for the distance from (r\ 6', z') to the
neighbouring point.

(iii.) It is to be finite and continuous for all real finite values of r in
all the examples, except at the above-mentioned point.

(iv.) It is to be zero at infinity.

The metbod of obtaining such a solution is perfectly analogous to
tbat employed in § 2, and in Sommerfeld's paper on " Potential."
Starting from the solution

. - it </r* + r'3 + (s - z'y-in* Cos (9 - »')

n0 = . e , (15)
v r +? +(z — z) —Zrr cos \p—u)

we proceed to the integral

If
2rr ]

- i t -/2r,J [COSh a, - COS {a - 8)] - l o
6 6 .da (16)

</2?T'[cosh al—cos (a — 6) ] e"—e"

taken round a circuit in the a-plane enclosing a = ff, and no other
singularity, or branch-point, of the integrand.

We have now to deal with branch-points, because the radical sign
has brought a multiform function of a into our integrand; further,

we have written cosh n, for Z-̂ —*LL .
2rr

With the above restrictions, this integral, by Cauchy's Theorem, is
the same as u0.

We can deform the path of integration in the a-plane without
affecting the value of the integral, provided that we do not deform it
over any of the singular points or branch-points of the function in-
tegrated ; in this condition is contained the restriction from deform-
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ing our path to points where the function would be infinite. Also,
since we are dealing with a multiform function of the complex
variable a, we must fix the value to be assigned to the function—in
other words, the sign of the root—at a particular point of the path,
and see that the values we assign to it at all points of the deformed
path are those belonging to the " branch " of the function we are
following. If we make sure of these things, we may treat the
integrand as single-valued; and apply to it Cauchy's Theorem and its
extensions. This requires only the definiteness and continuity of the
function to be integrated.

Since we are dealing primarily with the ordinary space, we may
suppose | 6—6' | < 7r, which means that, in the first instance, we
think of 6 as varying from — (rr — 6) to (TT + 0'), a full range of 2ir.

The singularities of the integrand are given by

a = 2w7r + 0', a = 2mir •+• 0 =fc la,

(?>i, any integer), and the latter are branch-points.

The simplest method of determining the continuity of the values
of \/2rr'[cosh a, — cos (a — 0)], which we shall denote by B, is ob-
tained from the consideration of the conformal representation of the
a-plane on the .R-plane.

Starting with

B = + \/2rr' (cosh a, -f cosh oo ) = + co, for a = 0 —ir + ico,

we proceed through

B = + */%-r (cosh Uj + cosh 6), for a = d — rr + ib,

B — + s/irr (cosh a, -f-1), for a = 0 — ir,

B = + v/2r?/ (cosh at-1), for a =

B = + ^2rr' (cosh at — cosh b), for a = 0 + i& (6<a,) ;

and, if we took a = 0 + ta,, we should find B = 0.*

However, since a = 0-ficii is a branch-point, we suppose that a
small circuit is described from the point a = 6+ib (b<ctj) back to
the neighbouring point. This alters the branch of the function, and
gives us there

B = — \ /2?T ' (COSU 0,-00811 6).

* Cf. Soinmerfeld, Math. Ann., Bd. XLVII., p. 352.
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Then, proceeding through the set of values a = $, 6 + ir, O +
0 + 7r-H'co, we find that in the 12-plane the point describes the nega-
tive part of the axis of real quantities. Thus the path (p, q, r, s, t, w, v)
in the a-plane of Fig. 6 corresponds to the real axis in thelZ-plane.
We should find a similar correspondence from the image of this
path in the real axis of the a-plane, and the position taken up by
either when instead of 6 we have 0±2mir. Thus we see that on
crossing directly, i.e., without the loop, from one side to the other of
any part of these lines in the a-plane, we cross from one side to the
other of the real axis of the IE-plane, and that without a jump; in
other words, we pass from a value of B with an infinitesimal positive
or negative imaginary part to one with an infinitesimal negative or
positive imaginary part.

To return to the integral (16),

da.
E

We deform our path as in Fig. 6, which must now be explained.
It has already been shown that the path (p, q, r, s, t, u, v), and its

2 i r

Fio. 6.—Breadth of strip, 2tr; deformation of circuit round a = 6'
| 0 -0 ' | < TT; n = 1.

In the dotted portions of the path the imaginary part of It is negative.
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image in the real axis of a, correspond to the real axis of JB; also,
that as we pass, in the a-plane, from one side to the other of any
part of these broken lines, we pass, in the 22-plane, from one side to
the other of the axis of real quantities.

Now, from the term e"'*B in our integrand, we must, if we wish to
deform the a-path to a = a =t ico , ensure that the value of B there
has a negative imaginary part.

Starting with the value of JB, with positive imaginary part, at a
point in the upper part of the figure, our elementary circuit round
a = 0' may be deformed into that composed of the thickly-drawn
and dotted lines. The dotted parts denote the portions of the path
where the imaginary part of li is negative, and we have made sure
that it is negative, by starting with a value of JB with positive
imaginary part, and remembering that a single crossing of the real
axis of IS causes the sign of the imaginary part to change. The only
places where infinities could arise lie in these portions; so the
deformation is permissible.

Making the restriction that the rectilinear portions, those parallel
to the imaginary axis, are distant 2TT froni one another, these
portions of our path may be neglected owing to the periodicity of the
integrand in a by 2ir, and we are left with the identical transforma-
tion of u0 to the integral

taken over the two curved portions in the a-plane, which we again
denote by the path (A).

So far we have had no reason to thiuk of (0 — tt') as not contained
in | 0—0' | < ir.

Proceed noio to the Multiform Solution.
Consider the function defined by

•__ 1 f e" '* B eial"

the integral being taken over the path (A), corresponding to the
current coordinate 6.

This function satisfies the differential equation, since every element
of the integral is a solution, and we have excluded infinities. Also
the same kind of reasoning that was used in § 2 shows that in the
Riemann's space with which we are dealing it is uniform; or, in
other words, that it is periodic in 0, and of period 2mr. I t also shows
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that when | 0—0' | < tr, and (r, 0, z) approaches (/, 0', z), the func-

( e"'"R\
——I ; that at the underlying points there

R /jj=o

is no pole, and that at infinity, in all the " examples," the function
vanishes. For all these points, and for the general proposition that

«j + «a+•••+«•• = wo>

it is sufficient simply to refer to Fig. 7, drawn for n = 3.

-t=̂ 6+2ir
"•'0'+6ir

0+6*

B-iat

FIG. 7.—Breadth of strip, 2w ; deformation of path round a = 6';
| e — 0' | < ir ; n = 3.

In the dotted portions of the path the imaginary part of ii! is negative.

To sum up, the function u defined by (17), taken over the proper
path (A), corresponding to the 0 involved, has the following
pi'operties :—

(i.) It satisfies the equation V2U + K\I = 0.

(ii.) It is uniform in the n-fold Riemann's space considered; in other
worth, it is periodic in 0 and of period 2nn,

(iii.) For all finite values of (?-, 0, z) it is finite and continuous, unless
in the point (•>•', &\ z), where it possesses a simple pole.

(iv.) It vanishes at infinity in all the examples of the Riemann's space.

(v.) The n values at corresponding points satisfy the condition
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Evaluation of u for n = 2.

There would be no difficulty in evaluating u for any value of n.
We should need to break up the range into n parts

| 0 - 0 ' | < 7T, 7T < | 0 - 0 ' | < 37T, &C,

and we should obtain integrals for the function in each of these
divisions.

It is impoi'tant for the physical application to find these values
for n = 2.

We have ux + wa = ii0.

Also, as before, we are able to deform the path of ua into the two
lines 6 +ir, 6 +Sir, and we find

-i«VilT'lCO8lla,«CO4)l6)1 f" /|-i«VilT'lCO8lla,«CO4)l

~" 4TT J _„ / ^ / ( c o s h ^ + cov _4 j cos f (V—i

i.e.,
-i"«V2»r'(cosh., + cosht) PARVI i ? )

s O B .
1 f* p-i"«V2»r'(cosh

W 3 = COS i ( 6 — 6 ) \ = = T7
«r " Jo v/2rr'(cosha1 + cosh6) cos (0—0) + cosh 6

(19)

This is the value of u at 6-\-2TT when | 0—0' | < TT, SO that, in the
second example, we have, for u at (0),

I f30
 a-i<V in-'(CM .a, + cosht) r«r>cli ^h

n = COS-M0 — 0 ) I —-—. . — 77; yr-8 T T ^ .
• «• Jo y/2rr' (cosh a, -f-cosh 6j cos(0—b ) + coshb

(20)while in the first

« = « o - i c o s i ( 0 - 0 ' ) - i , / T x , idb.
* J0y2»-r'(coshal + coshb) cos(0-0 ) + cosh6

(21)

At first it would appear that there is a discontinuity here at the
passage from one space to the other. The following consideration
shows that this is not so.

At 0 = jr-f 0'—e (e a small positive quantity)

c I e l • ' cosli «o ,,. /ow->\
ti = u0 sin - I —r^~ £—r-rf*^- (*")

7T J J 0 v^rr (cosh a, + cosh b) ~ c o s e + cosn b
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u = — sin-|U /' c o s h 2 f t , , db. (23)
71 2 J o v/2r?' (cosh at + cosh 6) - cos e + cosh b

There must be a discontinuity unless
} cosh 16L/t,o01 — sin — I —j- ---

\ * ^ Jo v2r/(cosh a, + co+ cosh fo) —

i ° #
v/2rr'

• For the following discussion of this integral I am indebted to Prof. Gibson,
of the Technical College, Glasgow.

By tlxe substitution used in the text we reduce the expression to

Jo

w h e r e <f> (s)
\ / 4 » T ' (cosh- £<«i +#a;*' sin- ̂ «)

Now choose m so that ' tan-1 m ~^ ^ir—cj.

Since the integral is convergent, we can choose «», « (/« < ») HO large that

J Itt X" + 1

If the previous value of m is not large enough to secure this, let it be increased
till it does satisfy this condition.

Then tan-1 m ~^ in—eu would hold a fortiori. Hence we have

=• tp (0) t an* l at + [ [(^ (.»;)—<p (0)] ~r—r+ \ <t>(x}——:-
Jo X' + 1 J,,, X' + 1

But we may choose e so that | <f> {x) — <p (0) | < e3. This involves that a;-sin2 \e be
very small. Then

I <p \x) \w d>(0) < — 6j <p (0) + e.i + fj (ATT— 6 I ) .

Jo • t - J + 1

Jo * " + 1 Jo a + l

is less than any assignable quantity ; therefore we have found that

Jll x~ "*• »

I t is obvious that »i may be taken at once large enough to satisfy all the conditions
required for m and n.

Finally, £ may be chosen such that | <p (x)—<p (0) | < e3, 0 ^_ x f_ m.

Thus the limit, „ of sin -\e f - ^ £ 2 L . '**hU , , db is dearly
" Jo -y-in' (cosh o, + cosh b) -cos e + cush 6
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As a rough proof of this identity, winch the physical interpretation
of the problem rentiers necessary, we might adduce the following :—

Put sinh lb = a: uin .le, which is possible, as we want the limit of
the integral whon e = 0, not the valuo when e = 0.

We then find

_ e f« c-.-.V^(,o.l.-.»Cui.l.6) CSOsll ift „
s i n , , — _—-_.:-_^. --• — - - - --do

2 Jo y/2rr (cosh a, + cosh b) — cos « + cosh b

~~ J o A / *T' (cosh' •• o7+"»' bin2 « e) »' + 1 '

If now we let x approach infinity iu such a way that always, in
the limit, a>2sin8 \e may be neglected, this gives in the limit

^ J 0 v/2n-' (cosh a, + cosh b) - cos c f cos {d-&)

Therefore we find that, at the division* between the spaces, the
two values of u take the same value \uQ. We should find a corre-
sponding coincidence at the branch-line in § 2, and in those which
follow.

Our solution, then, is one which, in the region contained in the
two complete revolutions of 6, from —(v — 6') to (3JT + 0') , has but
one pole, and that at (r', 0\ z). From the periodicity of u by 47r, we
may now remove this restriction on the range of 6, and may take
it from — 2n- to +2n} provided we are careful to use the proper
values to be assigned to u at the different points.

It is easy to see that our function has to be considered in three
divisions :

-2TT<0<- ( ; r -0 ' ) ,

* Tltib ia the branch -membrane (Verzivviyungsmeinlran).
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In the first

1 f" p-iWan'fcoslia. + coglit) nncjii ±h
= — COS i (8 — 6 ) —. r.-=^.---r-Tr-r-r-= — ^ — tf&.

T J 0 v/2rr' (cosh a, + cosh 6) cosh 6 + cos (0 - ff)
(25)

In the second

cosh U
« =•«» cos I {6—6) -—•• - =

* Jo y27T(cosho, + cosh6)
db.

cosh 6 + cos (6-6')

(26)
In the third it takes the same form as in the first.

5. Application to the Theory of Sound.—The Problem of a Source of
Sound in an Infinite Medium containing a Fixed Thin Rigid Semi-
infinite Plane botmded by a Straight Udge.

Using cylindrical coordinates, take the plane as given by 8 = 0, its
edge by the axis of s, and the position of the source by the co-
ordinates (?', t)\ 0).

Then our physical problem quickly reduces to the solution of tho
oquation

under the following conditions :—

(i.) 0<ti<2ir; u is to be finite and continuous for finite values
of (r, z) except at the point (r', ii', 0), where it is to take the form

- -•, when Ii = 0.
ill

(ii.) It is to be zero at infinity.

(iii.) — — is to vanish at 0 = 0 and 0 = 2TT.

To obtain this solution -we have only to take into consideration the
two-fold Ricmann's space, with the axis of z as branch-lino, and the
piano 0 = 0 as branch-membrane.

We put. jiohm at (r\ 0\ 0) and (•/, — 0', 0), and take the physical space
as defined by

0 < H < 2.v.

Tints u = « (V) + u ( - «') ('21)

satisfies all the conditions of the problem.
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As remarked above, care has to be taken to choose the pi-oper
values for it in this region. The complete revolution is divided into
three portions. From 0 = 0 to 0 = (ir — ff) both values are those
in the first space, namely, those given by uv From 0 = (IT — ff) to
(TT + 0'), we take M| for u (ff), and «2 for u (-ff). From 0 = (ir + 6')
to 2K, both values are in the second space.

Hence our solution takes the following forms :—

„ - it V'i>r' [cosh a, - cos a - o'))

(A) n=-^°
\/2rr [cosh a, - cos (0 - ff)]

1 ] //} &\ P e-'W^^iT^oihi) cosh|6
__ ___ fjns — ( n — ry ) I - - - - - - - .

«• ' 2 Jo -/2r7(cjoslw^ + cosh6) cos (0—0') + cosh

I

\/2rr' [cosh Oj

1 f°° p-•«'/•.'>•(•'(cosh u,+coslit) fnssl-i i / i
_ i _ C O S i (0 + 6') \ - ^ • --=- = - 8-

T Jo \/2rrr(cosh«,Vcosh"j) cos(fi + 6l') + cosh6

a, • C(i»\-« - if )]

\'2rr [cosh ax—cos (0 — 0*)]

- — cos | ( 0 - 0 ' ) f - f " 2r<(eUBh-B!*tO*!'--.-,: 7n-°-}:-2-—rr<">
7T J Jo \/2rr' (cosh at + eosh b) cos(6-ff) + cosh6

1 1

- - c o s ,

(C) n = - i - cos i (0-0') - 6 -..._-,. ^- -. —7 Z l °" ' —T
V v 2 Jn y&r (cosh a, + cosh b) cos (0 -0 )+ cosh

I ._̂  . ._ . . ..§ j/T. f30Y

Jo -v/^T^coshu.Tcoshfc) cos (0 + 0')+cosh t " v J\

It is easy to see that, at 0 = 0 and 0 = 2TT,

- ^ = . 0 , 0 < r < co.
30

The only information we have at the outset from these integrals is
that at (TT—ff) the part of the disturbance due to the image is the
same as if we had at (2K — 6') a source of half the strength. This is
deduced from our work above on the continuity of the two ex-
pressions. Similarly, that at (ir + ff) the effect of the disturbance

VOL. xxx.—NO. 6G7. L
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due to the source at 0' seems diminished to half, while we have the
addition of terms which, from the analogy with what happens in
the two-dimensional problem, we might suppose due to sources dis-
tributed along the edge of the obstacle. On this analogy the terms
in (C) will give the diffracted sound waves.

We can, however, find approximations to the values of our function
in .the different regions of Fig. 8 as we move away from the origin

-n-8'

TT+6'

FIG. 8.

and off to infinity. These approximations mark out for us, in some
degree, the circumstances of the motion.

Approximation to the Yalue of u at Infinity.

To obtain this approximation it is necessary to examine the
integral r --iW2»T'(co8iral + co8ii6) nniali i f c

./2rr' (cosh a, + cosh 6) cos (0—?)+cosh 6
Substitute sinh %b — x cos^ (0—0'),

and we obtain

[
- -1'« >JinJ [cosh1' Jo, + cos1) (« - tC) *']

o V±rr [cosh2 \ax + cos2 \ {$-&)&]

i.e.,

cos 4 1 ( t f -&)x 2
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Now consider

Let us choose the infinity of m so that when r, z are infinite
<f> (x)—<f> (0) may be taken less than any assignable quantity (this in-
volves rml being negligible iu comparison with »-2-f z2). Then we have

The same result follows from the term

f<*> e-««V'2iT'(co8h.l+coBhftj COsh ^b

cos v (6—6') I — — . . . . . . . _ . __? fijj
Jo \/'2rr'(cosh a, + cosh 6) cos (0 + 0') + cosh b

Therefore we see that, when we proceed to a great distance from the
pole, the disturbance in (A) is the same as that due to a source at
(r', 6', 0), another at (r\ —6\ 0), and a sink at the pole. In (B) we
have the remarkable fact that to our approximation the two latter
portions of our expression for u disappear; since cos£(0-f-0) is
negative, and our integral

cosh \b „[<*> - tW-'ri''(cosh a, + cosh 6)

C0S I (fl-ffl') r—
' Jo y/'tirr' (cosh a, + cosh b) cos (0 + 0') + cosh b

becomes, on substituting sinh \b = — x cos \

dxf
Thus we are left with the part of the disturbance due to the original
source alone. In (C) we trace our disturbance to a source of the
same strength at the pole.

<•>. The Corresponding Problem in Tiuo Dimensions.—Multiform Solutions

of the Equation •-—\- \- K2U = 0, with Infinity.
ox* dy*

Although the results in the two-dimensional case are not obtained
in a workable form owing to the necessity for introducing Bessel's
Functions into the integrals, it is interesting to examine the question
from the pure mathematical point of view. We shall obtain results
which contain the solution of the problem when we have a source of

[, 2
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sound in two dimensions in space bounded by the semi-infinite plane
with a straight edge.

We propose, then, to discuss the solution of the equation

which is at (a;', y') infinite as log (R), when 22 = 0.

Following the method already illustrated, we proceed from the
simplest uniform solution of our equation with an infinity as re-
quired.

For this case, i.e., in the physical interpretation, when we have a
symmetrical disturbance diverging from the pole in an infinite space,
our solution is given by Rayloigh, Theory of Sound, Vol. II., §'Ml,
where that problem is fully discussed. The solution may be written
in either of the two following ways :—

(32)
where y = Enler's constant, and

2 3

= - L^-Ye-1"- ( l - -gr- + - i ! ^ _ _ .
\2IKJ7 \ 1 ,8IKV 1.2(8IKVY

(33)

lief erring to Gray and Mathews' Treatise on. BesseVs Functions, p. 22,
(50), we find the proof that this value of Yo may be written as

(34)

and we sec that this is related to tho solution used by J. J. Thomson
in his " Recent Researches " (the sign of C being corrected), and by
Sommerfeld in Math. Ami., l*d. xr,vn., p. 327, by the equation

r , OiO = - ^0 («) = I ,T0 (») - Jv-0 (.r). (35)

. Suppose the pole at (?•', 0'), and we must change our solution to
ro(«E), where __

]i = */»•* + /*—2rr"cos («-«')•
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Introduce, as before, the complex variable a, and we have the
identical transformation

= !~ f 6 ~~ 6

[E'2 = r2 + r'2—2rr'cos ( a - 0 ) , putting a for & above],

the integral being taken round a small circuit in the a-plane enclosing
a = 0', and no other singularity or branch-point of the integrand.

Before discussing the possible deformations of our path we must
examine these critical points.

From the equation

Y . ( K R ) =

2 T?'2 „* 7?'4

it is evident that the branch-points are given by those of R' = 0,

i.e., by u = 6 -f 2m7r db to,, where cosh d, = •• ,- .
• Irr

In considering the behaviour of Yo (KR') at infinity we take the
second of the forms given. It follows that a condition necessary for
a possible deformation of the path to a~a±ib (b — co) is that
the imaginary part of R' there be negative. Hence our work is
absolutely analogous to that in the former section. We are able to
deform the path as given in Fig. 6, and to take as our multiform
solution

u = -•- -
cnir

over the path (A) corresponding to the current coordinate {&).

By means of a discussion similar to that on pp. 137-140, we should
find that this function has the following properties :—

(i.) It satisfies the differential equation

'car" dy"

(ii.) It is uniform on our n-sheetp.d R,iemanii s surf ace ; in other words,
it is periodic in 0, and of period 2mr.



150 Mr. H. S. Carslaw on .tome Multiform Solutions of [Nov. 10,

(iii.) It is finite and continuous far all finite values of (x, y), except
in the point (x\ y), tvhere it has a simple pole.

(iv.) It vanishes at infinity.

(v.) The values at the n corresponding points of the Riemann's
surface satisfy the equation

«, + »»,+ . . .+«» = Y0(KR),

wheris It = v/r2 + ?:'2" - 2?T; COS (0 - F)'.

Jus t us before, wo could obtain integrals giving the values of n
for any assigned integer n.

For tlie application to tlie physical problem of a line source
parallel to a. semi-infinite rigid tliin plane, wo rcqnire the value for
n =• '2, so that the period of the function ma,y be 4rr.

We obtain the following expressions for n on the first and second
sheets respectively :—

Ml = Yo [K VA-9 + r*i-i2~n?"cos (0 -B ' j ]

Yot'cv/^Oiosha.+eoshiOj - ^ " S V ^ , , ^ {**)
J(, COS (9 — V ) + COSll I)

and

rt - - 1 cos k (0-0') f" Yo [Ky/2n? (cosli <«, -f cosh /,)] - ( ! C I R H ^ — . db. (39)
1 v - V Jo cos(fl —«') + co*hh

7. Application to the Theory of Sound.—The Problem, in Tiro Dimen-
sions of a Source outside a Semi-infinite Thin Hujid Plane bounded
bi/.a Straight Edge.

Talcing the physical space as defined by O<0<2JT, the source as
at (<•', 0'), and the obstacle as 0 — 0, 0<r<co , we obtain the required
solntion from the function found in the last section.

This solution is u — n(8') + n(-B'),

and in evaluating it we have to break up the nrea into the three
portions

0 < 0 < TT — f)', (A)

T T - 0 ' < 0 <*• + «', (H)

7T + 0 ' < 0 < 2TT. (C)
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In these we have the following results :—

(A.) « = Y0(KR)-— COS l(e-#) f Yo Us/'ln-1 (cosh a, + cosh b\] C08h kh db
it ^ v ' J o

 / J cos(fl-6') + cosh6

- — cos * (8 + O r r 0 [K-/2r/ (cosh~a, + cosh 6)] ._.- ^ - o s h i * _ _ _ rf^ (40)
ir "• ' J o

 u COH (6 + fl') + cosh b

(B) w = ro(Ki2)-ICosA(e-0') f r 0 [ K / 2 » h ^
ir Jo

- - C O B

cos (0—6) +co8h b

f 3ro[KV/2^7 (cosh a, + cosh b)~\ 5?!^15_ db, (41)
Jo CO8(0 + 0)+coshft

(0) n = the last bvo expressions of (B). (42)

Hence, from analogy with what we have found above, we may say
that in (A) there exist incident, reflected, and diffracted waves; in
(B) incident and diffracted; in (C) diffracted, only ; and that they
are represented by the respective parts of the above expressions.

8. Multiform Solution of the Partial Differential Equation of the Theory
of the Conduction of Heat in a Body of Uniform Conductivity.—
Two-Dimensional Case.

So far we have been considering the equation which meets us in
oscillatory motion, be it in the vibrations of sound, light, or electricity.
It is a much simpler problem, though perhaps not so interesting,
to examine the corresponding solutions of the equation which forms
the basis of the mathematical theory of the conduction of heat, namely,

dt

As in the potential theory use has been made of the particular
1 e"lV

solution — and in that of sound of and e"rcos(*'9'), so here we
r r

start from the distribution .of temperature in an infinite solid of
uniform conductivity, due to a unit quantity of heat, placed at the
time t = 0 at the point (re', y\ z) and left to diffuse.

The temperature at (x, y, z) at time t is given by

(43)
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This synthetical method of dealing with the subject has been used
by Kelvin,* Hobson,f Bryan,X and Somraerfeld.§

In this section, and in those which follow, I propose to find solu-
tions suitable for the application of this method to cases where the
ordinary image theory fails; that is, to those where we must
imagine not the ordinary, but a Riemann's, space to be that in
which we desire a solution of the equation.

We begin with the two-dimensional problem, and start from the
solution

_L g-[(*-«T + (V-V>I]M<rf — _ g -[»-* + r"-2rr'cos_L g [ ( (] _ g [ ( (44)

which differs by a constant multiplier from the temperature due to a
unit source of heat.

Introduce the complex variable a, and we have the identical
transformation

''•=£r'f''"'"~'"'"_^ m
the integral being taken over a path in the a-plane, enclosing a = 6\
and no other singularity of the integrand.

On these conditions
l f «•'«

It — _ i _ p - ( ' ' + l'"W pt-r̂ rf cos lo-9) e J_ (AR\

«„_-—e e —--~aa. ^oj
The only ways in which singularities can occyir are from the poles

a = 2mir + 0', and the infinities of er>l//2"'cos(o"". On putting o = a-\-ib,
since

cos (a—6) — cos (a — 6) cosh b—i sin (a — 0) sinh b,

we see that, when 6 = ± co , cos (a — 0) must be negative, or an infinite
value will be given to the integi'and.

Hence, in deforming the path to 6 = ± co , we must take care to
have a in such a region that cos (a—ti) be negative.

The shaded portions of Fig. 9 represent such parts of the a-plane,
and, taking | 6—6' \ < TT, the circuit round a = 6' may be deformed

* Math, and Physical Papers, Vol. n., LXXII., "Compendium of the Fourier
Mathematics."

t Proc. Lond. Math. Soc, Vol. xix., "Synthetic Solutions in the Theory of
Heat."

| Proc. Lond. Math. Soc, Vol. xix., "An Application of the Method of Images
to the Theory of Heat."

§ 'Math. Ann., Bd. XLV., "Zur analytischen Theorie der Warme-leitung."
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into that there given ;* the new path being composed of two curved
parts extending to infinity and two rectilinear parts.

These rectilinear parts—dotted in the figure—are supposed drawn
at distance 2rr from one another, and therefore the portions of the
integral contributed by these, taken in opposite directions, disappear
owing to the periodicity of the integrand. We are left with the
integral over the two curved portions, which we, as before, denote by
the integral over the path (A). It is to be noted that, as the function

Fio. 9.—Breadth of strip, n ; deformation of circuit round o
| 0 - 0 ' | < TT; 7i = 1.

In the shaded portions cos (a- 0) has a negative real part.

6';

to be integrated is unifoi'm and has no branch-points, the question
•of the deformation of the path is much simpler here than in the
former problems.

We noio obtain the Multiform Solution.
Consider the integral

= 1 e« . ,
2wr t ) etaln — e*"1

taken over the path (A), corresponding to the value of the current
coordinate 0 ; we have given up the restriction

I 0-0'I <TT.

* It is not necessary that 0' lie on the unshaded portion. It must lie, in the
first instance, between the two lines a => 0±ir.
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This function u is a solution of our differential equation, as every
element of the integral is a solution, and infinite values are excluded
from tbe path.

It is also periodic in 8 and of period 2nn - or, in other words, on-
the ?i-sheeted Riemann's surface, with the line from the origin to
infinity in the direction (TT + 9') as branch-section, the function is-
uniform.

The proof of this is exactly similar to that of the former sections-
Changing the value of d by 2mr simply moves the path through a
distance 2mt. The value of the integrand at each point of the new
path is the same as the value at the corresponding point of the old,,
because of its periodicity by 2mr in a. Hence the above result.

When t = 0, the value of u vanishes, unless at the point {r, H'), where
it tales the form

[r' .r"-2»T'cos(»-«')]/Mv
I .

t I

Breadth of strip, ir ;

| 0—0'

deformation of circuit round o = 8';
< IT ; n = ?>.

To prove this it is simplest to consider Fig. .10, where we have
taken n = 3, and have drawn the curves for a point 8 on the first
sheet, i.e., Avhen | 8 — 6' | < n, and for the underlying points on the-
other two sheets, i.e., for the points 8 + 2ir, W + 4TT.' For points
on the second and third sheets our path (A) can be replaced by
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the l'ectilinear path over the two lines distant by 2ir (dotted in
figure), and these, being completely in the shaded portion, vanish
when t — 0, since every element of the integrand then vanishes. For
points on the first sheet we have, in addition to the straight lines, to
take the circuit round the pole a = 0'; and hence in the first sheet

- [i3 + r»»-2rr> cos (8 - tf)]IUt

u = uQ = , when t = 0. (48)
t

This vanishes, unless at the point (r', 0').

Hence we see that, for finite values of r, the integral is zero, for
t = 0, unless at the point (r\ ff), when it takes the form

(\
- » - 0 i , •
Jl = O \ t I

The term e"(|a/4*° causes the integral to vanish at infinity on all the
sheets.

Finally, we have the relation between the. values of u at underlying
points on the surface at any time. This is proved, just as before,
from Fig. 10, and is expressed by the equation

To siim up, the function u just found has the following properties :—

(i.) It is a sohition of the equation

(ii.) It is uniform on the n-sheeted Riemann's surface considered; in
other ivords, it is of period 2nir in 6.

(iii.) On the first sheet.of the surface, i.e., when | 0—0' | < IT, M = M0,
when t = 0 ; on the other sheets n = 0. At the point (r, 6'), u takes
the form

\ t I JJ-0

(iv.) It vanishes at infinity on all the sheets.

(v.) The vahies at the corresponding points on the different sheets
satisfy the equation
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Evaluation of u for n = 2.

The case to which we desire to apply our multiform solution is
that in which n = 2.

„ - tr» + t"-2ri* cos (e-6>)]iut
As before, «!+% = «<,= .

t

Also we can deform the path (A), for w2, into the two lines a = 0-j-rr,
<x = 0 + 3JT, taken in opposite directions, and we obtain

Let us write 0 and o for

i n.'

and — .

Then u3=z 0 cos

and

Jo

-^ = - cos t ( 0 - 0 ) I e-f«*"»*«»<-'» - - 7 / ° - s h ^
«0 7T J o COS(0~

= X, say ;

therefore

dr rir 2 Jo

*.e., ^ = - A . / - L - cos | ( 0 - & ) e"(''J/2rf

07" V TTVKt

3 x 1 3 f ^"'/«'cos j («-«•)
therefore — = — ^ - 1 e '

1 fr

therefore X= I e'x d\-fX0,

Jit Jo

where !T = »/— cos ^ (0 - 0 } ,

and Xo is the value of X when r = 0.

It is easy to show that Xo = | . . . .
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( 1 [T \

= "4-^0 f Vx'dX; (50)

a n d ?tj = ?<3—«0

= ^

Remembering that this expression for wa is that for w at the point
(r, 0 + 2ir), when | 0—0' | < 7r, we obtain for u on the second sheet
at the point (r, 0) the same form

1 fr

-7~ M o e x d^

as for w on the first sheet.

We have tints found a function

—k- i j . . '-"^ ( 5 2>
with the following properties :—

(i.) It is a solution of the equation

du _ /<ftt &n\
dt ~K W df>'

(ii.) On the lliemamis surface considered it is uniform; ort in other
words, it is periodic in 6, and of period 4<TT.

(iii.) On this surface it has only the one pole, and that at the point
(?•', $'), at which point u takes the value n0, while at all other points u
vanishes for t = 0.

(iv.) When r = oo , n vanishes.

Since the function is periodic and of period 4;r, there is no reason
why we should retain the range

A\ro may take any more suitable one with 4w as its magnitude, and
the simplest is

- 2TT < 6 < 2*.



158 Mr. H. S. Carslaw on some Mitltiform Solutions of [Nov. 10,

In this region our function u would have but tlie one pole, and
would satisfy the conditions above, care being taken to discriminate
between the sheets of the surface; in other words, to choose the
proper value of u for the point considered.

9. Application to the Theory of the Conduction of Heat.—The Problem
of an Instantaneous Line Source in an Infinite Body of Uniform
Oonductixity K in which there is a Semi-infinite Plane bounded by
a Straight Edge: . the Plane either (i.) kept ahoays at Zero
Temperature, or (ii.) coated in such a way that no Transference of
Heat is possible across it.

Taking a plane normal to the line as the plane z = 0, our problem
is one in two dimensions. With the origin at the edge, the given
plane as $ = 0, and the line source passing through (r', 6'), we are
able at once to apply the solution of the last section. We consider
the physical space as denned by O<0<27r, and we introduce the
imaginary space — 2ir<6<0.

Then u = u ($') ^u(-6') (0 < 6' < 2n) (53)

are the solutions corresponding to the two cases.

In the space 0<6<2ir, u is zero at time t = 0 for all values of r,
except at the point (r't 8'), where it takes the form

-(R'/4<t)

Further, at infinity u = 0.
The symmetry of the expression shows us that the boundary con-

editions are satisfied at 6 = 0 and 6 = 2/r.

This is clear when we note that

1 / f Vn-//«<co«l(fl-tf') f -JrfUt cos 1 (« + «•) .
u = - ^ - (e-**1*" e-*dk=Fe-wil"> e^dk)t

Vvt * J-« J -» '

(54)
where R* = (x—x)" + (y—y'Y,

In the first case u = 0, when 0 = 0 and 0 — 2TT.'

In the second — = 0, when 0 = 0 and 6 = 2n.
06
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The pole in the space —2ir < 0<O,does not affect the validity of
the result, as we may lix upon one complete revolution about the
axis of z as defining- absolutely and covering- wholly the range of
points entering1 into the space or body considered.

In the paper " On Conduction of Jleat" in Math. Ann., Hd. xiiV.,
this result is quoted by Soinmcrfeld, and he states that it had been
obtained by him after a somewhat laborious calculation from the
.suitable expression in Vessel's functions

n = cos hi (6-9') P e~AU % ,l\,, (Xr) Jin (kr')\dk.
J —XI ~Ji

(.55)

The importance of the method hero developed is that, as will be

shown immediately, there is no dilliculty in at once extending- the
results to the three-dimensional case. Also it places these problems
on the saino level with those in sound, light, &c, and the extensions
to cases in which the physical conditions are different will find their
application at once in the conduction of heat.

")
10. Multiform Solution of the. Equation -—• = KV8W.

vt
The work here follows the same lines as in the two-dimensional

case.
We start from the particular solution

n = i - e
:i(—')•• (»-»•>••<' »'»•]'« . (56)

or, in cylindrical coordinates,

u __ _±_ e-\r' + r"-Hz-zli'--2nJcoiH

ft
Then we obtain the identical transformation

—

over a cii'cuit in the a-plane, enclosing a = 6' and no other singularity
of the integrand.

This reduces to the integral over the path (A) of the former
section.

To obtain the Multiform Solution, it is only necessary to consider
the integral

[KM"b-^fc (58)
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taken over the path (A) corresponding to the value of 6. This
is the multiform solution with a pole at (r', 6', z') in the range

Thus we see that the sole difference in our results for the three-
dimensional case consists in the introduction of the factors

e-(z-z'yiu a n ( j __^

In the particular case when n = 2,

n = —— j . I e~x° d\. (59)
V T fi J -»

11. These physical applications of the multiform solutions found
in this paper have been given because of their simplicity and the
possibility of testing their agreement with the facts of nature.

The cases in which the planes meet at an angle — (w, m posi-
7)1

tive integers) maybe discussed by the same method. Here we should
require the «-fold Riemann's surface, or space ; or, in other words, our
physical space would be defined by one complete revolution round
the axis of z, and we should bi'ing to our aid (n—1) imaginary spaces,
built up by the successive (?* — 1) revolutions of the radius vector in
the cylindrical coordinate system.

No attempt has been made here to prove the uniqueness of the
solutions in the particular cases. This Avas done for the problems in
potential in the often-quoted paper in our Proceedings. The physical
applications prove that they are unique. An analytical proof I hope
to give later.

The next advance in this method ought to be the solution of the
problems where the obstacle consists of an infinite plane in which
there is a slit Avith parallel edges ; or an infinite plane with parallel
edges. The system of bipolar coordinates

p = lo

gives us a suitable transformation for this case. We have to deal
with the integration of oar partial differential equations on a
Riemann's surface, or space, which has (f> = 0 for branch-section,
or membrane, and tSvo branch-points, or lines, at the points
p — ±00.
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It is obvious that this amounts to defining our physical space by
the range

0 < (j> < 27T,

and putting the image in the space defined by

— 2TT < 0 < 0.
The problem—for the equation of potential—was discussed in
Sommerfeld's paper on that equation. [See note by Dr. Sommerfeld,
below.] The solutions of the corresponding problems for the equa-
tions with which this paper deals at present occupy my attention.

It only requires the discovery of a proper coordinate system io
advance our knowledge to the cases examined by the method of
series and in approximation by Prof. Lamb, and such a discovery
ought to give us, not only exact solutions, but solutions also applic-
able to three-dimensional work.

The question of the solution of thcso partial differential equations
on other Riemann's surfaces should be a fruitful one also for the
pure mathematician, and all these questions which, in the theory of
functions, have circled round the potential would enter here for
discussion.*

Note by Dr. Sommerfeld to Mr. Oarslaw's paper.

Dr. Sommerfeld takes this opportunity of calling attention to an
error in his discussion of the problem in potential, where a point
charge is placed in the region bounded by an infinite conducting
plane, in which there is a slit with parallel edges:—

In den folgenden Zeilon bitte ich ein Versehen bcrichtigen zu
durfen, welches sich in § 5 meiner in Vol. xxyin. der Proc. Lond.
Math. Soc. abgedruckten Arbeit cingeschlichen hat. Ich time
dieses ura so liober, als Heir H. S. Carslaw auf don vorangehenden
Seiten zu meiner Freudo und auf meine Anregung hin gezeigt
hat, dass sich die Methode jenor Arbeit in der am Schluss (p. 429)
angedeuteten Weise auf andei-e physikalische Diiferentialgleiohungen
ausdehnen lasst.

Der Fehler besteht darin, dass bci J3enutzung des p. 421 angege-
benen Wertes von B"2 die Function it aus Gleichung (5), p. 422, zwar
alien ubrigen Bedingungen des Problems, aber nicht der Differential-

* Of. PockeFs, tiber die partielle Differential-0(etching V2U + K-U = 0, pp. 22f>,
238, 339.

VOL. XXX.—NO. 668. M
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gleichung des Potentials geniigt. Um Letzteres zu erreichen, muss
man vielmehr nach dem p. 405 genannten Principe den Winkel <p' in
dem Ausdrucke von H? durchweg durcli die Integrations variable a
ersetzen, und, dementsprechend, IP folgendermassen de6niren:

jfj/2 _ 2 ^iSPSZjD~^S^i^JZ.a) L. (z—z'Y
(cos ip — cos <j>) (cos ip' — cos a)

G-loichzeitig wild es ncitig, die Wahl der Function / ( a ) etwas
abzuandern, damit f(a)/li' fur a = <x> verschwindet. Man neliine
zu dem Zweeke statt der p. 422 angegebenen beiden Werte

f( \— ze<* I cos ip'—cos</>

eia—e'y V cos i(h' — cos a

iS %p — COS a

f (a) besitzt dann immer noch die Eigenschaft, fiir a = y' von der
ersten Ordnnng mit dem Residuum 1 unendlich zu werden. Als
Verzweigungspunkte des Integranden komraen ausser a = oo nur
dicjenigen Stellen der a-Ebene in Betracht, fiir welche ZT" = 0,
d. h.,

cos (jp — a.) —cos i (p—p')= 5 (2—s')~ (i'os ip—cos p)(cos ip'—cos a)

wird. Sie sincl selir leicht zu bestiminen, wenn z—s' = 0; dann
baben ~\vir namlioli einfacli

a = <p + 2kir =t i (p— p').

I'm anderen Falle muss man die Grlcichung fiir a auftosen, und erhalt

a = a •+• 2/ITT dt ib,

wo die Grossen a und b reelle Zahlen bedeuten, die von <j>, p, p' und
t—z' abhangen.

Die Defoi-mation des Integrationsweges lasst sich darauf gerade so
ausfiiliren Avie p. 422 angegeben. Der mit W bezeiclmete Weg
fiihrt, vom Unendlichen ausgeliend und dabin zuriickkehrend, in
einer Schleife um die Verzweigungspunkte a = a+ih nnd a = a—ib
herum.

Die Sclilussfoi^mel (5) ist hiernach folgendermassen abzuandern :

' U ~ 2nn J IV V cos ip - cos a e1"'"—e'></n '
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Die folgenden Bemerkungen iiber Naherungsformeln in der Nahe
der Verzwcigungslinien und iiber die Ausfiihrung der Integration
im Falle n = 2 sind in der pp. 423 und 424 gegebenen Form un-
mittelbar aufreclvt zu halten, wenn man sich auf Punkte der Ebene
z = z beschrankt; im dieaem Pallo stimmt namlich die bei'ichtigte
Form (V) mit der friilier angegebenen (ft) genau tibcrein. An der
p. 425 beschriebenen Fignr, welch c sich geradc auf diese Ebene z = s'
bezielit, ist dalier nichts zu corrigiren.

Ein geringfiigiger Schrcibfchler, anf den micli Herr Carslaw
aufmerksam maclvte, tindntsicli ansserdcin ]}. 417. Die Gleicliung (3)
muss nainlicli Tauten :

2 , /(T + r 2 , Itr + T
v = -— ai'c tan \ / —• ~ arc tan \ / ,,

irli V a — T irli V o-—r

wobei 7A\V Abkiirzung

2-2rr' cos (0 - f

>') + (z-z'f

gesetzt ist, und wobei <r, T, T' die pp. 413 und 417 angegebene
Bedeutung haben.

Thursday, January 12th, 1899.

Prof. ELLIOTT, F.R.S., Vice - President; and subsequently
Lt.-Col. CUNNINGHAM, R.B., Yice-President, and
Dr. HOBSON, F.R.S., in the Chair.

Fourteen members, and a visitor, present.
Prof. Elliott referred, in feeling terms, to the recent death of the

Rev. B. Price, F.R.S., who was elected a member of the Society
June 26th, 1866.

Dr. Morrice read a paper on " Linear Transformation by Inver-
sions."

Mr. H. M. Macdonald spoke on " The Zeroes of the Bcssel
Functions " (in continuation of his previous paper on the subject).
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Lt.-Col. Cunningham communicated a paper by Mr. D. Biddle,
entitled " A Simple Method of Factoring large Composite Numbers
of any unknown Form."

Messrs. Lawrence, Larmor, Hobson, and Western spoke upon one
or more of the above papers.

The following papers were communicated, in abstract, by
Dr. Hobson, viz.:—

On a Determinant each of whose Elements is the Product of
h Factors : Prof. Metzler.

Properties of Hypcrspace, in relation to Systems of Forces,
the Kinematics of lligid Bodies, and Clifford's Parallels :
Mr. A. N. Whitchcad.

On the Reduction of a Linear Substitution to its Canonical
Form: Prof. W. JJurnside.

The following presents were made to the Library :—

Koenigsbcrgcr, L.—"The Investigations of Hermann von Helmholtz on the
Fundamental Principles of Mathematics nnd Mechanics," 8vo ; Washington, 1898
(from "Smithsonian Report," 1890, pp. 93-124).

Oltraraaro, G.—" Calcul do Generalisation," 8vo; Paris, 1899. Two copies:
ono presented by tlio Author and the other by the Publisher.

"Educational Times," January, 1800.
" Indian Engineering," Vol. xxiv., Nos. 2l-2f>, Nov. 19-Dec. 17, 1898.
" Reciprocal Polygons," by Jainshcdji Edalji, B.A., B.Sc. ; Ahmedabad, 1898.

From the Author.

The following is the list of exchanges received:—

"Proceedings of the Roynl Society,"' Vol. LXIV. , No. 405.
"Beibliitter zu den Annakn dor Phvsik und Chcmie," Bd. x.xn., St. 11;

Leipzig, 1898.
"Memoirs and Proceedings of the Manchester Literary and Philosophical

Society," Vol. XLII., Pt. f>, 1897-98.
" Berichte iibor dio Verhaudluugcu dcr Kunigl. Siichs. Gesellschaft der Wissen-

Bchaften zu Leipzig," Bd. L., Pt. ,r), 185)8.
"Proceedings of tho Physical Society of London," Vol. xvi., Pt. 3 ; November,

1898.
" Proceedings of the Canadian Institute," Vol. i., Pt. G ; November, 1898.
"Proceedings of the Royal Irish Academy," Vol. v., No. 1 ; December, 1898.
"Bulletin of the American Mathematical Society," Series 2, Vol. v., No. 3 ;

December, 1898.
"Rendiconto doll1 Accadcmia dclle Scienze Fisicho e Matematiche," Vol. iv.,

Fasc. 8-11; Napoli, 1898.
"Rendiconti del Circolo Matematico di Palermo," Tomo xn., Faec. (i;

November and December, 1898.
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" Bulletin des Sciences Mathctnatiqucs," Tome xxn., Dec, 1898 ; Paris.
" Acta Mathematica," XXII., 3; Stockholm, 1898.
" Annalidi Matematica," Serio 3, Tomo n., Fasc. 1 ; Milano, November, 1898.
"Atti della Reale Accademia dei Lincei—Rendiconti," Sem. 2, Vol. vir.,

Fasc. 10, 11 ; Roma, 1898.

Zeroes of the Bessel Functions. By H. M. MACDONALD.

Read January ] 2th, 1899. Received February 1st, 1899.

In a previous paper, the zeroes of «/"„ (z)/z'\ where n is any real
quantity, have been considei*ed. There is no difficulty in extending
the results there obtained to the case where n is any quantity. When
the real part of n is greater than —1, all the zeroes are associated
with the essential singularity at infinity, and are obtainable from
Stokes' formula. "When the real part of n lies between —m —1 and
— ra, ra being an integer, theî e are, in addition to the zeroes
associated with the essential singularity at infinity, 2m zeroes which
can be derived from a formula similar to that given in § 11 of the
previous paper. The method used for discussing the zeroes of
/„ (_z)/zn depended on the fact that it is a holomorphic function of z at
all points of the z-plane not at an infinite distance from the origin.
A solution of Bessel's equation is not, in general, expressible as a
holomorphic function multiplied by a power of z; the only case where
it is so is that of n half an odd inte^'.-r. The most important
solutions of Bessel's equation other than /„ are Hankel's second
solution Y,,, and that solution of the equation which vanishes at the
positive imaginary infinity, usually denoted by Kn. In what follows,
the function Kn will be principally discussed.

In 5 § 1, 2, the elementary properties of the function Kn (z) are in-
vestigated, and the function is defined to be that solution of the
differential equation

dzl z dz

which vanishes at the real positive infinity, the plane being bounded




