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where §; is the adjoint of a; in the determinant | ay|. K is thus
generated by the 7', and @, ; ,. Its order and structure follow from
that of the general linear homogeneous group* on m indices in the

GF'[p"].

35. Tunorusr.—For p>2 the largest sub-group common to H,, ,,, and
B, ., (for A=1)is K, .,
1t is clearly that sub-group of K, ., which has the invariant
& +u,. Hence
ay =90, =1, a;=98;=0 (=2, ..., m).

Wiiting these relations for the inverse of (1), we have
8 =y =0 (j=2, .., m).

The substitntions of the sub-group have therefore the form

(G=2, ..., m).
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This paper contains solutions of four elastic problems, all
originally snggested by hypotheses which might modify the velocity
of propagation of shocks along the smiface of the earth. The first,
second, and third deal with gravitational effects; hence, in these
three I have assumed the material incompressible in order to avoid
the diflienltics that avise, even in the statical problem, if the material
be compressible (Love's Blasticity, Vol. 1., Arvt. 127). In the fourth

¥ Dickson, dnnals of Mathematics, pp. 161-183, 1897.
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problem I consider the effect of a thin skin, whose elastic constants
differ from those of the main body ; here gravity does not enter into
the problem and the material is supposed compressible.

The first, second, and fourth cases suppose the free surface to be
an infinite plane; these are based on a paper by Lord Rayleigh
(Proc. Lond. Math. Soc., Vol. xvir.). From the first and second it
appears that when the length of waves is short enough for us to
regard the earth as plane the effect of gravity must be in all cases
small. The fourth solution shows that the effect of the skin must
be proportional to its thickness, and hence must be small.

The third problem solves the vibration of a sphere under its own
gravity. Here the modification introduced by gravity appears to be
considerable, on wusing the approximatc elastic constants of tlie
earth. The method adopted here is practically the 'same as Prof.
Lamb’s, to be found in his well-known paper on a vibrating sphere
(Proc. Lond. Math. Soc., Vol. xut); but I have used a slightly
modified form for the analysis, which rednces the labonr of manipn-
lation and also gives a more convenient form of the period-cquation.

It appears that gravity has no effect if the ovder of the harmonic
disturbance is zevo or nnity; when this ovder is 2, I have calcu-
lated a number of roots of the period-cqnation.  In particunlar for a
sphere of the size, mass, and gravity of the carvth, but with vigidity
about that of stecl, the gravest free period is 55 minutes; the
corresponding period withont gravity is 66 minutes. 1f the rvigidity
be about that of glass, the periods are 78 and 120 minntes, rvespect-
vely.

These problems weve orviginally undertaken at the suggestion of
Dr. Larmor, to whom I am indebted for many valnable criticisms.

1. Propagation of Warves nnder Constant Gravity on the Surfuce of an
Infinite Incompressible Blustie Solid with an Infinite Horizontul
Face.

Following Lord Rayleigh’s method (Toe. ¢it. supra), we have to
make but one modification, viz., the normal traction on the mean
free surface has to be just sufficient to support the weight of the
harmonic inequality, instead of vanishing, The proof of this state-
ment will be found in Love’s Elasticity (Vol. 1., Arvt. 173).

To shorvten the work, [ take the axis of @ to be the divection of
propagation of the waves ; then, if 2 is vertically npwards, we take
all the displacements independent of y and v =0. The ordinary

H 2



100 Mr. T. J. I'A. Bromwich on the [Dec. 8,

equations of elasticity then become

p?;t’: (A+u) aaA +p¥lu,

T i) 4y
a alU
=t

But, since the solid is incompressible; A, the dilatation, will be 7610 ;
however, AA will be finite, and let us pnt p, = A4, so that p, is & kind
of negative hydrostatic' pressure. We then have the modified
cquations

du_ dp
~a72- = :);: + V%,
% _ 0 .
[ 871':’ = —}3 +[AV"IU,
au a'w
0= —~4 —.
. a:’v az

Now assume all the displacements to contain the factor exp (¢épt +1lv);
so that the wave-length A" = 2x/l, and the velocity of propagation
is I/p. We then have, if

K = pp°/u,

. 1 op
V2+ 2 _—— . 2 ,
( &%) 1 PR
1 op
V2+ 2 P o= Yk ,
(V467 2 . 0
whence we find vp, = 0.

Thus we take  p,/ux’ = (Pe "+ Qe™) exp (ipt-+ilz),

which is the gemeral solution, if p, contains the exponential
exp (ipt+2lx). Now in the solid z ranges from O at the mean free
surface to —o; consequently, if I be positive, we must take P =0,
so that p, may not increase indefinitely with the depth. Whence

pi/pe’ = Qe exp (ipt +1lz).
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Next, since v'p, =0, a particular set of values of the displace-
ments will be

1
p<* Oz’
_1 9p
pet 9z’
to which we must add complementary solutions of the equations
(V*+u)u =0, .
(Vi) w=0,
on |, Ow

2y =,
Oz 0Oz

U=

w =

so that in all we find

1 a . 52 y
"= — _81? + Ae exp t (lx+pt),
I

o g
where ilA4 :}-sB =0 and $+O0=7

+ Be” exp i (lu+pt),

It is assumed that the real part of s is positive in order that o, w
may not become infinite at s = —o0; the case when s is purely
imaginary will be censidered later. ’

The conditions at 2 = 0 are

A +2p Q@ +gpw = 0,
2

)
(o) =o

the first of which makes the normal traction on the mean free surface
just support the weight of the harmonic inequality, while the
second makes the tangential traction zero. Wheuce

pe’Q+2p (sB—1'Q) +gp (B—1Q) =0,
—2il’;Q+sA+ilB = 0.
But il4 = — 5B, and thus we have
—1Q (2— /) + (go/ul) (B—1Q) +2sBfl = 0,
21Q—-(2 -y B=0,
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in the second of which we have put
=13
Writing now #*/I? = ¢, we find, after climinating the ratio B.: @,

2=0 @=L +gp/ph) =2 (2V1—L+gp/pl),

or (2= —4vV1=E—L (gp/nl) =0,
and here V1—¢ =s/l, and so the veal pmt of +1—¢ is to be
positive.

When g = 0, the equation is the same as that found by Rayleigh
for an incompressible solid (loe, cit, supra).

I now proceed to obtain an estimate of the magnitude of (gp/ul).
In the fifteenth Brit. Assoc. Teport, © On the Earthquake Phenomena
of Japan” (p. 58), we find that approximate values near the earth’s
surface ave, in C.G.S. nnits,

p=3, p=(10)10" _

and the mean valne of g is known to be 981 in these units. Now
gp/pl = goX'[2mp,
and with the values above we fiud roughly

2rufgp = (3:204) 10°;

also in centimetres the earth’s mean rading o = (6:37) 10° nearly.
Thns & rough estimate of gp/pl is 2X/e.

Now it is elear that A/ mnst be small in order that we may treat
the enrth as approximately plane. Consequently the roots of my
period-cquation cannot differ greatly from those given by Rayleigh.
Suppose, then, {, to be a 100t of Rayleigh’s equation, and now put

{ = {+0L;
we have then, approximately,
282 [(1—40) A= (2—40) ] — (go/nd) &, = O
but 4(1=) = (2=,
so that this becomes
2 (8/4,) [4(2—¢) "= (2= ] = gp/wl.

Lord Rayleigh shows that, of the three values of {, which differ from
zcvo, only one is a solntion of the problem, as the other two make
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This value of £, is given by him as 091275, but my calculations have
led me to 0-91262. Taking this value, we have

4 (2—¢)'—(2—) = 22956 nearly,
and so 8¢f¢, = (02178) (gp/ul) mearly.

The velocity of propagation V= p/l = (u/p)*; thus, if V= (u&/p)},
we have, to the same degree of accuracy as before,

(V=7 Vy = /2L, = (0'1089)(gp/pl) = (0-213)(X/a),
with the values of u, p quoted above. Consequently the ratio
(V—"7,)/V, must be a very small fraction in all cases to which this
method of approximation can be applied.

After the above solution had been completed, it was pointed out as
a means of verification that the period-equation ought to lead to the
known value of the velocity of propagation of short waves on water.
Making u small in the eqnation, I found as the first approximation
to ¢ the value gp/ul, giving the velocity (Lu/p)t = (g/l)t = (g\/2x),
the well-known form. But this would clearly make (1—¢)} imaginary,
and thus the terms neglected in { would have to be complex, leading
to a complex period. Since this is inadmissible, it will be advisable
to examine the assumptions made above.

It now appears that when s is purely imaginary the values of u, w
may include terms in e * as well as those in e”, both sets being finite
at s=-—ow. This will introduce a new arbitrary constant; and
hence also an additional boundary-condition. To express this con-
dition in the simplest way, take the solid as a slab of thickness 2h,,
where 7, will be subsequently made infinite. I shall replace the
terms in €, ¢%, &c., by hyperbolic functions, and take the origin as
midway between the two faces of the slab. Thus we have

p/us® = A cosh (Iz) + B sinh (Iz),

%= — L aap ! + X, cosh (sz) + X, sinh (s2),
1 @& .
W= —— + Z, cosh (s2) + Z, sinh (s2).
ne' Oz
Ou aw
Al =0,
* oo
50 we find X, +sZ,=0 and idX,+sZ,=0,

the factor exp (ipt +7ilx) in py, 1,1 having been suppressed for brevity.
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I take as the boundary conditions

p1+2yal’+gpw =0,
0z

at each mean free surface z =k, and z= —h, Thus we have
(«*—20%) | A4 cosh (Thy) + Bsinh (Ih,) _] +2s [Z, sinh (sh,) + Z, cosh (sh,) ]
+ (go/p) [ 7, cosh (shy) + Z, sinh (sh,)
—1 {Asinh (Ih)) + B cosh (Ih)} ] =0,
from the first condition ; and, from the second,
—2; [ 4 sinh (lhy) + B cosh (Ih,) ] +5 [ X, sinh (sho) + X, cosh (sh,) |
+1l [ Z, cosh (sh,) + Z, sinh (shy) | =0,
together with two similar equations which are the same as these

when thie sign of &, is changed. Substituting in the second of these
for X,, X, in terms of Z,, Z,, we have

—28 [ A sinh (Ih,) + B cosh (Iky) ]
+ (2P —«*) [ Z, cosh (shy) + Z, sinh (sh,) ] = 0.
Whence, changing the sign of %, and adding and subtracting, we have
(k*—21%) A cosh (Ihy) 4252, cosh (shy)
+(gp/u) [ 2, cosh (shy)—1B cosh (Ihy) | = O,
(x*—2P) B sinh (Ih,) +2sZ, sinh (sh,) ’
+(gp/p) [ Zysinh (she)—14 sinh (ih,) ] = 0,
(28 —+«?) Z, cosh (sk,) —20°B cosh (Ih,) = 0,
. (28—« Z,sinh (shy) —20°4 sinh. (k) = 0;
whence we find, eliminating Z,, Z,,
— (2*—«")? A coth (Ih,) + 48sA coth (sh,) + (gp/p) Ik*B coth (lho) =0,
— (2I'—«*)* Btanh (Th,) +48%B tanh (sh,) + (gp/u) W4 tanh (Ih,) = 0.
Eliminating the ratio 4 : B, we have*
[ (21— «*)? tanh (Ihy) —48% tanh (sh,) ]
x [ (288—«%)? coth (Ih,) —41% coth (shy) | = (qux’/p)*.

* On IJ)L tting g = 0 this reduces to two period-equations which agree with (38),
(47) of Lord Rayleigh’s paper ¢ On the Vibrations of an Inﬁ.mte Plate’’ (Proc.
Lond. Math. Soc., Vol. xx.).
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Now, consider the limiting form of this period-equation when /4 is
indefinitely increased; coth (lh,) approaches the limit unity, so also
does coth (sh,), provided that the real part of s is positive. This
was the condition previously imposed on s;. we shall hold over for
the moment the consideration of the case when sis purely i 1mag1na,ry :
Our period-equation is thus

[@r—« "fl*’s:l2 (gole/p)’,
and it will be seen that we must choose
(2P —#*)? = 4P+ gplc®/p,
in order that z = 4 &, may be the surface at which the disturbance
is finite. ~This equation is the same as that found previously.
Next take s = 45", where s" is supposed real. Then
stanh (shy) = —s'tan (s'hy), and s coth (shy) = s cot (s'hy) ;

these two expressions do not tend to limits independent of s" as 7, is
increased indefinitely. Thus here the period-equation must involve
Ity ; but we can obtain an approximate solution when u is small. In
this case ¥ will be large, provided p, p be supposed finite. Our
equation will then yield approximately

()" = (gple’/ne)";
whence &= gpl/p, or p'=ygl,

which gives the velocity of wave propagation

/L= (g/l)} = (g\'/2m)*.

This is the well-known result for the velocity of propagation on
water of waves whose length is short compared with the depth.

It will be noticed that the equation originally found,
(2P =&*)* = 4Ps+gps®l/p,

always gives a real value of («%%) which lies between O and 1.
Apparently we should thus have in all cases a real value of s given
by this equation; but when the ratio (g/!) : (u/p) is greater than -
unity it will be found that this value of s must be negative in order -
to satisfy the period-equation, and this must be excluded according
to the original conditions. Hence, if (g/I) > (u/p), t.c., if the velocity
of propagation due to gravity alone be greater than that of rotational
waves, then the more complicated period-equation just found must
be used.
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It will be observed that in the physical application originally con-

sidered gp/ul was a small fraction, and consequently this point did
not present itself, ’

2. The eﬁ’ect on the previous problem due to an Ocean of Depth small
compared with the Wave-length.

For simplicity take the depth as uniform, so that the mean
boundaries are two infinite horizontal planes. Neglecting viscosity,
the motion in the water isirrotational ; let ¢ be the velocity-potential
with d¢/0s as the velocity in the direction ds.

Retaining the axes and notation of the former problem, we write
at once, in the solid,

p/nx* = Qé* exp (ipt +ilz),

°%w=— —1—— Oy + Ae* exp (ipt +ilz),
B O
1 Op,
w = — —; £ + Be” exp (ipt +ilx),
Pl p (ipt +ile)
wh_ere WA+sB=0 and s$*+<—0=0.

To determine ¢ we have V¢ = 0, and hence

¢ = [ O cosh (Iz) + D sinh (Iz) | exp (ipt +ilz).

Next we have at z =0 ai_.@
Oz at
which gives 1D = ip (B—1Q).

At the free surface (z = %, when undisturbed) the pressure must be
constant. Thus

Op , O _
gg-’-at“ 0 at z=",

or

gl [0 sinh (lh,) + D cosh (_lho)] —p' [ C cosh (Ih,) + D sinh (lho)] =0.

Now Ik, (= 2rh,/\") is supposed to be small ; so, approximately,
sinh (lh,) = Ih, and cosh Ih) =1;

whence gl (D+ Clhy) —p® (C+ Dlhy) = 0.
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At z =0 we have the two conditions’

Ou , Ow\ _

k(5 ) =0

Ow oy 09
P1+2F§;+9(P pw P 0,

where, in the second condition, p’ is the density of the water; and
the effect of the water-pressure has been included. Thus

—2PQ+sAd+:lB =0,
ptQ+2u (—¥Q+5B) +g (p—p)(—1Q+B) —ipp’0 = 0.
Now we have
O (F—glh) = DL (—F'hy) = ip (§—Fhe) (B—1Q),
which gives, approximately,
20 =< (B—1Q)(9—p*hy),

the terms rejected being of order (gl*hy/p®) in comparison with those
retained. Now (gl*h,/p) is (gp/nl)(Ihy) (P/+*), and, by what has been

alveady proved in the first section, (gp/pl) is a small fraction, while
1, is also small. We thus have, on substituting for 4 and O in

terms of B, (@, 2l“Q;(s3+lz) B=0
and p (2—20%) @+2psB+ (gp—p'P’h)(B—1Q) = 0.
These give
(28— 451 (gppl) (1) + o) B () =0,
Writing { = «*/I* as before, this becomes
@0 = 4V 1=+ (gp/p) L= (lhop'fp) &

Obviously, if p'/p=0, or if Ih, =0, we get back to the period-
equation found in the first section. Solving by approximation in
the same way, we get -

2 (3/¢)) [4(2—&)2—(2—&) ] = (gp/6) — (Whop'[p) Loy
which yields with ¢ = 091262
(V=T Vy = 8¢/2L, = (0°109) (ga/ul) — (0-099) (hy'p).

Expressed in terms of the wave-length, with the same values of
M, p as used above,

(V=7)/Vs = (0-213) ("/a) — (0-522) ('/p) (ho/X).-
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3. The Vibrations of an Incomgpressible Sphere under its own Gravity.

We shall neglect the central part of gravity in solving for w, v,'w,
as its only effect is to introdnce into the traction on the mean free
surface a term which is equal to the weight of the harmonic in-
equality (Love’s Elasticity, Vol. 1, Art. 173). But we must retain
the gramtatlona,l potential of the harmonic inequality, which we
denote by V, so that V contains terms of the same order as the
displacements.

We then have the differential equations of motion

alu ap| +uv? ov

Pop "o TV TP
p?; = g’y" +puV% +P%V
pit’ %plﬂ‘ww“a
0= e

the last equation holding on account of the incompressibility, and in
the others AA = p,, a finite quantity. It at once appears that

Vip, =0 since V'V =0
by properties of the potential.
‘We thus get a set of particular integrals

(2, v, W) = (—a% a;i azi) ¢

where == — (p+pV)/ s,
and, as before, = pplp.
The complementary solutions a.ré to satisfy
(V*4+4%) uy =0,
(V3 44*) vy, =0,
(V*+ %) w, =0,
Oy 4 ey | O,

=0.
Ox Oy Oz
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I shall now introduce the hypothesis that the displacements are
symmetrical round an axis; this is really perfectly general, for by
superposition of such solutions we can get every possible case. We
reject the displacements called by Prof. Lamb * those of the
first class,” in which the displacement is in circles round the axis;
and proceed at once to those of the second class, where the displace-
ment is in a meridian plane. In displacements of the first class there
is no radial motion ; consequently the effect of gravity is nil.

For the future 2, v will represent the radial and transverse dis-
placements in the directions of r,  respectively increasing ; the nota-
tion is that of three-dimensional polars. Then

w001 0y
T O rsin0 06’

_ 1 0p 1 0Oy
U= 3 Trsine 5
where 9 = — (p+pV)/uv,

as before; and the terms in ¢ give the complementary solutions
14y, Ty, w, of the previous notation. Here y satisfies

(D+e)y =0,

where

.
p=2 jsin ﬁ(__L_ @),

o 7" 909 \sind 96
which is the operator usually associated with a Stokes’ stream-

function.

We then find that typical terms in ¢, ¢ are, if P, is Legendre’s
.coeflicient; of degree n in cos 6,

¢ = A" P,e™,
‘P =- B+ ‘/’n(””') sin 0 %geipt’
'wherg
—(_1 d\"/(sina
\L,.(a,)_( x da;) ( a:)

1 x? at

== 1_ _
_1.3.5...2n+1[ 2.2n+3+2.4.2n+3.2n+5 --.],

according to the notation of Prof. Lamb (Hydrodynamics, Art. 267).
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This value of y is at once obvious by remembering that

Dy =rsinb o (M;“_’),

cos w rsin 0
o being the azimuthal angle of polars.
We then have
uw=m""'[ A+ (n+1) By, («r) ] P.e",
v= ¢! [A+ {(+1) g (0) +6rd, (kr) } B] %e"".

From this value of « we see at once that V is of the form
3gu, ™/ (Cn+1) a”,
where u, is the value of u at » = a. Also p, satisfies V¥p, = 0, and so
we put p, = Bu,r"/a", where {3 is a constant. To determine 3, we have
wip = —(p,+pV),
and hence p’da+n[B+39p/(2n+1)][ 4+(n+1) Bd. (xa)] = 0.

The equations to be satisfied at the surface are now seen to be

p1+2yg—" +gpu =0,
N

and

S350
Substituting, we get the two conditions
w[B+gp+2p (n—1)/c][A+(n+1) By, (xa)]
+2pxn (n+1) By, (va) =0
and 2 (n—1) 4+ B [2(w—1) ¢, (re)— e}, (xee) — k', (v0) ] = 0,

r..

in. the second of which ¢, (xe¢) has been expressed by ¢, (ka) ad
Yy, (ka). Substitutipg for 8 in the first of these, we find

2 (n—1) [1 +gpa/n (2n+1) ] [A+ (n+1) By, (Ka)]

—&** A + xan (w+1) By, (ku) = 0,
For brevity put

By, (xa)=0C, sa=wz, ¢, (xa)/b,ka)=X, ngpe/2u+1l)p=20;
then we have
2(n—1)(n+6)[ A+ (n+1) 0] =24+ 2 (n+1) XaC = 0,
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while the second surface-condition becomes
2(n—=1)4+0C [2 (ns—l)—‘ZXa:—:c”] =0.

‘On eliminating the ratio 4 : ¢ and rejecting some superfluous
factors, these give

(n+1)(@+2nX) +[n+6-2Y2 (n—1)] (z+2X) =0,
which may be written

2 W (xa) | (2nt1) +ngea/(2u+]) p—kaff2 (n—1) _

ke Yy (ka)  n (e +2) +ngoaf(2u+1) p—ia?2 (n—1)

0.

By putting ¢ = 0 we arvive ab an cquation which iy the same as that
found by Prof. Lamb (Proc. Lond. Math. Soc., Vol. xur), when
allowance is made for the fact that the value of ¥, (ke) which is
there adopted is [1.3.5 ... 2n+41] times the value used above,

From the form of the period-equation above it appears that 2 = 0,
n = 1 define modes of vibration which are not affected by gravity.

It is of interest to see that the equation just found reduces to the
form given previously when we considered an infinite solid with «
plane face. We take «, n as both infinite” mul the harmounics as
sectorials ; then 2wefu = wave-length = 27/l of former work; so
n =al. We must now investigate the form of ¢, when both 2 and
the argument are verygreat. 1 have not succeeded in finding a known
form either of y, or of J,,, in this ease; accordingly I procecd to
determine o form by fivst principles.  We have here that, with
0 ==/2, ()" = U is a solution of

(¢4 U =0 and 2w =law = lr;
so we have ™Y, = Ae'"9,
where & =+ 1

and the veal part of s is positive, so that ¢, may not be infinite
at 7 = 0.%

# Another method is as follows :—y, (;:)') is o solution of
Py 2 (e+l) dy
UG L) ey .
i3 ” dr - K 4
Now write 7 = a —z, and supposo 2/« to be small; the equation for y will become
Fy e
i ey =0
und wo find Yo = Aelt-9z,
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Differentiate now with respect to » and put r = a; we find
g

i (a) _ 5=t

ACO N
Also ngpaf(2n+1) u = ngp/2ul
in the limit; thus the period-equation becomes

2 (s—D)/ia-+ (2-+gp/2ul—*f28) = O,
which is equivalent to
41 (s—1) +&* (4+gp/ul—w/) = 0,

and with ¢ = &1,
as before, we find  (2—0)* = 4V 1—¢+ (ap/ul) L,

the form alrveady given in Section 1.

An additional verification is afforded by taking u extremely small;
we onght then to find one of the periods the same as that given by
Kelvin’s formula for a gravitating fluid spheve (Phil. Trans., 1863).

Taking p as very small, p* being kept finite, & will be very great,
and then, after multiplying up, the most important terms in the
period-equation contain the factor

ngpal(2n+1) u—pp*a*/2 (n—1) p,
“and thus the approximate period-equation may be taken as
p'=2n(n—1)g/(2u+1) q,

which is Kelvin's formula.

.C.,

1 now proceed to the discussion of the roots.of the period-equation.
We sce that, 2 = 2 is the first harmonic which gives any difference
from the case without gravity ; and for the future this alone will be
considered. The equation is

2 W) Sts—af2 o
& ¢y (2)  8+2y/5—a'f2
where y denotes gpa/p. T'his can be reduced to the equivalent form
tanz . 24(20+vy)—4(23+9) @ +bat
z 24 (20 +v)—12 (2L +y)a* + (25 + 4y/5) 2* —a®’
remembering that »
Y () = [(3—:1:”) sin ¢ —3a cos :L]/.L"
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The second form will he seen to reduce to equation (80) of Prof.
Lamb’s paper previously quoted, on putting y = 0.

I oviginally attempted to solve the equation by assnming a value
of y, and then using the method of trial and crvor. By this means I
calculated the roots marked (A) in the tuble subjoined. DBut it soon
became clear that, to trace the roots systematically, an easier plan
would be to evaluate the values of y corresponding to assumed values
of 2. To do this I tabulated y, (2), y: (), and deduced the valucs
of 2y (2)/ay, (z) corresponding to values of 2, diffeving by n/10. The
calculation of y then offers but little difficulty. The periods were
deduced for a sphere of the same size as that of the carth, with the
same smrface-value of gravity, using the constants

a = (637) 105, ¢ = (9-80) 10~

I proceed to make a few notes on my results. Taking p about the
rigidity of steel, I calculate that y = 4°32, which gives a period about
55 minutes, as against 66 minutes found by neglecting gravity ; and,
with p about the rigidity of glass, y = 15 nearly, which gives the
gravest period about 785 minutes, as against 120 minutes when
gravity is neglected. These are the cases of chief physical interest.

A general description of the variation of the 1oots with y may make
the table clearer. Thelowest root is ("8485) # .when y =0, accord-
ing to Prof. Lamb; this root increascs with y, until y hecomes w0,
corresponding to a value of # between (1'65) = and (1°70) =, the period
at the same time increasing to co.  After this, wntil a2 = (1-7420) =,
the value of y is increasing from —o to 0, which indicates that
these values of 2 cannot oceur in any real case. We now come to a
series of scecond roots of the period-cquation; here the value of y at
first varies rapidly for small variations of z, and for a value of
between (2:8) w and (2:8257) # becomes cw ; it then changes very
rapidly from —c to 0. The third, fourth, and fifth roots have the
same general properties, but it is revarkable that, as the ovder of the
root increuses, so also does the value of y requisite to produce u'given
period. Moreover it appears that, in the higher periods, the variation
i the period is slight in comparison with the ‘vaviation in y; also,
as the order of the period increases, so does the range of values of
y for which the period differs but little from 94 minutes. It is in
this sense that we must understand the period 94 minutes, as found
by Kelvin's result for a gravitating fluid sphere of the same size and
gravity us the enrth. Of course every valuce of y gives rise to an
infinity of peviods, and the purticular case of y = @, corresponding

YUL. XXX.—N0. GG, i
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to o fluid sphere, gives au infinity of infinite periods and a finite
period 94 minutes.

The table contains about two-thirds of the periods I have calculated,
those not inserted can be interpolated with sufficient accuracy.

Tasut of Periods of a Gravitating Elastic Sphere, with the same
Radius and Surface-Gravity as the Earth, tabulated for varying
values of (gpa/u) :—

Period in " | Period i
gpalp- | wa[m- | inutes. gptfp. | wafm. Miuu(t?esl.l
3)
L 0 08485 | 0 L | 0 28257 | 0} &
88 | 10 52:5|.8 845 | 29 85| &
Ay | 4321019 |55 |o2 96 30 88
63 | 11 635) 09 173 3-8 93 E
109 | 1-2 4|8 B 1936 | 385 97) R
o 139 13 7 (8% (4)
@ | 180 |14 815 |28 ||« 0 3-8709 | o) €
46 | 15|89 | £F 153 39 85 2
365 | 16 102 1% 274 48 93) &
562 | 165 [141 (3)

() L 0 48974 | 0) g
L 0 17420 | 0 198 19 71
A 15 11794 | 38 | & 436 59 95 )=

273 1 19 4 |2 - (3)
40°9 | 271 82 (o L 0 59148 | 0|9
533 | 23 |855(8 425 60 924
665 | 25 88 | 8
840 | 27 91 J/‘
1nso | 28 fiod

RexaREs.

L iudicates that the voot is tuken from Prof. Lamb’s paper,

4 these roots were found by u ditterent inethod from the rest.

(1) u = that of steel. _

(2) (9pa/u) = 15 nearly, if u be that of glass, so the corresponding pericd is
about 78 minutes. :

(3) in each of these intervals, the ratio (gpa/u) changes very rapidly to +oo,
—, and zero. It thus appears that certain values of («a/m) cannot appear in the
solution of this problem, viz., those which make (gpa/u) negitive. For instance, I
find that (xa/x) = 1°7 makes this ratio negative, and so the values from (1'7) to
(1:742) cannot appear.

Notation.—2w/p = period, «* = pp?/u.

Three sets of curves are given to indicate graphically the results.
In Fig. 1, the curves show the relation between (gpa/u) and the
period ; they in all eases should go off to infinity, but owing to difli-
culties of computation it has not been possible to find the asymptotic
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directions. Moveover curves (4) and (5) pass throngh the orvigin,
but my calculations do not give the exact shape near the origin,
which has been filled in by following the general outline of the first
three.

InTigs. 2, 3, the abscissa is (xa/), and the ordinates are the period
and (gpa/u) respectively. Ilere all the curves go off to positive
infinity nearly vertically; and in TFig. 3 they return through
negative infinity to the horizontal nxis, in a nearly vertical direction.
The negative part of the curves is not given, as it can have no
physical interpretation, merely arising ont of the analytical solutions.

4. Propagation of Waves v a Thin Shell with Two Infinite Iarallel
Tlaces, one of which us vigidly attached to an Tnfinite Solid.

The usual equations of small motion of an clastic solid in two
duincnsions are

AT S
o1 ow

p o =M+p) aA +uViw
0 0z

where A, p ave the elastic constants as defined in Love's Ilasticily.
I take the axis of @ to be the divection of propagation of the waves,
and that of z perpendienlar to the plane boundaries, which will be

the two planes 2 =0, z = &, in equilibrium. I suppose z =Ty to be
the free surface, and that /7, is positive, so that z = — o gives the

other boundary of the infinite solid.

Also A is the dilation and is equal to

(’)’IL 8"}
s

Now assnme that «, w0 both contain the factor expi (le+pt) ; so that
2r/l is the wave-length, and p/l the velocity of propagation. Then,

tti 2 o4
prng W =pp'/(A+2u) and & = ppip,

the equations given above will reduce to

oA

(V+e) e = (l-— ;;) })—!/
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and so (Vi+r) A =0.
Hence we assume that in the infinite solid
AR = 4e”,
u = —1ilde™+ Xe*,
w = —rAde” + Ze*®,
where P = 0=

and the real parts of », s must be positive in order that u, w may
vanish at z = —o0; the exponential factor expi (lz+pt) must he
understood in all the terms on the right-hand side. TFrom the value
of A, we have at once . AX 452 =0,

Turning to the shell (whose elastic constants are supposed to be
different, say X', ', p'), it will be seen that we are not restricted to
one exponential in 2, and for convenience I use two hyperbolic
functions.
We may then write, for the displacements in the shell,
A’/R? = B cosh (+z) + C sinh (+'2),
' = — 14l [ Beosh (rz) + C sinh (+'z) | + X, cosh (s'z) + X, sinh (s2),
w=—7 [B sinh (r'2) 4+ C cosh (r’z)] + Z, cosh (s’z) + Z, sinh (5'2),

by using the method of integration given by Lord Rayleigh in his
paper (loc. cit. supra), where we have put

K= (N H2K), K= Y,

and hlﬁ + /r" = P — K'ﬁ_t-_s'z.
Also, since A= Qﬁ‘. + a_'“_’,

ox 0z
we have WX\ +5Z, =0, X,+57,=0.

In virtue of the rigid connexion between the two solids, we have, at
z2=0
) v=u and w=w,

i.e., ' —ilB+X,=—1i4d+X,
—'C+Z,=—rd +7,
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Also we have dynamical surface-conditions at z =0,

AA +2u w _ ya + 2 0

0z 0z’
(G )= (2,
and those at z = h, the free surface, ave
NA"+2u aa’: =0,
%’;— + %% =0.

The conditions at z = 0 yield
— (P =) A+2sZ = ('/p) [ — (2B —+") B+257,],
2L A — (2 —) Z = (w'/p) [ 20— (21—+") Z,],

in which some reductions have been made by substituting for the
X’s their values in terms of the Z’s.
The conditions at z = I, give, after expanding and retaining only
the first powers of »'h, &'hy,
— (2B=&) (B4 Cr'hy) + 25 (Z,+ Z,s'hy) = 0,
21" (C+ Br'hy) — (21 —«*)(Z,+ Z,5hy) = 0,
and here again we have substituted for the X’s in terms of the Z’s.

Thus we have
— (2 —&") B+252, = hy [ (2—+") Or' - 2572, ],
2140 — (2B —«") 4, = hy [ (28 —+") Z,5 — 214" B],
and, snbstituting these values in the dynamical conditions at z = 0,
we get
—(2P—*) A+252 = (/i) ho [ (2P—x") OF' —2572, ],
2Lrd— (2B —x) Z = (W/u) ko [ (2P—+")5'Z,—21"B].

Now it must be observed that we have already rejected squares of k,,
and consequently it will be sufficiently accurate, when reducing the
right in the last pair of equations, to entirely reject %, in the ex-
yressions for Z,, Z,.
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Thus we take
QU—x*) O =272, = [(2—x*) —40s7] O /(20 ~«7)
= (21 —«?),
(21— x?) Z,§ —20%"B = [ (20— x?)'—42"] B/2
| = B¢ —48 (=" ]/2;
80 that — (2B —x*) A+2sZ = (4/u) hy Cr'c’*/ (2P —«),
2l A— (21~ &) Z = (p'/p) ho B [x*— 48 (x*—1) ]/2.

Next we must express C, BB in terms of 4,.Z, and in doing so it will
not be necessary to retain hy, by the argument given before.

Now we have PB—s'Z, = I’A —s2Z,
v"C—2Z, = rA- 2,
and, rejecting hy, 2872, = (RB—x") B,
QB—x?) Z, = 21%'C ;
thus we find «*B =2 (FAd—s2),

K0 = — (2B —r?) (rA—Z).
As a last reduction I now eliminate Z from these values of B, (' by
substituting in terms of 4, still neglecting k. Thence
"B = «*4,
and ' CJ(21—«?) = M4/ (RF—«P).
Thus our equations connecting 4, Z will become
—(2P—&") A +2sZ = (1'[p) ho™*r A/ (21— «*),
274 — (20—« Z = (W[p) h x*A [&*— 41 (x—h") /20"
Now, eliminating the ratio 4 : 7, we have
drs— (21 —%) = (¢/p) ko [ k%" ('r+s)—4l’x’s(l-f-k"/x")].
Writing, as before, B =,
and =1, RO =7
this becomes
s[a=-a-np-c-or
= ol [ (/) E{ A=+ A=} —4 (/) Q=)A= |;

and, to reduce this further, we may insert on the right valnes found
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by equating the left to zero; and it will be found that, if
@2-4)y =414 (1-1&),
then HLA-G+(1=r4)] =41-n)A=L)
Thus 4 (1-7)! Q- (2-0)"
= dlhot, (1=&6) [ (0'fp) =) — (W [p) 1 - ) ]
is the new form of our equation.

To solve approximately, write

{=6+0,
and then we have
=YL (A+r—=2rf)A—rL) P (1-&) - (2-4) ]
= 21y (1) [ (#p) (L=r) = (k) (L =) |-
If, now, ¥V, be the velocity of propagation of these waves in the

elastic solid when free from the shell, and V,4+3V be the velocity of
propagation now found, we have

Vi = pil' = peifpl* = Lp/p,

and (Vo+8V) = (& +¢0) ufp;
thus 28V/[V, = 8¢/,
nﬁproximute]y.

Lord Rayleigh has given the appropriate roots of
4= (1-) = @
for four values of r ; and, using these values of {, I have found roughly
8V(Vo= (O13)U [(w/p) A=) ~pfe], r=0,
dV/Vy = (0-34) I, [(p'/p)(l-—r')—2p'/3p], r=1/3,
8V V, = (070) hy [ (/) (L—1)—¢[26], 7 =12,
SVIV, = (2:80) A, [(p'/p)(l—-r')—p'/lip], r = 3/4.

It thus appears that the influence of a thin skin on the velocity of
propagation of waves of given wave-length can be only slight; hence
any application of Lord Rayleigh’s vesults to determine the velocities
of earthquake waves cannot be expected to agree at all closely with
the values observed until we know something of the elastic constants
of the earth at depths comparable with the wave-length,
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InTrovucTION.

This paper owes its origin to my work in the University of
Gottingen in the Summer Semester of 1897. The study of a
memoir by Professor Sommerfeld, then a Privat-docent in that
University, suggested to me the possibility, by a somewhat similar
method, of obtaining multiform solutions of other differential equa-
tions of physical mathematics. Their applications are not far to
seek. In conversation with Dr. Sommerfeld on the subject, he told
me that this field for research had been pointed out by him at the
close of his paper communicated on April 10th of that year to this
Society, and then in the press. However, as his time was fully
occupied with other work, he most generously urged me to take up
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the investigation, and offered me his help if at any time the ob-
scurities of the subject left me in difficulty. I desive at the outset
to express the sense of my gratitude for this great kindness, and for
the readiness with which he removed some of the difficulties which
faced me at the beginning of my work.

The papers to which I have referred, and to which fuller reference
will be made ‘immedia,tely, contain certain multiform solutions of the

equations 2 2
O +§~1—l' F+c*u=0
o' Oy

and Viu = 0.

The solutions of the first are applied to the two-dimensional
problem of the Diffraction and Reflection of Plane Waves of Light
incident on an opaque semi-infinite plane bounded by a straight edge.
Of this problem Lord Rayleigh had stated some years before, in the
article on “ Wave Theory” in the Incyclopedia Britannica, that its
mathematical difficulties were so formidable that no successful
attempt had yet been made to solve it; while again, in his Theory of
Sound,* he has called attention to the claims of such questions in-
volving diffraction. '

The solutions of the second equation find their application in such
electrical or hydrodynamical problems as deal with this boundary.

The advance made, in this paper, is the determination of corre-
sponding multiform solutions for the equations |

Vu+eu=0
.Ou

1t =k 2,

and 5 «Vu,

aud their application.to problems in the theories of sound and con-
duction of heat. The solutions obtained are exact, and expressed as
definite integrals. The work is thus on a different plan from the
most important memoirs of Poincaré, *“ Sur la Polarisation par
Diffraction,”t and Lamb, on “The Reflection and Transmission of
Electric Waves by a Metallic Grating,”} in both of which the results
are obtained in series and by approximation. .

* Theory of Sound, Vol. 11., p. 141, 2nd ed. .
t Aeta Mathematica, Bd. xv1,, p. 297 ; Bd. xx., p. 313.
t Proc. Lond. Math. Sor., Vol. xxIx., p. 523.
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1. Eutension of the Method of Images.
- The method of images, taken from the domain of optics and applied
to the solution of certain problems in statical electricity, was soon
extended into other branches of applied mathematics. Instances of
its application occur in current electricity, hydrodynamics, and
the theory of the conduction of heat. The principle of the
method is the symmetrical extension* of the problem involved,
from the limited to the unlimited space. Thus the question
of the point charge between two planes at right angles is solved by
the consideration of the infinite space, and charges at the four
symmetrical points. This symmetrical extension is obtained by
successively reflecting the original space in the bounding planes. By
this means the whole space is simply and completely filled up, while
the starting point is reproduced in the final reflection. Similarly
with the space between twofjinfinite planes meeting at an angle 3.
Here six reflections are required before we return to the region from
which we started. Fig. 1 shows the position of the poles for this
A B

= R

Ay B
T1a. 1.—Position of charge and images for planes inclined at an angle },
obtained by successive reflection,

case, the shaded pbrtions being those in which the positive chaiges
are placed.

The result for the angle T (ma positive integer) follows in the
m
same way. "
When we attempt, by this method, to solve the problems in which

. nw .y .
the angle between the planes is — (u, m positive integers), we
n

* Analytische Fortsetzung.
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at once meet a difficulty; on reproducing the original space by
successive reflection, we have, in the end, more than one pole in the
region from which we started. In other words, the space is not
simply filled up, but we are compelled to traverse it n times before we
return to our starting point.

For $= (Fig. 2) our space is covered two-fold, and we have six
reflections. These six are all necessary, as, though the second brings
us the complete revolutiou, the third does not take the starting point
back to its original position. The spaces are here shaded, or other-
wise, according as the positive or negative charges accur, and we find
ourselves with two poles in the region which ought only to possess
oue. '

A

F1g. 2.—Planes inclined at an angle 2.
The method of tmages, then, seems here to fazl.

The first successful attempt to solve any of these problems in
. mathematical physics appears to have been made in 1894 by
Sommerfeld. This was published in a paper, *“On the Analytical
Theory of the Conduction of Heat,”* Mathematische Annalen, Bd. xLv.
The ideas there introduced were extended to optics and electricity in
a paper in the same journal, Bd. xwvir, “ On the Mathematical
Theory of Diffraction.”t Some of the results of this paper had
already been communicated to the Konigl. Gesellschaft der Wissen-
schaften zu Gottingen, and appear in its Nachrichten in the com-
munications noted below.; The method is somewhat altered, and

# ¢ Zur analytischen Theorie der Wiirme-leitung,” Muth. un., Bd. xLv.

t ¢ Mathematische Theorie der Diffraction,”” Math. Aun., Bd. xLvir. A review
of this paper will be found in Voigt's Kompendinm der theor. Physik, Bd. 1.,
pp- 7166-716. :

} ‘¢ Zur mathematischen Theorie der Beugungserscheinungen,” Nuckrichten von
der Kinigl.-Gesellschaft der Wissenschaften, Gottingen, 1894.  * Zur Integration der
partiellen Differential-Gleichung w21 + 4% = 0 auf Riemanns’chen Fliichen,” ditto,
1895.
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brought to bear on potential problems, in a paper * On Multiform
Potential in Space ""* communicated to this Society.

As used in this last paper, the method may be briefly stated thus.
We imagine that we are dealing not with the ordinary space but
with a Riemann's space. This is analogous to the Riemann'’s surface
of the theory of functions of a complex variable, and allows us to
look upon such many-valued functions in the ordinary space as
single-valued in the Riemann’s space. In space we shall have
“hranch-lines”t instead of *“branch-puints’’f; “branch-membranes”§
for “ branch-sections.”|| Kvery plane section of the Riemann’s space
will give a Riemann's smiface, and the branch-membranes and
branch-lines give place to branch-sections and branch-points. We
then attempt to find a multiform solution of the differential equation
—in this case V*x = O—which shall be uniform in the Riemann’s
space; in other words, our problem, from the pure mathematical
point of view, is simply the integration of this partial differential
equation in a suitable Riemann’s space. Finally, we obtain a func-
tion % which has the following properties :—

(1) In the Riemann's space outside the bransh-lines it is single-valued,
finite, and continuous, except tn the point P, where it ¢s infinite as

718—’ R denoting the distance from P to the nerghbouring point Q.

(ii.) Ilsatisfies the differential equation V?u =0 in the whole Riemann's
space except in P, and in the branch-lines. In this condition is tncluded
the fact that, except in these places, it has finite first and second differ-
ential coefficients.

(iii. ) It vanishes at infinity.

By taking the images, and considering the space we have to deal
with as the Riemann’s space, we obtain a potential function with
n poles; but, taking the physical space as that given by but omne
“example "9 of the Riemann’s space, we have the solution of our
problem.

For example, take the case solved by Sommerfeld, of the point
charge outside a semi-infinite conducting plane at zero potential.

* ¢« Uber verzweigte Potentiale im Raum,” Proe. Lond. Math. Sve., Vol. xxviir.
Versweigungstinen. T Verzweigu Lte.

1 “evzweigu wgslinte : ¥ l’o weigungspunkte

§ Verzweigungsmembranen. | Verzweigungssehnitte,

o Lremplar.
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Here the convenient Riemann’s space has the edge’of the plane—
the axis of z—for branch-line, and the plane itself for branch-
membrane. - Then, with cylindrical coordinates, we take the range

0<0<2r

for the physical space; and
—27<6<0

for the imaginary space, the two building up the twofold Riemann's
space. '

‘A solution is found, corresponding to the pole at (+', ¢, 2),

0< &< 2m

and it is proved that there is only one solution with these properties.

Denoting this by « (6°),

u=u(6)—u(—0)

is the required solution of the physical problem.

This paper contains some further extensions of this method.

From the pure mathematical point of view, it deals with the

solution on certain Riemann’s surfaces, and, in corresponding
Riemann’s spaces, of the following partial differential equations :—

o 49 8 4y =0,
o
V4 = 0,
a—’-‘—: &V,

From the physical standpoint, it is concerned with problems in
which the ordinary image theory fails, and the space concerned has
to be looked upon as a Riemann’s space (or surface), of which only
one example (or sheet) is considered.

e . Fu | Fu
2. Multiform Solution of the Equation é— + 5— + &%=
without Infinity.

The solution discussed in this section forms the subject of the
paper on ‘ Diffeaction,” in Math. Ann., Bd. xLvir, above{cited. The
results ave so important—they solve the problem of the diffraction of
electrical waves incident on a scmi-infinite plane conducting screen
—that it seems worth while to obtain the solution anew, und, in
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obtaining it, more fully to explain the method heveafterto be employed.
Whereas, in these companion papers in Math. Ann. and Gitt. Nuch-
richten, the solutions of the two-dimeusional case are obtained as
‘limiting results from three-dimensional work, just as Bessel’s
Functions can be deduced from Spherical Harmonics, it is obvious,
from the paper on “ Potential,”* that nothing hinders the application
of its method to the equation

O 2 .
')i; + @ +&u=0.
Oz? agﬂ
A comparison of the work in this section with that in the paper
referred to will show to what an extent the problem is simplified.
In dealing with plane waves we ave accustomed to the solution
1 _(JIIIIC()B(V a] (1)

which represents the disturbance due to waves coming in the direc-
tion (8") from infinity.

If we introduce the complex variable «, and let f (a) stand for any
function of a,

[ eikrcu's{u-n)./.‘(“) Ja’

taken over auy path in the a-plane from which infinities are excluded,
is also a solution,

m 1 LAk eos (e~ v, J
Then 2—.”!’ hocostas) .= - du, (2)

e __

©?

taken over any circuit in the a-plune, surrounding the point « = 8
and no other singulavity of the integrand, is, by Cauchy's I'heorem,
the same as u#y; and we have an identical transformation. We muy
deform this path—provided that in doing so we do not puss over any
of the singular poiuts of the integrand.

There is no tronble here about hraneh-pointst because the function
to be integrated is uniform.

Since cos («—0) = cos (a—b) cosh b—7sin (a—0) sinh b,
when « = a+41b, we sec that we may deform the path to infinity
along the imaginary axis, provided that
for b =+ w0, sin(«—0) be negative,

and : for b =—w, sin (a—b) be pnsihive ;

0} LProc, Lond. Math. Soc., Vol. xxvirr., p. 429,
T Verzweigungspunkte.
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for the real part of the exponential is ewsin(e-2smib  and when
b=+, sinhb =+ w, while, when b =— o, ginhb =—o.

Now we may consider, in the first instance, that in the physical
space | 0~6 | < w. This only compels us to make our current co-
ovdinate 4 lie within the range —(v—6) < 6 < (= +6).

In Fig. 4 the shaded portions represent the parts of the a-plane
where our path may veach infinity. The curve drawn is a possible
deformation of the original cirenit round « = 6.

MNNN

=

|

AN

7

_

Ti1o. 3.—Breadth of strip, = ; deformation of cireuit vound a = 0’ ;

|0—6| <m; n=1.

The breadth of the strips is #.  The parts of the path made up of
straight lines, dotted in the figure, ave separated by 2. . This enables
us to leave these out of account, owing to the peviodicity by 2r of
the integrand, and the fact that the corresponding parts ave described
in opposite directions. The curved parts ave to be asymptotic to
these lines. It will be easily seen that any other path, starting to
the left of the circuit round 6 and ending at distance 2= on the right,
will be deformable into this.

These two curved branches we call, after Sommerfeld, the path
(A) corresponding to the value of 6.

We have here proved that
—}-j efkreosta=o) e da,

277 cm__ e:d'

* Verzweigungspunkte,
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over the path (A), is equal to
eiu-cos(a-s'),
and this solution is uniform.

We now proceed to the Multiform Solution.
Consider the function defined by

%= e gihreos(e=0) __ f':’_"__ da (8)
- ei..lu —_— en’a']u !

the integral being tuken over the path (A), in the a-plane, which
corresponds to the value of the current coordinate 6.

(i.) This function is « solution of owr equution,sinco every element of
the integrand is a solution, and we have excluded the possibility of
infinito values. Also, when » = 1, it takes the form

u = pty = erente-),

(ii.) The function is multiform,and of period 2nw,in the ordinary sense;
but on tho n-shected Riemann’s surfaco with the origin as branch-
point, and tho line 8 = — (v —#") as branch-section, it is uniform.

T'o prove this we must again have recourse to ig. 3.

When we put for 8, 042w, the alteration on'the path (A) is simply
to move it parallel to the axis of imaginary quautities throngh a dis-
tance 27, Thus a change in 8 of 2am, or n vevolations ronnd tho
axis of z, moves the path (A) along the renl axis of a through 2nw.

Now the integrand is periodic in 8 and of period 2nr; thereforo the
values assigued at each point of the path for 0 +2nz ave the same as
those at corresponding points for 6. 'Thus the value of u for the
point (7, 6) is the same as for the point (r, 6+ 2n7).

(111.) It <s finite and continuous for all real finite values of r.

That the function is continuons follows from the fact that a slight
change in 6 only displaces through an infinitesimal amount the path
of the integration, and only alters tho integrand infinitesimally,
That it is finite follows from the way in which we havo closen the
path.

(iv.) Further, at infinity in the first sheet, te. (r =, | -6 | < =),
u = wy, and, in the other sheets, w = 0,

In speaking of the different sheets of tho Riemann’s surface,
wo only mean that at each complete revolntion on passing over
0 = — (7—0"), or 7+0, 3r+0, &c., we are pussing from one shect
to the other.

VOL. XXX.— N0. G6G. K
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To prove the proposition it is sufficient to note that the paths (A),
corresponding to points on the second, third, &c., sheets, may be de-
formed fo the rectilinear portions alone, as no pole of the integrand lies
in the portion of the a-plane enclosed. These portions lie wholly in
the shaded parts of the plane, and therefore, when r = @, vanish, On
the other hand, for points at infinity on the fivst sheet, u =, since,
in addition to the vectilinear portion, our path (A) gives a circuit
round the pole @« = 6. This is plain from Fig. 4.
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TFra. 4.-—Breadth of strip, = ; deformation of circuit round « =.0' ;

AR

j60-0"| <w; n=3.

(v.) If g, wy, 1, ...y, be the values of w at underlying points on the
Riemwin's surface—in other words, at the points (v, 0), (v, 0+2r), §e.—

w1yt = 2.

To prove this we have only to give the accompanying figure con-
taining the paths corresponding to wy, 1y, ..., %, for 2 =38. These
paths may be joined at b =% o, and we may introduce the recti-
lincar portions separated by 2um (i.e., 67) without altering the sum
w4+ ... +1,. The integral over the completed path, by Cauchy’s
theorem, is the snme as w, the only pole enclosed being at a = §'.

To snm np, we have fonnd a function v which has the following
properties :—

. (i) It 3s a solution of our differential equation
A o | O

-4 —— hl’u =0.
O oy*
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(ii.) It ds uuiform on the n-sheeted Riemann's swrface; or, in other
words, periodic of period 2nm in 6.

(iii.) It is finite and conlinuous for all real values of 7.

(iv.) It is equal to wu, at infinity on the first :heet, t.e., when
[0—6 ) <7 and r=o0,u=e"C; on the other sheets it is
zero at tufinity, i.e., when » < | 6—@ | < 3m, 3r < | 6—6"| < 5w, ...,
Crn-3)r< |0-6| < @u-1)m and r=00, u=0.

(v.) The n values at the corresponding potnts on the w sheets satisfy
the condition w,+ s+ ... +u, = wu,

Calculation of the Value of u for n = 2.

It would be possible to calculate the value of » for a point on any
one of the sheets and for any value of n. However, the chief interest
of the problem lies in the case n = 2.

Consider any value of ¢, and suppose that we wish to find the values
of » at underlying points on the Riemann’s smface. We thus allow
0 to move from — (7—0') to (3= +6). On the first sheet

—(r—h) <8 < (r40);
on the second (r406) < 0 < (3r+6).
liet the values of v at corresponding points be denoted by u, and «,.
Then oy = 1, ‘

Also, u,'is easily evaluated. We replace the two curved portions
of the path (A) by the rectilinear parts, and these in wurn by the
lines a = 0+ and 6 4 3, taken in opposite directions. Thus

1 1

o
M, = —— e-iu'coshh ( o . -
2 4 e 1 —dlir-e=ib-m) ] — Al -0 ity

— _] ‘[‘n e-iu'msh ( 1 . —— 1 ) i’lb

) idb

4r 1 et Groesibl T _;;é;li(i»u':"i.j']

-®

=_];_I” e-ixrcnshh__ 1

4 c'();‘;_((i' —0—10)
— 1___ 1 4 r’ —ixrcoshb COS][ %b
B cos 3 (¢ =6 AR ¢ vosh b+ cos (0—6')
K 2

b ; (4)
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therefore
LI cosd (6-6) i g fereosh b+cos (0-07)) __E‘LS}_I_%L_, db
T 0 cos b+cos (6 —4")

= X,* say;

therefore

* .-
%_}_( - _ % cos 'é‘ (0—9’) e-?i.s'cos'g(e-e’)J PR LI LIS N éb db
r ™ 0

=~ " cos y (9= orrreien [T
. Qikr

thercfore
«/‘.J 08 -9

92§= _1 it _Q [I 2arcos (0 s)e_m d)l} ;

ar ‘\/73' ar [ '
thercfore

1 . [VEeosie-n) B}
X == — i obir j e~™d\+ X,
™ 0

where X, is the value of X for » = 0.

This is easily found to be 1, z.e.
y 2 )

Yie [ din 0 .
€ J e ™ dA, or R, [ e~ A,
1

AT Ve
lir -7 -
Henco Uy = Uy = e~™ dX\
2 0 4/ Y
m -x
Yir +T
n "
and = - e ™ dX
1 0 / H
. AT m
where T = v/2xr cos & (—0).

1))

(6)

O

Tt is to be noticed that the value », is that at the point (v, 8+ 2x)
in the recond sheet, since #, is found for the point (7, §). Reducing
this to the current coordinates, we have on the second sheet, at (r, 8),

HES T
(.." + i
=, - “ e~ d\,

e

the same form as for # at the point (v, 8) on the first sheet.

* Cf. Math. cAnn., B xuvin, p. 368,
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Thus we have found that
g lareos (0=¥)«in) [T
v [

where T = +/2kr cos 1 (6—6"),

e-ix" d)\, (8)

U =

-®

is a finite and continuous solution of the equation
O , Ou
— 4+ —+u=0
Oz Oy’ ’
which is periodic tn 6 and of period 4w; and that at r =w, when
| 0—6" | < m, it lakes the form € -7 while, when
< |0-6| < 3,
- 1t 5 zero.

Since our solutions are reduced to the same form and are of
period 4m, we are able to remove the condition that 6 lies between
—(m—@) and (37 +6), and take the more convenient range from — 2=
to +2r. In considering the value at infinity of the function we
shall still need to note in whiclt sheet of the surface the point lies ;
in other words, whether, for the 1‘e<jui1'ed values of 6 and 0,
cos 4 (§—6") is positive or negative.

This is the solution found by another method by Sommerfeld, in
his paper on * Diffraction.” '

3. Application to the Theory of Sound.—The Problem of the Diffraction
of Plane Waves of Svund incident on a Thin Semi-infinite Rigid
Plane bounded by a Straight Edge.

Taking ¢ for the velocity potential of the medium in which the
velocity of sound is ¥V, we know that it satisfies the equation

e
90 = prvy, 9
3 P 9
To solve this in the case of periodic motion we may assume

¢ = real part of (u.e¥*M*), (10)

and we find for » the equation
Viu+ & =0,
2 4r
72

Thus our equation for two-dimensional motion takes the form of that

where
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of last section. The solution found is applicable to the case in which
. we have plane waves of sound coming from the dircction § = ¢, and
incident on the plane, which we take as § = 0 (0<r<®).

This problem is fully discussed in Sommerfeld’s paper.* The
waves there are supposcd to be electro-magnetic or optical. The
solution is obtained by addingt the multiform solutions of period 4w

for waves from the directions (§) and (—6°); <.e.,

(0 /2o - .
7= ¢t @v) (eixrcos ©-) A2ercos} (o ’)c'b" d’\+e;‘,.c,,,(“y)f
v

Mcung(nb’) -
e~ ™ d/\),

1)

-® -2

where the physicnl space is taken as given by
0<6<2m

and within ot 4 satisfies all the conditions.

Sommerfeld finds approximations for the results, when » is great.
He proves that the space has to be considered in five scctions:
namely,

(i) That from 6§ =0 to a parabola with the line (v—@') as axis,
the pole for focus, and extremely small pavameter ;
(ii.) The area enclosed by this pavabola;
(iii.) The aren between this parabola and a stmilar one at v +467;
(iv.) The arena cnclosed by this curve ; and, lastly,
(v.) That between this curve and ¢ = 2.

Fie. 5.

® Math. Ann., Bd. xuvir., pp. 368, 369.
1+ In the sound problem we consider only the case in which the two solutions

are added. In the optical therc is also a physical interpretation of the results
obtained by subtraction.
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He finds, when.'r is very great, that in these divisions 4, B, C the

‘following approximations hold :

(4) ¢=cos2n(—;—cos(0—0’)+ )+cos2n(1cos(6+0’)+ )

A
41‘{"“[2" ’;“%) ' ]\/g( +0’)+cos-§:%0-0')

)}

(12)
(B)qS:cosZn(%coa(G )+ — )
_til; 8[2? %_%)_F%]\/r_(cos%(l&i-@’)+cos§(10—-0'))}'
(3)
©) ¢=- 4 {cos [2” ) _] \/ (cos I (€+0) + cos%(lﬂ—a')) } )

In §, and S, we have to vefer to the integrals.

These results throw light on the physical problem and illustrate
the fact that the continued presence of the incident gives rise to

reflected and diffracted waves.®

Tt is interesting to note that there is in the solution, as might be
expected, infinite velocity at the sharp edge » = 0. This is evident
from the value of « in the integral form, and the velocity components

will be found to contain 1 .
Vr

4. Multiform Solution of the Equation Vu+ &’y = 0, with an Infinity

at a Point at a Finite Distance from the Origin.

In the last two sections we have treated of a finite multiform solu-
tion of this equation in two dimensions which may be applied to the
problem of plane waves incident on a thin rigid semi-infinite plane
bounded by a straight edge. From the physical standpoint we ought
now to examine the case of a source of sound, or a vibratory source
of any kind, in two dimensions with the same obstacle. We should
have the same differential equation to solve, and our solution would
need to be of period 47 in 6, and finite and continuous for finite
values of 7, except at the point where the source is situated, where it

* Soe the remarks on these results, Matk. Ann., Bd. xLviL., pp. 369, 370.

(14)
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must be infinite as log #, when 2 =0. However, from the pure
mathematical point of view, the three-dimensional case is much the
simpler. No introduction of Bessel’s Functions of the Second Kind
is necessary. We shall examine this now, and return to the two-
dimensional later.

To speak analytically, we desire a solution of the equation
v'u+«®u = 0, with the following properties :—

(i) In our n-fold Riemann's space with the axis of z as branch-line,
and the plane 0 =0 as branch-membrane, it s to be uniform; in other
words, 1t 1s to be periodic in @ and of period 2nw.

-ixR

(ii.) It s to be infinite as G‘E" when R =0, at the point (v, 0, %)
in the first example, where R stands for the distance from (v, ¢, £') to the
neighbouring point.

(iii.) It ©s to be finite and continuous for all real finite values of r in
all the examples, except at the above-mentioned point.
(iv.) It is to be zero at infinity.

The method of obtaining such & solution is perfectly analogous to
that employed in §2, and in Sommerfeld’s paper on * Potential.”
Starting from the solution

ik Vri 4134 (2-2')1-2r1 con (0-6')

e
Uy = , 15
RV (z—2')2— 27" cos (6—6") (15)
we proceed to the integral
- % M/2r77 [Co8h ;- €08 (2 913 ia
A—l— [ : ’ (Y 2 (4 du (16)
27 | &/2rr'[cosh a;—cos (a—0)] €"—¢

taken round a circuit in the a-plane enclosing a = ¢, and no other
singularity, or branch-point, of the integrand.

We have now to deal with branch-points, because the radical sign
has brought a multiform function of u into our integrand; further,
1" 40?4 (2—2)?

2rr’ )

With the above restrictions, this integral, by Cauchy's Theorem, is
the same as w,.

We can deform the path of integration in the a-plane without
affecting the value of the integral, provided that we do not deform it
over any of the singular points or branch-points of the function in-
tegrated; in this condition is contained the restriction from deform-

we have written cosh a, for
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ing our path to points where the function would be infinite. Also,
‘since we are dealing with a multiform function of the complex
variable a, we must fix the value to be assigned to the function—in
other words, the sign of the root—at a particular point of the path,
and see that the values we assign to it at all points of the deformed
path are those belonging to the “branch” of the function we are
following. If we make sure of these things, we may treat the
integrand as single-valued; and apply to it Cauchy’'s Theorem and its
extensions. This requires only the definiteness and continuity of the
function to be integrated.
Since we are dealirig primarily with the ordinary space, we may
suppose | 6—6 | < w, which means that, in the first instance, we

think of 6 as varying from — (7 —6) to (v+¢), a full range of 2.
The singularities of the integrand are given by
a=2mr+ 0, a=2mr+0xiq
(m, any integer), and the latter are branch-points.

The simplest method of determining the continuity of the values

of v/2r[cosh a,—cos (a—0)], which we shall denote by R, is ob-
tained from the consideration of the conformal representation of the
a-plane on the R-plane.

Starting with

R=+ ~/2m"(cosh a,+coshow )=+, for a =0~r+iw,

we proceed through

R = + +/21’ (cosh o, +cosh b), for a = 6—n+1b,
R=+ Vo (eomatl), for a = 06—,
R=+~/m——l)—, for a =8,

R = + v/2r1’ (cosh a, —cosh b), for a =0+1b (b<a,);

and, if we took a = 6+ia,, we should find R = 0.*

However, since a = 6+4a, is a branch-point, we suppose that a
small circuit is described from the point a = 8+7b (b<aq,) back to
the neighbouring point. This alters the branch of the function, and
gives us there

R = — /27’ (cosh a;—cosh b).

* Cf. Sommerfeld, Math. Ann., Bd. xLvi1,, p. 352.
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Then, proceeding through the set of values a =6, 6+=, 0+ +1b,
0+ m+1{c0, we find that in the R-plane the point describes the nega-
tive part of the axisof real quantities. Thus the path (p, q,7, s, £, , v)
in the a-plane of Fig. 6 corresponds to the real axis in the R-plane.
We should find & similar correspondence from the image of this
path in the real axis of the a-plane, and the position taken up by
either when instead of 6 we have §+£2mn. Thus we see that on
crossing directly, ¢.e., without the loop, from omne side to the other of
any part of these lines in the a-plane, we cross from one side to the
other of the real axis of the R-plane, and that without & jump; in
other words, we pass from & value of B with an infinitesimal positive
or negative imaginary pert to one with an infinitesimal negative or
positive imaginary pavt.

To return to the integral (16),
1 I e-B  gia

o — T T la.
“Zor | T e
We deform our path as in Fig. 6, which must now be explained.

It has already been shown that the path (p, q, 7, s, ¢, , v), and its
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Fra, 6.—Breadth of strip, 2 ; deformation of circuit round a = 6';
j0—0| <w; n=1. :
In the dotted portions of the path the imaginary part of R is negative.
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image in the real axis of a, correspond to the real axis of R; also,
that as we pass, in the a-plane, from one side to the other of any
part of these broken lines, we pass, in the E-plane, flom one side to
the other of the axis of real quantities.

Now, from the term e*** in our integrand, we must, if we wish to
deform the a-path to a=a i, ensure that the value of B there
has a negative imaginary part.

Starting with the value of R, with positive imaginary part, at a
point in the upper part of the figure, our elementary circuit round
a =106 may be deformed into that composed of the thickly-drawn
and dotted lines. The dotted parts denote the portions of the path
where the imaginary part of It is negative, and we have made sure
that it is negative, by starting with a value of R with positive
imaginary part, and remembering that a single crossing of the real
axis of R causes the sign of the imaginary part to change. The only
places where infinities could arise lie in these portions; so the
deformation is permissible.

Making the restriction that the rectilinear portions, those parallel
to the imaginary axis, are distant 27 from one another, these
portions of our path may be neglected owing to the periodicity of the
integrand in a by 2=, and we are left with the identical transforma-
tion of u, to the integral

l—i-e e —da,

27 ) L et—e"

taken over the two curved portions in the a-plane, which we again
denote by the path (A).

So far we have had no reason to think of (6 ~6") as not contained
in |0-0"| <.

Proceed now to the Multiform Solution.

Consider the function defined by

__' 1 e~ R elon

u= 2—1:.’;{ R eu‘ulu_eia'[n da’ (17)

the integral being taken over the path (A), couespondmg to the
current coordinate 6.

This function satisfies the differential equation, since every element
of the integral is a solution, and we have excluded infinities. Also
the same kind of reasoning that was used in § 2 shows that in the
Riemann’s space with which we are dealing it is uniform; or, in
other words, that it is periodic in 6, and of period 2nr. It also shows
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that when | 6—~8'| < m, and (7, 8, 2) approaches (v, &', 2), the func-

. ~izR
tion takes the value (%) ; that at the underlying points there
R=20

is no pole, and that at infinity, in all the *examples,” the function
vanishes. Tor all these points, and for the general proposition that

U+ g+ ... F U, = Uy,

it is sufficient simply to refer to Fig. 7, drawn for n = 8.
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Fra. 7.—Breadth of strip, 2w ; deformation of path round a = ¢';
|6—¢| <m; n=3.
In the dotted portions of the path the imaginary part of B is negative.

To sum up, the function » defined by (17), taken over the proper
path (A), corresponding to the @ involved, has the following
properties :—

C (1) It satisfies the equation Viu+«ku = 0.

(it) It is uniform in the n-fold Riemann’s space considered; in other
words, <t 1s periodic i 0 and of period 2nm.

(iii.) Por all finite values of (v, 0, 2) it is finite and continuous, unless
wn the point (v, 0, 2), where it possesses a simple pole.

(iv.) It vanishes at infinity in all the examples of the Riemann’s space.

(v.) The n values at corresponding points satisfy the condition

e F 0y, = Uy
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Evaluation of w for n = 2.

There would be no difficulty in evaluating u for any value of .
We should need to break up the range into % parts

|0~6| <=, =< |0-6] < 3, &,

and we should obtain integrals for the function in each of these
divisions.
It is important for the physical application to find these values

for n =2.
We have w4 Uy = g

Also, as before, we are able to deform the path of u, into the two
lines 41, 0+ 3, and we find

1 j"’ H~i!~/‘-’v'-’(cosh ay +€osh b) 1 ib 18
Uy == ,
! 47 )« /274 (cosh a, +cosh b) €08 35 (0—06+1b) (8)
1.6,
1 g~ix 21 (cosh o, + cosh b) cosh 1 b
U= -—-C0Sy 0—6 [
’ : ) v/ 217’ (cosh a, +cosh b) cos (0—6") +coshb

(19)

This is the value of « at §+2r when | §—6 | < =, so that, in the
second example, we have, for » at (9),

1 g i/ oo cosh 3b

U = cos A Ca ) ,

2) i’ (cosh «, +cosh b) cos (8—t") +coshd
while in the first (20)

1 [ e—l:Jm cosh b
=u,——cosi(6—8)| — 2

* P H ) 27 (cosh ot cosh b) cos (6—6) +coshbd

(21)

At first it would appear that there is a discontinuity here at the
pussage from one space to the other. The following consideration
shows that this is not so.

At 0 = n+6 —e (e a small positive quantity)

[ —u\/.u (coshu .+c03h b) COSh 2b
V2" (cosh a, + cosh b) —cos e + cosh b

U = Uy~ — Slll z

(22)
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At 0= nr+60+¢,

1 . € r". é’_" 2rs” (cosh a, +c0sh;b) COSh lb

U = —S81

" v/2rr’ (cosh a;+ cosh b) —cose+cosh b
There must be a discontinuity unless

L] -|.J’::'(cosln ay +Cosh b)
Ltuo( 1 sm—-—f cosh b db)
™ Vorr (cosh a, +cosh b) —cos e+coshd

db.  (23)

ot 2r (cosha, +1)

V% (cosh a, +1)

Fy
2

* For the following discussion of this integral I am indebted to Prof. Gibson,
of the Technical Colleue, Glasgow.
By the substitution used in the text we reduce the expression to

0 dz
) %
Jo ¢ (@) o
where ‘P (x) - e- i< «/-lrr'lcush‘ln, rx si;\m .
V4 (cosh }a, +2¢ in? Je)
Now choose m 80 that tan-1m 2 fr—e,.

Since the integral is convergent, we can choose , n (1 <n) so large thut
j <p(.z) — <s7

If the previous value of s is not large euough to secure this, lot it be iucrensed
till it does satlsfy this condition.
Then tan-!m < }m—¢,, would hold a fortiori. Hence we have

" dr
Jye@ -+1"L"”Zfﬁ*j 0 574
= o Ot 1w+ | [o (1)— o] ;25 +[ o (o) .

But we may choose € 5o that | ¢ (2)—¢ (0) | < e This involves that 2*sin® Je be
very small. Then

n 7
J $0) Tt e T —a o (O +et e Gra)
0 .
Il I]l
B e
ut j¢()~+l L )2_“
is less than any assignable quantity ; therefore we have found that

j ¢ (2) ﬁ‘——=iw¢(0

It is obvious that m may be taken at once large enough to satisfy all the conditions
required for s and n.
Finally, e may be chosen such that | ¢ (#)-¢ (0) | < €, 0 < z < m.

V217 (Cost @, ¥ s b) cosh 30

db ig clearly

Thus the limit, o of sin _"cj £

0
dm ¢ (V).

21y (cosh a,+(os]| 0) ~cos e +cosh b
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As a rough proof of this identity, which the physical interpretation
of the problem rendevs necessavy, we might adduce the following :—
Put sinh$b = ¢in e, which is possible, as we want the limit of

“the integral when ¢ = 0, not the value when ¢ = 0.

We then find

e [® o V247 (voslt o, + Cush ) (05]] ,b
blll
\/Zn ((,Ubll a, + cosh b) —cos e+ cosh b

_ = e—ixx/lr:’(cush"u,h:"um'i-) dx
- T EERRT AT T = g s
o V' (cosl? La, +atsin? Le) 2'+1

If now we let 2 approach infinity in such a way that always, in
the limit, 2* sin® }e may be ncglected, this gives in the limit

E‘ s e-u 200 (cosh gy + cosh v U)\‘l 1 7,
sin - db
o V21" (cosh a; +cosh b) —cos e +cos (0—6)

-n«/-u (Lush u.fl)

= e (24)

Therefore we find that, at the division* between the spaces, the
two values of » take the same value $u,. We should find a corre-
sponding coincidence at the branch-line in §2, and in those which
follow.

Our solution, thcﬁ, is one which, in the region containcd in the
two complete revolutions of 6, from —(v—8') to (3 +6), has but
one pole, and that at (+', 6,2"). rom the periodicity of w by 4m, we
may now remove this restriction on the range of 6, and may tuke
it from —2r to +27, provided we ave cureful to use the proper
values to be assigned to = at the different points.

It is easy to sce that our function has to be counsidered in thrce
divisions :

—2r<l<—(r—-9),

—(r—0) <0< (7 +6),
(r+6)<6<2nm.

* This is the branch-membrane (Verzweigungsmembran).



144 M. H. S. Carslaw on some Multiform Solutions of [Nov. 10,

In the ﬁrst

1 o e-wm cosh 1
U == - —— COS 9 0 [ db
5 ( ) Vo ((.osh o "o, + cosh b) cosh b+cos(9 —6)
(25)
In the second
1 e““’-”— {c0sh a, + coshi 6) cosh 3b
=g 0—-6)| — s 0s b.
U =ty - 05 3 (§—6) l 27" (cosha, +cosh b) cosh b+ cos @=5"
(26)

In the thied it takes the same form as in the first.

5. dApplication to the Theory of Sound.—The Problem of a Sowrce of
Sound in an Infinite Medium containing a Fived Thin Rigid Sem:i-
tufinite Plane bounded by a Straight Tdge.

Using cylindrical coordinates, take the plane as given by § =0, its
edge by the axis of z, and the position of the source by the co-
ordinates (¢, ¢, 0).

Then onr physical problem quickly reduces to the solution of the
oquation

Viu+«Pu =0,

under the following conditions :—

(i) 0<O<2r; u s to be finite and continuous for finite wvolues
of (v, 2) except at the pont (o', 8, 0), where it s to take the form

~i<R

i when B = 0.
v

(ii.) It is to be zero at wnfinaty.

(i) — g— 1s to vanish at 0 = 0 and 0 = 2,
o]

T'o obtain this solution we have only to take into consideration the
two-fold Riemann’s space, with the axis of z as branch-line, and the
plane 6 = 0 as branch-membrane.

We put poles at (v, 8, 0) and (o, —06', 0), and take the physical spuce

as defined by
0 <8 <n,

Thus w=u)+un (—()’) &n)

sulisfies all the conditions of the problewe.,
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As remarked above, care has to be taken to choose the proper
values for « in this region. The complete revolution is divided into
three portions. From =0 to § = (x—8) both values are those
in the first space, namely, those given by w,, From 6= (v —§) to
(r+6), we take u, for u (6), and u, for u (—6). From 6 = (v +6)
to 27, both values are in the second space.

Hence our solution takes the following forms :—

e N2y [cosh o, - cuso - o))

A) u= : FE
(4) v'2r" [cosh a,—cos (§—6)]
1 -ix J.)P'(mnf..',?asn b COS][ b
——coq 0—¢ j P e
e ( ) \/Z’M (cosh a, +(osh b) cos O 9) + ~coshy b b
-ic q/.’;r [coshu w;(u 0)]
/27*) [cosh a,—cos (6+6)]
1 e"‘“/ Tﬁ'(&ﬂm&,’:.‘m cosh 1b
—-~cos 0+ 6 j - 20 db; (28
x ( ) Vo (cosh «, +cosh b) cos (64 6) + cosh B¢ ( h
, —ixa/ 207 (COali ay - CUS {6 - )]
(13) U = —'——:;.g_‘_‘;; ERIEN N
‘. /217" [cosh a,—cos (6—6) ]
1 N J’ c—-x‘x«/lr;‘(éu'sl(;,_f:('nlib)' COHh b
— ——cos 6—6 b
( ) V2’ (cosh a; ‘+eosh b) cos (6— f/)-i-coshb
1 e = dcaf2rr (u)s‘h—— (.uahb) COS]] I)
— —cos 0+6 [ : : i 2 29
5 ) x/&m (coslx u,—i—cosh b) cos (6+6) +ubh b b ( h
) 1 F—-u«’zu (030 ay +c0Sh b) (‘O‘,h 1y
C — —-cosi (6—0 I ——e 2 b
(0) = 2 ( ) o V27 (cosh a,+cosh b) cos (6—6') +cosh b
—u«/lu unah .%—TIO ’ N COS‘) %b

1- . |
S R - cosh3b___ 1. (30
- coss (0% )}' «/2:r (cosha, +cosh b) cos (6+6) ¥ cosh b (30)

It is easy to see that, at § = 0 and 0 = 2,
au

=0 0<r<w,

08
The only information we have at the outset from these integrals is
that at (w—@) the part of the disturbance due to the image is the
sume as if we had at (2= —6") a sonrce of half the strength. This is
deduced from our work above on the continuity of the two ex-
pressions. Similarly, that at (w+6) the effect of the disturbance

VOL. XXX.—No. 667. L
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due to the source at §" seems diminished to half, while we have the
addition of terms which, from the analogy with what happens in
the two-dimensional problem, we might suppose due to sources dis-
tributed along the edge of the obstacle. On this analogy the terms
in (C) will give the diffracted sound waves.

We can, however, find approximations to the values of our function
in the different regions of Fig. 8 as we move away from the origin

w-0
A(L,1)
B(@,2) 0=0
C(2,2)
w+6
Fie. 8.

and off to infinity. These approximations mark out for us, in some
degree, the circumstances of the motion.

Approzzimation to the Value of u at Infinity.

To obtain this approximation it is mnecessary to examine the
integral

cos 4 (0—6") r —

g™ /i (easlia,+comnb) cosh 3 b
o v/2m" (cosh a, +cosh b) cos (§—6) +coshd

Substitute sinh $b = x cos 3 (0—6),
and we obtain
hd e i A/4r/” (Coshi fa, +cos? | (8- ) 27] de
,{ o V47’ [cosh? Lo, +cos? L (—6)a"] @'+ 1

, L,y dz
[ ¢ @z

e Virer)istire cos*§ (6-7)z,

here = SR
Whs ¢ V(r+7) +2 4401 cos’ 1 (6~-6) 2P
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Now consider J ¢ (2) 2+1
m d m
=0 [ e-s0]5

Let us choose the infinity of m so that when », z are infinite
¢ (z) —¢ (0) may be taken less than any assignable quantity (this in-
volves rm* being negligible in comparison with ?+2°). Then we have

,.;55] $@) 2 =m0 0). (31)
The same result follows from the term
D h 1b
cos  (6—¢ j ° Coshgd _ db.
t( ) Vo' (LOSh o.,+cosh b) cos (8+6')+cosh b

Therefore we see that, when we proceed to a great distance from the
pole, the disturbance in (A) is the same as that due to a source at
(v, 6, 0), another at (+', —¢, 0), and a sink at the pole. In (B) we
have the remarkable fact that to our approximation the two latter
portions of our expression for » disappear; since cos (6+6) is
negative, and our integral

-1t A/T(cush ay +cosh d)

h b
940 e e COS ib
cos § (8+6) .[ Vo (cosh a, +cosh b) cos (0+0) +°°Sh b

becomes, on substituting sinh b = — 2 cos 3 (6+6),

—J v@ 5 ‘+1

Thus we are left with the part of the disturbance due to the original
source alone. In (C) we trace our disturbance to a source of the
same strength at the pole.

6. The Corresponding Problem in Two Dimensions.—Multiform Solutions

aﬁ + a_u, +&*u = 0, with Infinity.
3 T 3y

Although the results in the two-dimensional case are not obtained
in a workable form owing to the necessity for introducing Bessel’s
Functions into the integrals, it is interesting to examine the question
from the pure mathematical point of view. We shall obtain results
which contain the solution of the problem when we have a source of

L2

of the Iiquation
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sound in two dimensions in space bounded by the semi-infinite plane
with a straight edge.
We propose, then, to discuss the solution of the equation
Fu | O

--—+»-—+ e =0,
ot O o

which is at (2, %) infinite as log (R), when R = 0.

Followmg the method uhen.dy illustrated, we proceed from the
simplest uniform solution of our equation with an infinity as re-
quired.

For this case, 7.e., in the physical interpretation, when we have a
symmetrical disturbauce diverging from the pole in an infinite space,
our solution is given by Rayleigh, Theory of Sound, Vol. 11, § 341,
where that problem is fully discussed. The solution may be written
in cither of the tiwo following ways 1—

) S ne 2, 4,4 2,2
Ty(er) = (,+1og?_;1)(1_x; AU &c) "S5 4,5 +&e.,
: . (32)

where y = Enler's constant, and
S.,.=1 1+1+ +—1—,
1 m
. N o— us § —ier ].g 12'33 .

or o (r) = (an—r) ¢ (l_l.Sim-+1.2(8c"m-)"— ) (33)

Referring to Gray and Mathews’ Treatise on Bessel's Functions, p. 22,
(50), we find the proof that this value of ¥, may be written as
(7+|0w —2) Jo+4 (—-—- - _4 +.. ) (34)
and we sec that this is velated to the solntion nsed by J. J. Thomsou -
in his “ Receut Researches ” (the sign of C being corrected), and by
Sommerfeld in Math, Ann., Bd. xuvi., p. 327, by the equation

Y, (¥) = = U, (x) = %’.ro (@) = K, (). (35)
. Suppose the pole at (+', #), and we must change our solution to

Y, (xI%), where e
B=Vr+7"22" cos (0—1).
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Introduce, as before, the complex variable a, and wée have the
identical transformation

Y, (xB) = _1_ [ ¥, (R 2 da - (36)

[B* =r+1"—2" cos (a—0), putti‘ng o for 8 above ],

the integral being taken round a small circuit in the a-plane enclosing
a = ¢, and no other singularity or branch-point of the integrand.

Before discussing the possible deformations of our path we must
examine these critical points.

From the equation

,,(KR) = (y+10gyJ§) (1f'<2_13f1 " _‘.12'1_&0)

2 2%, 42
e i
+"22 s 51— g S+ e,
it i evident that the branch-points are given by those of I'=0,
7
t.e, by u = 0 +2mm 1, where cosh a, = 1—2—+—7——
. 2

In considering the behaviour of Y, («I¥) at infinity we take the
second of the forms given. It follows that a condition necessary for
a possible deformation of the path to a =a £1b (b =0 ) is that
the imaginary part of R’ there be negative. Hence our work is
absolutely analogous to that in the former section. We are able to
deform the path as given in Fig. 6, and to take as our multiform
solution -

| n

1
° = T j Yo (1)~ AT da 37
over the path (A) corresponding to the current coordinate (6).
By means of a discussion similar to that on pp. 137-140, we shonld

find that this function has the following properties :—

(i.) 1t satisfies the differential equation

g“ + g;u 4+’ =0,

(ii.) It is uniform on our n-sheeted Riemann's surface ; in other words,
it is periodic tn 8, and of period 2u.
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(iii.) It is finite und continnons for all finite values of (, y), except
i the point (2, y'), where it has a simple pole.

(iv.) It vanishes at infinity.

(v.) The values at the n corresponding points of the Riemann's
surface satisfy the equation

wtuyt ..+, = Y, (xIR),
wher: R=v22 ¥ 221 cos (8=F').

Just as before, we could obtain integrals giving the values of «
for any assigned integer .

For the application to the physical problem of a line source
piradlel bo aosemi-infinite rigid thin plane, we reqnive the valne for
n =2, so that the period of the function may be 4.

We obtain the following expressions for 2 on the fivst and second
gheets vespectively :—

=Y, [K V420 cos (0=6')]

cosh 30
— 3 ) g7 Q
5 081 (80— 6)[ Y, [x\/Zn (cosh a, +cosh b)_] cos (=) 4 cosh db, (38)
and

A --——- L(N =) J'o Yo[K\/Q;;':.(-(;;RI'l(xl—i-{'(\xll h)] )Q(ﬁ(“;];-l-bco Wi db. (39)

7. Applicaiion to the Theory of Sonnd.—The Problem in Two Dimen-
sloms of a Sowrce ontside a Semi-infinile Thin Nigid Plane bonunded
by .« Straight Iidye.

Paking the physical space as defined by 0<8<«< 2, the source ns
at (¥, "), and theobstacle as 8§ = 0, 0<r <o, we obtain the requirved
solntion from the function found in the last section.

This solution is w=n(0)+u(-0),
and in evnluating it we have to break up the avea into the thiee
portions
0<b<n—"H, (A)
r—0 < <7+, (B)

m4+0 <0< 2m )
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In these we have the following results:—

(A) v = YO(KR)—%'-OOB‘.}(O— J Yo[«v/ 2’ (cosh a, + cosh 8)] _°§h_ﬂ’_____

8 (60— 8)+coshb

+ X [m/rT‘d_- Y2201 cos (b + €)]

——cos}(6+6) j Yo[xv/2r1” (cosh a, + cosh 6)] - cosh 36 db,  (40)

cos (0+ 0’) +cosh &

(B) u = ¥, (xB)— 1 cos} (9-0) r To[xv/ 3 cosha, + cosh )] —h ¥ 4
ks

o cos (§—4') +cosh b
—Lcoss(0+) [ Yo[kv/3 (cosh ey +ooshd)] .- 0___ g (ay)
T 0 cos (6 +8)+coshd
{C) n = the last two expressions of (B). . (42)

Hence, from analogy with what we have found above, we may say
that in (A) there exist incident, reflected, and diffracted waves; in
(B) incident and diffracted; in (C) diffracted, only ; and that they
are represented by the vespective pavts of the above expressions.

8. Multiform Solution of the Partial Differential Equation of the Theory
of the Conduction of Heat in a Body of Uniform Conductivity.—
Tiwo-Dimensional Case.

So far we have been cons1de11ng the equation which meets us in
oscﬂlatoty motion, be it in the vibrations of sound, light, or electricity.
It is & much simpler problem, though perhaps not so interesting,
to examine the corresponding solutions of the equation which forms
the basis of the mathematical theory of the conduction of heat, namely,

Ou

= = V.

ot

As in the potential theory use has been made of the particular
—ier
ireos(@-#) g0 here we

at of sound of £ and e

start from the distribution .of temperature in an infinite solid of
uniform conductivity, due to a unit quantity of heat, placed at the
time ¢ = 0 at the point (¢, v/, ) and left to diffuse.

The temperature at (z, 4, z) at time ¢ is given by

1 S(r-T Ry -y (=)
= = e lr-T, T+ y') (=2 )) 4t 43
2% (wxt)t (43)
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This synthetical method of dealing with the subject has been used
by Kelvin,* Hobson,t Bryan,} and Sommerfeld.§

In this section, and in those which follow, I propose to find solu-
tions suitable for the application of this method to cases where the
ordinary image theory fails; that is, to those where we must
imagine not the ordinary, but a Riemann’s, space to be that in
which we desire a solution of the equation. :

‘We begin with the two-dimensional problem, and start from the
solution

up = % e~ -2t (y=y " liet — % e .p-ﬂw=-2rr'cos(a-w)]/¢.i, (44)

which differs by a constant multiplier from the temperature due to a
unit source of heat. _
Introduce the complex variable a, and we have the identical
transformation
+7-2r 08 (a~0)]ixt gl

4y = 2i f e - = da, (45)

© t gt —e'

the integral being taken over a path in the a-plane, enclosing a = ¢,
and no other singularity of the integrand.

On these conditions
1 fa

uy = e_(,.s +17) /4t j 8"""-'!‘ €os (a=6) ___e__ - da. (46)

2wt e'*—e

-

The only ways in which singularities can occur are from the poles
a == 2mar + @', and the infinities of ¢”/*¢c*(=-",  On putting a = a-+1b,

since . .
cos (a—0) = cos (a—06) cosh b—: sin (a—#0) sinh b,

we see that, when b = & w0, cos (a — §) must be negative, or an infinite
value will be given to the integrand.

Hence, in deforming the path to b = co, we must take care to
have a in such a region that cos (a—#) be negative.

The shaded portions of Fig. 9 represent such parts of the a-plane,
and, taking | §—6 | < =, the circuit round a = 6" may be deformed

* Math. and Physical Papers, Vol. m., rxxi., ‘Compendinm of the Fourier
Mathematics.”
H‘l‘ P’:;oc. Lond. Math. Soc., Vol. xix., ¢‘ Synthetic Solutions in the Theory of

eat.

{ Prec. Lond. Math, Soc., Vol. x1x., *“ An Application of the Method of Images
to the Theory of Heat.”’ .

§ ‘Math. Ann., Bd. XLv., ‘“ Zur analytischen Theorie der Wirme-leitung.”’
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into that there given;* the new path being composed of two curved
" parts extending to infinity and two rectilinear parts.

These rectilinear parts—dotted in the figure—are supposed drawn
at distance 27 from one another, and thervefore the portions of the
integral contributed by these, taken in opposite directions, disappear
owing to the periodicity of the integrand. We are left with the
integral over the two curved portions, which we, as before, denote by
the integral over the path (A). It isto benoted that, as the function

N

F1o. 9.—Breadth of strip, = ; deformation of circuit round o = ¢';
|0—0"| <m; n=1.

In the shaded portions cos (a— 6) has a negative real part.

to be integrated is uniform and has no branch-points, the question
-of the deformation of the path is much simpler here than in the
former problems.

We now obtain the Multiform Solution.

Cousider the integral

1 e-(r’n"‘)[lxt e.‘,/,,

= o da, (47).

eium — e:’e’(n

W= "’ err’[?d €08 (a=9)

nw t

taken over the path (A), corresponding to the value of the current
-coordinate ¢ ; we have given up the restriction

| 0—€¢| <.

# It is not necessary that ¢’ lie on the unshaded portion. It mnust lie, in the
first instance, between the two lines a = 4.
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This function w s a solution of our differential equation, as every
element of the integral is a solution, and infinite values are excluded
from the path. '

It 7s also periodic in 8 and of period 2ux; or, in other words, on
the n-sheeted Riemann’s surface, with the line from the origin to
infinity in the direction (w+6') as branch-section, the function is
uniform.

The proof of this is exactly similar to that of the former sections.
Changing the value of 6 by 2ur simply moves the path through a
distance 2nw. The value of the integrand at each point of the new
path is the same as the value at the corresponding point of the old,
because-of its periodicity by 2nr in a. Hence the above result.

Wien t = 0, the value of u vanishes, unless at the point (v, #'), where
it takes the form

Lt:ezg (,e;“'_’ ""'”'Z“”“’fl”fff) ,

L

e///////; > %/ oiEr | /é 22 ////5
%{ o 3 +27 +4T i%n
i D N o
' = =
F1¢. 10.—Breadth of strip, 7 ; deformation of circuit round a = ¢';
| 6—6| < m; n=23.

To prove this it is simplest to consider Fig. 10, where we have
taken n =3, and have drawn the curves for a point 8 on the first
sheet, .e., when | §—8'| < m, and for the underlying points on the
other two sheets, 4., for the points 6+2m, §4+4w. For points
on the second and third sheets our path (A) can be replaced by



- 1898.] certain Partial Differential Equations. 155

the rectilinear path over the two  lines distant by 2= (dotted in
figure); and these, being completely in the shaded portion, vanish
when ¢ = 0, since every element of the integrand then vanishes. For
points on the first sheet we have, in addition to the straight lines, to
take the circuit round the pole a = #’; and hence in the first sheet

e [ 494421 cos{8-¢')]/4xt

t

U= Uy =

, when ¢ =0. (48)

This vanishes, unless at the point (+', ).

Hence we see that, for finite values of r, the integral is zero, for
t = 0, unless at the point (v, &), when it takes the form

~(Rfict)
Lt,. (" )
R=0 t

The term e~*"#*) causes the integral to vanish at infinity on all the
sheets. ) .

Finally, we have the relation between the values of u at underlying
points on the surface at any time. This is proved, just as before,
from Fig. 10, and is expressed by the equation

Wy F gt .. U, = U,

To sum up, the function # just found has the following properties :—
(i.) It is a solution of the equation
ou_ (@’_u @E)
o~ “\ow T o)
(ii.) It is uniform on the n-sheeted Riemann's surface considered ; in
other words, it is of period 2nm in 6.

(iii.) On the first sheet of the suiface, i.e., when | 0—0"| < m, u=1,,
when t =0; on the other sheets uw=0. At the point (+', 8'), u takes

the form
f (e-(zzm.c))
t =0
=0

(iv.) It vanishes at tnfinity on all the sheets.

(v.) The values at the corvesponding points on the different sheels

satisfy the equation
f‘/ ? . Uyt 1wyt .ot = U,
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Evaluation of u for n = 2.
The. case to which we desire to apply our multiform solution is
that in which » =2
= (1341732 cos (9—6/) ) JAat
As before, g = uy = & tc h
Also we can deform the path (A), for u, into the two lines a =+,
a = §+3, taken in opposite directions, and we obtain

1

® 1
) t, —_ 6—(r' +17%) [4xt e (rr*/2«t) cosh b
4t e

cos 3 (—6 —<b) ab- (49)

Let us write O and ¢ for

_,]; e-(o"+u”)llxt and _71/ .
it 2t
@© 1
T = 19—¢ —ceoms____COShgb
hen u, = 0 cos 2 ( o)L Tt Yani s
and
LY )

—cosi(d—0 g-eleoshbecos(o-e)]  _
Uy T 2 ( )

cosh 3b
[]

cos (6—) +aosh 5%

= X, say;
therefore _
E—)g =— 7%_ cos 3 (0—9) e""“““""?J e %41 cogh 1h db,

- 0

. ge., %ig =—3 \/n-_:}_t cos%(0_0’)e-(rr'[zxt)cos"l(v-e’);
0x 1 0 (Vrieslo-o)
ﬂlel‘efore -67' = — -:/; E’. s’o . e dk)
1 [T ..
therefore X=—— j' eMd\+ X,
V),

where

T= J% cos § (6-0),

and X, is the value of X when r = 0.

It is easy to show that X, =

Qe .-t
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(T
Hence u; = u, (-ﬁ:—-—};r! e"‘-'d)\)
0
1 -T a
= T/Tr“°[ e dA; . (50)
and Uy = Uy— Uy
R .
= Jn u,oI e > dA, (51)

Remembering that this expression for u, is that for u at the point
(r, 0+2r), when | 6—6'| < =, we obtain for « on the second sheet
at the point (», ) the same form

1 T a
:/—;uo‘. 8" ¥ dA

as for % on the first sheet.

"We have thus found a function

1 -+ -2cos(e-o)) et «/rTlx_tcns'i(o-V)
w=—
T t

e dA, (52)

with the following properties :—
(i.) It 7s a solution of the equation
2, 3
@ﬂ = K (@_’M + Q’_i) .
ot Oa' Oy
(ii.) On the Riemann's surface considered it is uniformn ; or, in other
words, 1t ¢s pertodic in 6, and of period 4.

(iii.) On this surface it has only the one pole, and that at the point
(+', 6, at which point w takes the value 1y while at all other points
vanishes for t = 0.

(iv.) When » = w, w vanishes."

Since the function is periodic and of period 4w, there is no reason
why we should retain the range

—(r—0) <9 < (3r+6).

We may take any more suitable one with 4= as its magnitude, and

the simplest is
—2r < 6 < 2n.
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In this region our function » would have but the oune pole, and
would satisfy the conditions above, care being taken to discriminate
between the sheets of the surface; in other words, to choose the
proper value of 4 for the point considered.

9. Application to the Theory of the Oonduction of Heat.—1'he Problem
of an Instantaneous Line Souwrce in an Infinite Body of Uniform
Conductizity « in which there is a Semi-infinite Plane bounded by
a Straight Edge: . the Plane either (i.) kept always at Zero
Temperature, or (i1.) coated tn such a way that no Transference of
Heat is possible across <t.

Taking a plane normal to the line as the plane z= 0, our problem
is one in two dimensions. With the origin at the edge, the given
plane as = 0, and the line source passing through (v, §), we are
able at once to apply the ‘solution of the last section. We consider
the physical space as defined by 0<6<2z, and we introduce the
imaginary space —2r<6<0.

Then i=u(0)Fu(~0) (0<6 <2n) (53)
ave the solutions corresponding to the two cases.

In the space 0<8< 2w, % is zero at time ¢ =0, for all values of »,
-except at the point (+', 8'), where it takes the form

(e-(R'Ih!))
t (=0
"Reo

The symmetry of the expression shows us that the boundary con-
ditions are satisfied at = 0 and 6 = 2n,

This is elear when we note that

. 1 . J.TF.: cosj (8~v) - Jmcos] (o+¢') .
W= 7 (e"“"“" e~ d\ TF ¢~ () e d)\),
wi

Further, at infinity # = 0.

-0 -2

where R = (z—2")’+ (y—v)%,
B* = (a=2)+ (g +9)"
In the first case @ = 0, when 8 = 0 and 6 = .-

In the second 2_3_1_2 =0, when 6 =0 and 6 = 2=.

o8
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The pole in the spuce —27 < <0, does not affect the validity of
the resalt, as we may tix upon one complete revolution about the
axis of z as defining ubsolutely and coverving wholly the range of
points entering into the space or body considered.

1n the paper * On Conduction of Ieat ™ in Math. Ann., Bd. xuv.,
this result is quoted by Sonumerteld, and he stutes that it had been
obtained by hinn after a somewhat lauborious caleulation from the
suitable expression in Bessel’s functions

1w = cos g1 (0—0") j ey, Sy (Ar) Ty (M) AdA. (H5)

-»
T'he importance of the method herve developed is that, as will he
shown immediately, there is no diflically in ub once extending the
“results to the three-dimensional case.  Also it places these problems
on the same level with those in sound, light, &c., and the extensions
to cases in which the physical conditions are different will find their
application at once in the conduction of heut.

10. Multiform Solution of the Hquation %’f = Vi,
¢

The work here follows the same lines us ‘in the two-dimensional
case.
We start from the particular solution

| . Wiylz 5
1y = — e lE- N+ ly-p) ¥z =% hHat ; (56)

ta
or, in cylindrical coordinates,
1

a-[r"*r‘”i»(:- 2 )3=? o8 (0~ ') [Hat

2, = -—
(1] t“
Then we obtain the identical transformation
1 e-[r"n"’f(l—:')‘]l‘.l - } e.’..
— e (ri*[2t) CUS (u - 6) A
=5 a4 ¢ gt —c' de (57)

over a circuit in the a-plane, enclosing a = 6" and no other singularity
of the integrand. . '

Thix reduces to the integral over the path (A) of the former
section. ' )

To obtain the Multiform Solution, it is only necessary to consider
the integral

U = ——

e-(r’ +r'? e (5-2' )P at j’

2n i) elri’ratieos (ave) gl da, (58)
T

e
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taken over the path (A) corresponding to the value of 6. This.
is the multiform solution with a pole at (»', &, z’) in the range
—(r—6)<b< (2n—=1)r+6.

Thus we see that the sole difference in our results for the three-
dimensional case consists in the introduction of the factors

e G-¥VHe¢ gnd

£
In the particular case when n = 2,

eVd\.  (59)

1 U (z-2)P=2rrcos(o- @)]Het il cos} (9-¢)
W == —— - -
™ ti' j—a

11. These physical applications of the multiform solutions found
in this paper have been given because of their simplicity and the
possibility of testing their agreement with the facts of nature.

. . . nw .
The cases in which the planes meet at an angle — (%, m posi-
m ! P

tive integers) may be discussed by the same method. Here we should
require the n-fold Riemann’s surface, or space ; or, in other words, our
physical space would be defined by one complete revolution round
the axis of z, and we should bring to our aid (»—1) imaginary spaces,
built up by the successive (12 —1) revolutions of the radius vector in
the cylindrical coordinate system.

No attempt has been made here to prove the uniqueness of the
solutions in the pavticular cases. This was done for the problems in
potential in the often-quoted paper in our Proceedings. The physical
applications prove that they are unique. An analytical proof I hope
to give later. ' . -

The next advance in this method ought to be the solution of the
problems where the obstacle consists of an infinite plane in which
there is a slit with parallel edges; or an infinite plane with parvallel
edges. The system of bipolar coordinates '

= ™
p= IOg (T)v

2
p=6,—0,
gives us a suitable transformation for this case. We have to deal
with the integration of our partial differential equations on a
Riemann’s surface, or space, which has ¢ =0 for branch-section,
or membrane, and two. branch-points; or lines, at the points
p=£0. ' ‘ '
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It is obvious that this amounts to defining our physical space by
the range
0<¢ < 2n,

and putting the image in the space defined by
—2r <9 <.

The problem—for the equation of potential——was discussed in
Sommerfeld’s paper on that equation. [Sec note by Dr. Sommerfeld,
below.] The solutions of the corresponding problems for the equa-
tions with which this paper deals at present occupy my attention.

It only requires the discovery of a proper coordinate system to
advance our knowledge to the cases examined by the method of
geries and in approximation by Prof. Lamb, and such a discovery
ought to give us, not only exact solutions, bat solutions also applic-
able to three-dimensional work.

The question of the solution of these partinl differential equations
on other Riemann’s surfaces should bhe a fruitful one also for the
pure mathematician, and all these guestions which, in the theory of
functions, have circled round the potential would enter here for
discussion.* )

Note by Dr. Sommerfeld to Mr. Oarslaw’s paper.

Dr. Sommerfeld takes this opportunity of calling attention to an
error in his discussion of the problem in potential, where o point
charge is placed in the region bounded by an infinite conducting
plane, in which there is a slit with parallel edges :—

In den folgenden Zcilen bitte ich cin Versehen berichtigen zu
diirfen, welches sich in § 5 meiner in Vol. xxvirt. der Proc. Lond.
Math. Soc. abgedruckten Arbeit cingeschlichen hat. Ich thue
dieses um so licher, als Herr H. S. Carslaw anf den vorangehenden
Seiten zu meiner Frende und auf meine Anregung hin gezeigt
hat, dass sich die Mcthode jener Arbeit in der am Schluss (p. 429)
angedeuteten Weise auf andere physikalische Differentialgleichungen
ausdehnen lisst. )

Der Iehler besteht davin, dugss bei Benutsung des p. 421 angege-
benen Wertes von R? die Function « aus Gleichung (5), p. 422, zwar
allen iibrigen Bedingungen des Problems, aber nicht der Differential-

* Of. Pockel's, Uber die particlle Differential-Gleichung v + &% = 0, pp. 225,
238, 339.

VOL. XXX.—NO. 668. M
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gleichung des Potentials geniigt. Um Letzteres zu erveichen, muss
man vielmehr nach dem p. 405 genannten Principe den Winkel ¢’ in
dem Ausdracke von I* durchwey durch die Integrationsvariable a
ersetzen, und, dementsprechend, I folgendermassen definiven :

R2=g_Co8t(p=p)—cos(p—a) . .
' (cos tp—cos ¢)(cos ip'—cos a) T =)
Gleichzeitiz wird es notig, die Wahl der Function f(a) etwas

abznéindern, damit f(a)/LR’ fiir a = verschwindet. Man nehme
zu dem Zwecke statt der p. 422 angegebenen beiden Werte

76" cos ip’ —cos ¢’
floy= [ et

cos 7 —cos a

7 g cos 7p’ —cos ¢’
l)ez' f(a) =- fa/n Wi . ! N
n e —g cos 2p’ —cos a

f (a) besitzt dann immer noch die Rigenschaft, fiir a = ¢’ von der
ersten Ordnung mit dem Residuum 1 unendlich zu werden. Als
Verzweigungspuukte des Integranden kommen ausser a = o nur
dicjenigen Stellen der a-Bbenc in Betracht, fiir welche B* =0,
d. h,, :

cos (p—a) —cos i (p—p’)= } (s—2")* (cos ip—cos ¢) (cos tp’—cos a)

wird. Sie sind selhr leicht zu bestimmen, wenn z—z' = 0; dann
haben wir ndmlich einfach

a=¢+2kr 4 ¢ (p~p’).
Im anderen Falle muss man die Gleichung fiir a auflosen, und erhilt
a = a+2kr £ b,

wo die Griossen a nnd b reelle Zahlen bedeuten, die von ¢, p, p' und
z—z' abhingen.

Die Deformation des Integrationsweges ldsst sich darauf gerade so
ausfiihren wie p. 422 angegcben. Der mit W bezeichnete Weg
fiihvt, vom Unendlichen ausgehend und dahin znriickkehrend, in
einer Schleife um die Verzweigungspunkte ¢ = ¢+4b nnd a =a—1d
herum. . ’

Die Schlussformel (5) ist hiernach folgendermassen abzuiindern :

(V) 1) = _1__ \‘ 1 \/COS ’I:pm "M da
San | 7V costo—cona g —gem’
. P
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Die folgenden Bemerkungen iiber Niherungsformeln in der Nihe
der Verzweigungslinien und iiber die Ausfilhrung der Integration
im Falle » =2 sind in der pp. 423 und 424 gegebenen Form un-
mittelbar aufrecht zu halten, wenn man sich auf Pankte der Ebene
z = 2z’ beschriinkt ; imn diesem Falle stimmt nimlich die berichtigte
Form (V) mit der frither angegebenen () genan iiberein. An dev
p- 425 beschricbenen Figur, welche sich gerade auf diese Ebene z=2'
bezicht, ist dalier nichts zu corrigiven.

Ein gervingfiigiger Schreibfechler, anf den mich Herr Carsliw
aufmerksam machte, findet sich ansserdem . 417, Die Gleichung (3)

muss nimlich lauten :

_ 2 \/;y-+r 2 o+7
v = ) arc tan P - arc tan ek

wobei zur Abkiirzung
R =22 42072 cos (§—¢") + (—3")*,
R"? = P 47" —2r" cos (¢ +¢") + (z—2")*

gesetzt ist, und wobei o, 7, 7' die pp. 413 und 417 angegebene
Bedeutung haben.

Thursday, January 12th, 1899,

Prof. ELLIOTT, F.R.S., Vice - President; and subsequently
Lt. - Col. CUNNINGHAM, R.B., Vice-President, and
Dr. HOBSON, F.R.S,, in the Chair.

lourteen members, and a visitor, present. _

Prof. Elliott referred, in feeling terms, to the reeent death of the
Rev. B. Price, F.R.S., who was clected a member of the Society
June 26th, 1866.

Dr. Morrice read a paper on * Linear Transformation by Inver-
stons.”’ : ‘

Mr. H. M. Macdonald spoke on ‘“The Zeroes of the Bessel
Functions” (in continuation of his previous paper on the subject).

M 2
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Lt.-Col. Cunningham communicated a paper by Mr. D. Biddle,
entitled “ A Simple Method of Iactorizing large Composite Numbers
of any unknown Form.”

Messrs. Lawrence, Larmor, Hobson, and Western spoke upon one
or more of the above papers.

The following papers were commuuicated, in abstract, by
Dr. Hobson, viz. :—
On a Determinant each of whose Elements is the Product of
It actors : Prof. Metzler.
Propertics of Hyperspuce, in relation to Systems of Kovees,
the Kincmatics of Rigid Bodics, and Clifford’s Parallels :
Mr. A. N. Whitclhead.
On the Reduction of a Lincar Substitution to its Canonical
Form: Prof. W, Burnside.

The following presents were made to the Library :—

Koenigsberger, L.—*¢ The Investigations of Hermann von Helnholtz on the
Fundamental Principles of Mathematics and Mechanics,”’ 8vo; Washington, 1898
(from ‘¢ Smithsonian Report,”” 1896, pp. 93-124).

Oltrumare, G.—** Caleul de Généralisation,’’ 8vo; Paris, 1899. Two copies:
ono presented by the Author and the other by the Publisher.

“ Educational Times,”” January, 1899,

¢ Indian Eogineering,”” Vol. xxav., Nos, 21-25, Nov. 19-Dec. 17, 1898.

¢ Reciproeal Polygons,”” by Jumshedji Edalji, B.A., B.Sc.; Ahmedabad, 1898.
TFrom the Author.

The following is the list of exchanges received :—

¢ Proceedings of the Royal Soeicty,”” Vol. 1x1v., No. 405.

“Beibliibter zn den Aunalen der T'hysik und Chemie,”” Bd. xxir., St. 11;
Leipzig, 1898.

¢ Menoirs and Proceedings of the Manchester Literary and Philosophical
Seciety,”” Vol. xui1., Pt. 6, 1897-98.

¢ Berichte iiber dlo Verhandlnngen der Konigl. Siichs. Gesellschaft der Wissen-
schaften zu Leipzig,” Bd. 1., Pt. 5, 1898,

¢ Proceedings of tho Physical Society of London,” Vol. xvi., I't. 3 ; November,
1898.

“ Proccedings of the Canadian Institute,” Vol. 1., I't. 6 ; November, 1898.

¢¢ Proccedings of the Royal Ivish Academy,” Vol. v., No. 1; Deccmber, 1898.

“ Bulletin of the American Mathematical Socicty,’’ Series 2, Vol. v., No.3:
December, 1898.

“Rendiconto dell’ Accademia delle Scienze Fisiche e Matematiche,’’ Vol. 1v.,
Fasc. 8-11; Napoli, 1898.

‘‘Rendiconti del Circolo Matematico di Palermo,’”’ Tomo =x11., Fasc. 6;
November and December, 1898.
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¢ Bulletin des Sciences Mathématiques,”” Tome xx11., Dec., 1898 ; Paris.

‘¢ Acta Mathematica,” xxi1., 3; Stockholm, 1898.

¢¢ Annali di Matematica,”’ Serie 3, Tomo 11., Fasc. 1 ; Milano, November, 1898.

‘¢ Atti della Reale Accademia dei Lincei-—Rendiconti,’’ Sem. 2, Vol. v,
Fasc. 10, 11 ; Roma, 1898.

Zeroes of the Bessel Functions. By H. M. Macpowarp.
Read January 12th, 1899,  Received February 1st, 1899.

In a previous paper, the zeroes of J,(z)/z", where n is any real
quantity, have been considered. There is no difficulty in extending
the results there obtained to the case where % is any guantity. When
the real part of n is greater than —1, all the zeroes are associated
with the essential singularity at infinity, and are obtainable from
Stokes’ formula. When the real part of n lies between —m—1 and
—m, m being an integer, there are, in addition to the zerocs
agsociated with the essential singularity at infinity, 2m zeroes which
can be derived from a formula similar to that given in §11 of the
previous paper. The method used for discussing the zerces of
J. (2)/2" depended on the fact that it is a holomorphic function of z at
all points of the z-plane not at an infinite distance from the origin.
A solution of Bessel’s equation is not, in general, expressible as a
holomorphic function multiplied by a power of z; the only case where
it is so is that of » half an odd integ.r. The most important
solutions of Bessel’s equation other than J, are Hankel’s second
solution Y,, and that solution of the equation which vanishes at the
positive imaginary infinity, usually denoted by K,. In what follows,
the function K, will be principally discussed.

In §§ 1, 2, the elementary properties of the function K, (z) are in-
vestigated, and the function is defined to be that solution of the
differential equation

dy ., 1 d LAY
018 (14 5y ms

dz? z

which vanishes at the real positive infinity, the plane being bounded





