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THE MACLAURIN SUM-FORMULA

By E. W. BARNES.

[Received and Read, February 9th. 190.5.]

1. The formula

J I f { ^ . (1)
was originally obtained in 1782 by Euler,* and independently redis-
covered before 1742 by Maclaurin.f A full discussion of the question
of priority appears in Cantor, Gesckichte der Mathematih, Bd. in. (1898).
p. 668. Then Plana,t in 1820, and Abel,§ in 1828, obtained the formula
from which it can be developed :

v _ T ,i \ J ±,t \_i_9 P° <f>(x-\-it) — <b(x—it) dt „.
J Jo 2* e2nt — 1

A generalisation of this formula, which it is interesting to compare
with my own generalisation with which this paper concludes, was given
by Abel|| in 1825. In 1889 KroneckerU discussed the formula (2) by
Cauchy's theory of residues, and another discussion appeared in 1898 in
a text-book of Petersen.** More recently Lindeloftt has given certain
applications, and I have myself I1 generalised the analysis and considered
the question from the point of view of the theory of asymptotic series
in 1903.

I now propose to take up the question again, and, without the inter-
vention of such a theory, to obtain a form for the remainder different
from that obtained by other investigators, and to give a fresh demonstra-
tion of the conditions under which my extensions of the formula (1) are
valid. §§

* Euler, Commentarii Acad. Sei. Imp. Petropolitana, T. vi. (1732 and 1733), pp. 68-97.
t Maclaurin, Treatise on Fluxions, p. 672, Edinburgh, 1742.
X Plana, Mem. Accad. Torino, T. xxv.
$ Abel, (Euvres Completes (1881), T. I., pp. 21-25 ; T. n . , p. 77.
|| Abel, ibid., T . i., pp. 34-39.
II Kronecker, Crelle, T. cv., pp. 157-159 and pp. 345-354.
*• Petersen, Vorlesungen iiber Fundionentheorie, $§ 78-80.
f t Lindelof, Ada Soe. Sci. Fenniccc, T. xxxi . ; Ada Mathematica, T. xxvn., pp. 305-311.
XX Barnes, Quarterly Journal of Mathematics, Vol. xxxv., pp. 175-188.
§$ References to other investigations will be found in Boole, Finite Difference; Third

Edition, p. 153.
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2. The discussion of the question is based upon the properties of the
generalised Riemann £ function, which is defined as follows:—Let s, a,
and co be any complex quantities, and let Sn(ct>\<0), or more briefly 8*(a),
be the w-th BernouUian function defined by the expansion, valid when
\x\<

the accent denoting differentiation with regard to x, coupled with the
condition S«(0) = 0.

Let Bn(a>) be the n-th BernouUian number of parameter o> given by

£.(«) = S;(0|»)/».
Construct the function

2 + 1 Q' (ft I ,t\ rln n*+*

! fm=0 7/1! rfam 1 - f 5

where the many-valued functions with s as index have their principal
values with respect to the axis of — w, i.e., with respect to a line drawn
from the origin to — w and produced to infinity. Thus a' = exp[s log a],
where log a has a cross-cut along the axis of -co, and is real when a is
real and positive.

[We assume for convenience that w is not real and negative : in this
case further definition is necessary.]

Then, if R{s)> — (Z+l), where I is a finite positive integer, the series

is absolutely convergent except when

s = 1 or a = — nco (n = 0, 1, 2, ..., ao),

and is denoted by £(s, a.) or by £(s, a|a>).
When B(s)>l,

f(s, a) = Jo(a+wa>)~'f

and, when a = w = 1, we have Riemann's £ function.*
When B (a/co) is positive, it can be deduced from the previous definition

that, for all values of s and <*>,

the integral being taken along a contour embracing the axis of l/a>,

Riemann, Gesammelte Werhe, pp. 136-144.
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starting from 4-°°/w, enclosing the origin but no other singularity of
the subject of integration, and returning on the other side of the axis
of l/o> to -f-00/ .̂ The expression {—zY~x = exp {(s—1) log(—z)\ has
its principal value with respect to the axis of 1/w, which is a cross-cut for
the logarithm.

The definition of the function £(s, a-) is a development of that due
to Mellin * : it is an application of the well-known theory of Mittag-
Leffler.t For a proof of the convergency of the series I may refer to
my " Theory of the Double Gamma Function " 1 (p. 841), and for the
properties of f (s, a) to my " Theory of the Gamma Function" § (Part III.).

8. The general result obtained in the present paper is as follows:—
The Maclaurin sum-formula for a single parameter may, with the greatest
generality, be written

Di-l l+l q' t

„?. #<•+—> = y « " + . 5 , ^
where Y (a) is a definite function of a and of the coefficients in the
expansion of <f>(x), and where <f>(x) is to be expanded by Laurent's series
and the lower limit so chosen in the integral that the corresponding
term vanishes at this limit.

When <f>(x) is a (possibly non-uniform) function which has no
singularities outside a circle centre the origin and finite radius outside
which a, a-f-<o, ..., a-\-niw, and mu> all lie, Jj is a quantity which, when m
is large, has its modulus at most of order l/wi'+1.j|

When <p(x) is an integral function of order II less than unity, Ji tends
to zero as I tends to infinity for all values of m, however large, and the
Maclaurin series is absolutely convergent. In general, when <f>{x) is an
integral function of order !> 1, the Maclaurin sum-formula has no
meaning unless we apply the theory of asymptotic series to evaluate
both the series for Y(a) and the series which succeeds it in the
enunciation.

The above formula can be generalised for any number of parameters,
and corresponding propositions hold good.

• Mellin, Ada Soc. Sci. Fenniete, T. xxiv.. No. 10 (1899).
f Mittag-Leffler, Ada Mathematira, T. iv., pp. 1-79.
X Barnes, FhiL Trans. Roy. Soc. (A), Vol. cxcvi., pp. 265-387.
§ Barnes, Messenger of Mathematics. Vol. xxix., pp. 64-128. This j aper will be referred to

for convenience under the initials G.F., and the previous one as D.G.F.
|| [Note added April 5th, 1905.]—By thin statement we mean that \Jnn'*l-'\, where € ia

an arbitrarily small positive quantity, can be made as email as we please by taking m sufficiently
large.

H As originally denned by Borel, Ada Mathematical T. xx., p . 360.
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4.* THEOREM I.—If s = u+iv where u is finite, then c-
(Tr-'')|v| | cos£(s, a) \

tends to zero as \v\ tends to infinity, if 0 ̂  e' < e ̂  TT and

|arg(ci/a))| = 7T—e.

We have, if B(s) > — (Z+l),

where S-,,i(a) = !> r- -r-̂  ; •
m=o wi! <?» 1—s

Now [G.P., p. 80] Sn (- l) = \ S% (a |»).

Also (a+7?o.))J, when the many-valued function has its principal value with
respect to the axis of — w, is equal to (a/w+;i)sa>\ where each function has
its principal value defined as usual with respect to the axis of — 1 .

Hence wVS_,,j(a) = 2

and

, tt) = —

principal values of the many-valued functions with respect to the axis of
— 1 being taken.

We can take a finite number N, such that, if n > N,

B(a/u))-\-n> R(a/co)+N = *i> 1,

and, if N be sufficiently large, the modulus of arg (a/w-\-n) = 6n may be
made as small as we please. Also, if n> N, | a/co-\-n | >22(a/w+w) > rj.

The expansion —^rr, = 2 ( - ) '

is valid provided | x | > 1, for all finite values of |sj however large.
Now it has been seen that,t if |x/co|> 1 and we expand

z)-x-\ co"

* April 5th, 1905.—This paragraph has been modified since the paper was communicated.
The reader may compare Mellin, Ada Soc. Set. Feimiccs, T. xxix., No. 4, pp. 47-48.

t D.G.F.,?. 341.
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in ascending powers of \jx, the initial (l+l) terms vanish, and we have

where P, (s) - (-Y+11^±1±H 'v S*,(0ll)r!
r(s)r(r+l) m=0 m\(l+r+l—m)\

where /c is a definite finite positive quantity independent of r, N, n, and v.
Now we have

\u>a£(s,a)\<
«=0

+ 22

The last series is less than

- v 1 v r(|s| + H-r+2)

T(\s\) ( l -

Suppose now that |« | becomes very large. Choose N so that N :\v\: q
tends to a ratio of equality. Then (1 —l/q)'*l+J tends to a finite limit.

The series £ d(,)+*+2 tends to zero. The product zee1***1 ̂ f j " ^ f

tends to zero when multiplied by e"^"01*1. Hence the double series
tends to zero when multiplied by this expression.

We have now to consider the first series

"- 2 [8-hi(alu+
n=0

The number of terms in the series ultimately bears a ratio of equality
to |s | . Therefore, if each tends to zero when multiplied by e-<*-Ol"l̂
the same will be true of the sum.

Now, if we put ala>-t-n = rne
10", we have | # n | ^ TT—e and \(a/u)~\-n)$+r\,

where r is an integer,
8KB. 2 . VOL. 3 . NO. 8 9 8 .
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Hence exp {— (T—e')|v|}/|(a/ft>-|-w)'+r| tends to zero as \v\ tends to infinity,
at least like exp {(*'—e)\v\}. This is true for all finite values of r. And
the same thing will be true if (a/a>+w)*+r be multiplied by any algebraical
polynomial or quotient of such polynomials in s.

Hence, finally, e-<"-ow1 w'£(s, a) I tends to zero as U I tends to
infinity.

5. THEOREM II.—If k be any complex quantity of finite modulus, if
|arg(a/a))| = x—e, where 0 < e < 7r, and if |arg(£/w)| = e', where
0 ^ e' < e, the integral

\£(s,a)r-kT(s)T(k-s)ds

vanishes wlien taken along any part of the great circle at infinity for
which u is finite and B(s) > — (Z+l), f~k having its principal value with
respect to the axis of —w.

By the asymptotic formula for T(z), where |z| is large and not in the
vicinity of the negative half of the real axis, we know that T(s) T(k—e)
behaves like

27Pexp [(s—£) log s—s-\-(k—s—£) log (A;—s)—k+s~\

= 27rexp (— (u+rt>)[log(A;—s)—logs]—£logs-K&—£)log(A;—s) — k\

the principal values of the logarithms being taken

= 27rexp[—7r \v\ -f terms of lower order],

for, when v is positive and large, log (k — s) — log s = — irt approximately ;
and, when v is negative and large, log (k—s)—log s = TTI approx-
imately.

The modulus of the subject of integration behaves approximately like

!(-£-)"* \c»s£(s,a)\ \T(s)T(k-s)\,

where (2/co)s~fc and to* have their principal values with respect to the axis
of — 1 . And this expression by Theorem I. behaves at most like

Thus the integral along the part of the great circle specified vanishes.

COR.—The same integral is finite when taken along any line, drawn
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in the finite part of the plane parallel to the imaginary axis, which does
not pass through the finite singularities of the subject of integration.

6. THEOREM III.—The previous integral vanishes when taken along
that part of the great circle at infinity for which u is large and positive
(v having any real value), provided

(1) | arg(a/o)) | = ir—e, where 0 < e < T ;

(2) | arg (i/co) | = e', where 0 < e' < e ;

(8) | * | < \a+nw\, w = 0, 1, 2, . . . . oo;

(4) the great circle passes between the points k-\-n.

•XI

For the values of s considered F£(s, a) = 2 i?/(a-\-nw)s.

Let log . , = pn+iqn, and let s = Re1* ; then
ajw-\-n

00

j f£(s, a ) | < J ^ e x p \B(pn cos 0—qn sin #)[ .

Now, when \s\ is large,

behaves like r ex i |(A;—1) logs - f l — &}•

Hence |£(s, a)f T(s)T(k—s)\, under the restriction (4), behaves tit
00

most like 2 exp \R[pncosd>—qn8ind>—7r|8in0|]}, and this will tend
H = 0

to zero like exp {— 17.R}, where »; > 0, provided pn is negative and

If pn be negative, we have the condition (8). If \qn\ <. ir, we have
arg (*/«)—arg (a/w+n) \ < -w, and therefore we have the conditions

(1) and (2).
We therefore have the theorem stated.

7. THEOREM IV.—If k, a, and t be any complex quantities of finite
moduli subject to the conditions (1), (2), (3), and (4) of § 6, we have

JL0

w/ie/e f~k has its principal value with respect to the axis of — w, and
s 2



260 REV. E. W. BARNES

where the contour Lo encloses the points k-\-l,
but no other singularities of the subject of integration.

[Feb. 9,

.. as in the figure,

We have, by Taylor's theorem,

tr
f(kt a+t) = £{k, a)+ 2 — £{r\k, a)

r= l

• r=l T\

provided \t\ < \a+nu)\ for n = 0, 1, 2, ..., oo. But

is the residue of the function
_k T(s)T(k-s)

at its pole s = r+&, since, if s = r

•nn. _x _ T ( —e)

(—e—1)(—e—2) ... (—e—r) r ! e

Hence, under the conditions (1), (2), (8), and (4),

A.

8. THEOREM V.—Le£ Lx denote a contour, as in the figure, parallel
to the imaginary axis, cutting the real axis betiveen s = 1 and s = 2,
and with a loop to ensure that k is to the left and k-\-l to the right of
the contour; then, under the conditions (1) and (2) solely,
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The integral vanishes by Theorem III. when taken round an infinite
contour to the right of the imaginary axis. The subject of integration
is one-valued with the prescription assigned to if~k. When we deform
the contour Lo into the contour Lv we pass over no poles of the subject
of integration. Hence, by Cauchy's theorem, the required equality is
valid under the four conditions of § 6. But each side of the equality is,
by Theorem II., a uniform analytic continuous function of t even though
the conditions (8) and (4) no longer hold. We may therefore eliminate
these conditions and obtain the given theorem.

9. THEOREM VI.—If B (k) > — (J+l), and | arg (a/a>)| < TT,

o{a-\-nw)K
 m=o n\ Lax J«,o

_L 1 f w w ,8-kT{s)Y{k—s) ,
2j r(fc)

where the many-valued functions have their principal values with respect
to the axis of -co, the lower limit of the integral is oo if B (k) > 1 and
0 if B(k) <C 1, and where L2 is a contour, as in the figure, parallel to the
imaginary axis, cutting the real axis between s = —I and s = —
and such that the point k is on its positive side.

We have [G.F., p. 89]
m—1 -i

«=o (a+nw)k

Hence, putting t = mw in the previous theorem, we have, if |arg (<x/a>)|< TT,

1 1 f w w s3-kT(s)T(k—s) ,
T—7k = o— f (*. a) (m«)s fc ' v -7 ds.

) a j * T(A)By Theorem II. we may apply Cauchy's theorem and modify the
contour of the integral till it assumes the position of the line L%. We
must take account of the poles of the subject of integration which we pass
over in the deformation. These poles are at the points

s = 1, 0, — 1 , ..., — I and s = k.

The residue at s = k is — £(k, a). The residue at s = 1 is [G.F., p. 95]

(mw)-k+1

The residue at s = — n (n — 0, 1, ..., V) is [G.F., p. 97]

(-r-1 S'n+l(a) (ma>)-*-n T(k+n) _S'n+M [d^ kl
n+1 n! T(k) (n+l)\Ldxn _]«=«.'
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Hence
m - l

n=o

_L i f
+ 5—

2iriJi

—r has a lower limit oo if R(k) > 1, 0 if R(k) < 1, the
last series may be written*

'^SMrd^C1 dxl
L J ku=0 « ! Ld«* J«, 0 Xk Jx=m»

We thus have the theorem stated.

10. The form of the previous theorem obviously requires modification
when k has any value which makes some of the sets of points

k, k+1, ... \

1, 0, - 1 , ..., - l \

coincide. In these cases we may appeal to the principle of continuity to
establish the final result. For example, when k — 1, the points s = k
and s = 1 coincide. In this case the residue of the function

£(s,a)(m«>y-lT(s)T(l-s)
at the point s = 1 is the coefficient of 1/e in the expansion of

sin e7r L e da

and istherefore — S'o(a)\ogm(t)-\-\f/^)(a) where ^ H * ) = -r- log Fj(a). This

expression is evidently [G.F., p. 95] the limit when k = 1 of

L

The previous theorem is thus true in general if limiting values be taken
when infinite terms arise.

11. THEOREM VII.—If R(k) > — (1+1) and |arg(a/eo)| < TT,

V 1 1 S'M f ̂

where, when in is very large, \JA is of lower order than m~l~R^k).

* When S (k) = 1 and k is not real, such lower limit must be chosen as makes the integral
vanish there.
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We have J", = ~ j £(k, a) /»-*aT*

Hence ' ^ ^ ^ L j ^ ) |^(s,«) «* T(.s) T(/c —

where G is a finite quantity.
We have thus, provided | arg (a/oo) | < ir, established the asymptotic ex-

pansion m_x „ S'(a)rd" xl'*

t ( + ) f c ~ ̂ lA:' a)^ t U. t o ( a+na , ) f c ^ l ' )^ ,to n ! U B « 1 -
for all finite values of |&| except k = 1. We have shown that the ex-
pansion is truly asymptotic in that, when m is large, the error committed
l>y stopping at any term of the series has a modulus less than that of the
last term retained. This expansion, the use of which was justified by the
theory of divergent series, was made fundamental in my " Theory of the
Gamma Function."

In the exceptional case k — 1, we have

, l =0
£&&[•£ log .1

n,0 W! \_dxn ° J«

12. THEOREM VIII.—If <p(z) is a (possibly non-uniform) function

which admits outside a circle of finite radius p the expansion 2 cT\xr,

and if the points a, a-\-w, ..., a-\-nua, and mw all lie outside this circle,
we have, when \ arg (a/co) | <C TT, the Maclaurin sum-formula

m - l
2 cr£(r, a)+ 2 ^ f^ >̂(a:)dx + Jh

where \Ji\ is, when m is large, at most of order l/w'+2.

By Theorem VI. we have

n=0 tt L«

i 1 f s-t M v,.r F(s) F ( r - ds.
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Hence

2 4>(a-\"7ico)
m-\ 1+2

— y y

REV.

Cr

,-\-nw)r

E. W

m - l

4- 2
n=0

. BARNES

V Cr

r={+3 (d-\-nu>y

[Feb. 9,

1+1 ' (a) f dn l + i T r

J r=J+3

- ds
r

+ 2 Cr 2 r J -_ - f ( r f a ) [ - . 2 ^ Aj 2 ^

P=2

By hypothesis, when r is large, |cr | = pr approximately. Again, if
\x\< \a+n(a\ (n = 0, 1, 2, ..., oo), logF^a+a;) admits the expansion

2 £ £ , log Ato) = 2 f (r, a) ^ [GLF.f p. 95].
r=0 » • »w r=0

Hence k- 1^(r,a)\, when r > J S , is less than (l+e)//ir, where /u is the
minimum value of |a+n<o| and e > 0 . This minimum value is not zero,
since | arg (a/to) | < x.

By taking B sufficiently large, we may make e as small as we please.
00

Hence |crf(r, a)\ is less than {/>(l-|-e)//u|r, and therefore 2 cr^(r, a) is

convergent if a-\-nw, n = 0, 1, ..., co , lies outside the circle of convergence
of <f>(x).

Again,

cv 2 ^ = 2 cP f (rf o
r=l+3 ' n=0 (aH-no))r ) r = t + s

This series is a finite quantity which, when m is large, is at most of order
l/mI+8. '

In the next place

n=0

r=J+3
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Now the series 2 -1- J— —- r+,'+1 is obviously convergent

when \x\ > /a, and when m is large is at most of order l/vil+n+4. Hence,
when | ww | > p this group of series is finite, and when m is very large at
most of order l/mI+s. Again, when r = 2, 3, ..., Z+2, the integrals

are each finite, and each, when m is large, is of order less than
Thus we see that, under the conditions enunciated, we have

m - l

2 <j>{a-\-'t
n=0

CO

mw) = 2
r = 2

l+\ rx - i

n <p(x)dx

where \Ji\, when m is large, is at most of order ljml+2.
We have excluded the first term cjx from the expansion of <p(x), since,

when k = 1, it has been seen that a slight modification of the fundamental
formula is necessary. The general theory remains unimpaired. When

00

<p(x) = 2 cr\x
T, \J\\ is at most of order l/inl+l.

r=l

Further slight generalisations as to the nature of </>{x) may be made.
We may state the general theorem—The Maclaurin sum-formula [§ 8 (A)]
is, when |arg(a/w)| < ir, valid for any {not necessarily uniform) function
which has no singularities outside a finite circle outside lohich a, a-\-w,

u), and raw all lie.

18. THEOREM IX.—If <f>{x) is an integral function of order less thaw
unity and \ arga/co| < ir, the Maclaurin sum-series is absolutely con-
vergent, and we have the equality

TO-] «> a> a' (n\ I - Jn

2 ^ ^= 2 cr£(-r,a) + 2 ! : ^ \ ̂ [ ^>{x) dx]
,i=0 ' r=0 «=0 n. \_aX *Jo Jx=m<u

CO

where <f>{x) = 2 c r z
r .

r--0

If we put k =—r in Theorem VII., we have

m - l r+l Of' /

2 (a+ww)r = i(—r,a)-\- 2 -—
7v=0 n=0 n \

for, when w = r + 2 , r + 8 , ..., Z—|— X, the terms of the series vanish, and,
when k =—r, 1/F(A;) = 0, and therefore the integral Jt vanishes.
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k

If, now, <pk{x) = 2 crx
r, we have

w—1 ' k k r+\ Q' (n\ T~ Jn y.r + 1 ~i

L d>i( (a •+• n<0) = = 2< c v f ( — v , CL)-\- 2* 2« er — r - -5—7 — j —

k fc-t-i c ' ^ 1- //'* *•• /. 7 . r + n
Cr{{—r, a )+ 2 —--p- T-J 2

r=0 n=0 " • \_uX r=n—1 ' I A J*=IH«I>

wherein, when n = 0 in the second series, r ranges from 0 to k,

k k + \ O' (n\ T~ Jn fx ~i

r=0 n = 0 " • l_ ttX Jo _lx=ino)

Now [G.F., p. 97] f(—r, a) =-S ;+ , (a ) / ( r+ l ) .

Again, S,'+i(«)/(?•+1)! is the coefficient of (—^)r+1 in the expansion

of r ^ in ascending powers of z, and this expansion has a radius of

convergence equal to 27r/|w|.
Hence, when r is large, |cr£(—r, a)\ behaves like |c , | r ! | |w|/2ir[r.

A-

Therefore, when k tends to infinity, 2 cr£(—r, a) is convergent if \cr\

behaves, when ;• is large, like j r ! } " 1 " ' , where e > 0 ; that is to say,

if the order of <j>(x) is less than unity.

When </>(x) is of order greater than unity, 2 cr£(—r, a) is divergent:

it is only convergent in particular cases when <p (x) is of order unity.
In the next place, when k tends to infinity, the second series in the

equality (1) becomes

This series is absolutely convergent if <p(x) is of order less than unity.

For its general term is , 0(n~1)(mw). Now ^-— ..., is the coefficient
n\ (n— 1)!

of an-1 in the expansion of <p(a-{-mo») in powers of a, and therefore

(n-1)!
1

Hence Su(a)

behaves, when n is large, like y , H ( , where e > 0.

<p(n~l)(mw) behaves like \]~^-\ -, TTTT:.
 an(* therefore

the series is absolutely convergent.
We thus have the theorem stated.
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14. We have now established the results stated in § 8 for the case of
a single parameter. We see that it is hopeless to expect, when (f>(x) is
an integral function of order > 1, to apply the Maclaurin sum-formula,

GO

for in such cases 2 cr£(—/*, a) becomes divergent. I have, however,
r=0

shewn in my previous paper on this subject that in such cases the theory
of divergent series will often enable us to interpret such a formula.
This mode of interpretation is, however, foreign to the range of ideas
of the present investigation.

15. I will now indicate briefly the generalisation of the previous
theory to the case of any number of parameters.*

Let rSn(a\<olt .:., u)r), or briefly rSn(a), be the w-th r-ple Bernoullian
function defined by the expression [M.G.F., § 3]

n a-*-.*) s=1

*=1

coupled with the condition rSn(0) = 0. The expansion is valid when | z \
is less than the least of the quantities | 2-7n/o.v.-| (k = 1, 2, .... •;•).

^e l+r rS^^O) d')l ( x r ~ s )
rS-Sl I (x) = 2 ——. -r-- \ — r .

m=o wt! dx ((r—s) ... (1 —.s).l

As in my previous theory [il/.G.-F., §S 12 and 17], it is necessary to
introduce a symbolic notation to simplify the cumbrous expressions to
which the algebra otherwise gives rise.

Let Fr be a symbolic operator which is such that

2 2 0(w1(o1 + ...* + ...* + ... + w,o) , ) - . . . + ( - ) ' - 1 2

In the first summation the star denotes that one of the w's is to be
omitted : in flie second summation every two different pairs of o/s must
be successively omitted, and so on.

We assume that in the Argand diagram the points a>,, ..., av all lie on
the same side of some straight line P through the origin. Let 1/L denote
a line perpendicular to P drawn from the origin into the region in which the

• Thin theory is based on my researches in the domain of multiple gamma. Hemoullian, aud
Riemann ( functions. An account will be found in " T h e Theory of the Multiple Gamma
Function," Cambridge Phil. Trans., Vol. xix., pp. 374-425. This paper will be referred to as
M.G.F.
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w's lie, and let L be the line conjugate to this line with respect to the
real axis.

Further, let (a+l})~s = exp[-slog(a+12)], where

12 — WjfOj-p... -\-nrwr,

the logarithm being rendered one-valued by a cross-cut along the axis
of — 1/L {i.e., the negative direction of the axis of 1/L) and log(a+Q)
being such that it is real when a + Q is a positive quantity.

Then, if R{s) > — (J+l), where I is a positive integer, the r-ple
Riemann £ function £r(s, a\(olf ..., wr), or more briefly £r(s, a), is denned
by the equality [M.G.F., § 20]

ir(*i a)
00 30

= - 2 ... 2
ui=O 7?r=0

When R{s) > r, we obtain

$r(8ta) = 2 ...
n,=0

Let L denote a contour, embracing the axis L, similar to the contour
defined in § 2. Further, let (—z)$~l = exp{(s—1) log(—z)\ where the
logarithm is rendered one-valued by a cross-cut along the axis L, and
where log(—z) is such that it is real when z is real and negative. Then,
provided a lies on the same side of the line P as the co's, or, as we shall
say, provided a is positive with respect to the w's, we have

\ IX. \X—S) I 6 I—Z) U,Z

s, a) = 'M —
JL '

II (1—g-"*2)

where the contour L encloses no poles of the subject of integration except
the origin.

16. We have [M.G.F., p. 401], if k be any complex quantity,

Hence

s ... ^ r ^ r X X V,=o nr=o {a>+nl(a1+...+nrwrr
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or, since [M.G.F.. § 22] -Fr[l]*=m» = (—)r~\

n t i - l m r - l f 1 ^ r

y y

Again, it has been shewn [A/.G.F., § 56] that, if B(s) > — U+l) and
== u-\-iv, the quantity

where x* has its principal value with respect to the axis of — 1/L, tends
exponentially to zero as \s\ tends to infinity, provided

X

= rn e
l\ Q = n1co1 + ...-\- nr o)r,

and rn < 1, \\[,n\ < TT.
We now define the contours Lo, rL\, and L2 to be the same as those

introduced in the diagram in § 7, except that rLx cuts the real axis
between r and (r+1).

In the same way as formerly, we may now prove that

J_ f t{8 a)x>-* T(s)T(k-s)
2iri)b{*>a)x T{k) as

taken along the contours Lo, rLv and L2 is finite provided rn < 1 and
\\fsn\ < ir, and that the integrals along the last two contours are finite
provided |V 'w|<7 r for all values of nv ..., nr, whatever be the value
of r».

Further, the integral along the contour Lo is equal to that along the
contour rLx.

Now the integral along the contour Lo

= the sum of the residues of the subject of integration at fc

'a)

[since ^ f r ( * . a) = ( " 1 ' j ' ( g
+ y ) t(P+*. <«)]

= fr(Ai, a) — r̂(A;,

Hence, under the sole set of conditions | \j/n \ < T. we have

rLt
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Hence 2 ... 2
n,=0 n.=(

= (—)rFr[£r(k, a+x)-£r{k,

2^« )rLl

k being any complex quantity, and the many-valued functions having their
principal values with respect to the axis of — 1/L.

17. We may now show that, provided a lie on the same side of P as
tlie (as,

2 ... 2 -,
n,=0 ftj.=0 (a + ?l1O)1+...+7lr(tfr)

t

^ f
where the integration in \ ... I is r times repeated, and such lower limits

are taken that successive integrals vanish at them.

For, by Cauchy's theorem,

= (-r1 f
27T* J / 4

+the sum of the residues of

at the poles s = k and s = r, r—1, ..., 2. 1, 0, — 1 , ..., — I.
The equality is limited by the condition

/ ml<0l+...+mru>, \
° \a+nl<ol+...-\-nr(oJ

which must hold for all positive integral values of the n's, and when any
but not all of the m's are zero. The inequality is equivalent to saying
that a must not be such that

where 0 is a real positive quantity. It is satisfied provided a lie on the
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same side of the line P as the w's. In particular we may modify the
formula so as to take a = 0.

Now the residue of the function to be considered at s = r—n, where
n = 0, 1, 2, ..., r - 1 , is [M.G.F., § 31]

n\ rldxn) '" J xkX=^
the integration being r times repeated and the lower limit each time
being so chosen that the corresponding integral vanishes at it. The
residue at s = — n, where n = 0, 1, ..., I, is [M.G.F., § 81]

r&+i(a) „ r _fc_nl T(n+k) (-) '1

rc+1 rlX j

The residue at s = & is

We thus obtain the theorem stated.
It is evident that exceptional cases which must be treated by the

calculus of limits arise when k = 1, 2,. . . , r. [Cf. M.G.F., §§24 and 28.]

18. Substituting pxmioxmx, ...,prm for mrt where the p's are finite
positive integers, we now have the important asymptotic equality
P l T O - l Prlll—\

2 ... 2 (a-\-n1(ol+...-\-nrwr)~k

11, =0 M,.=0

where | //1 is, when m is very large, at most of order less than i+K(k) •

The modulus of the last term of the series is of order m"'""(|i), and hence
| Ji | is of order less than this last term. The expansion is therefore truly
asymptotic. It is the expansion obtained previously [M.G.F., § 18],
where its use was justified by the theory of divergent series.

19. Suppose now that a is positive with respect to the o/s, and that

<f>{x) admits outside a circle of finite radius p the expansion 2 —jr; then,
k=r X

if the points a-f-Q all lie outside this circle, we have, when m is large,
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the equality

2 ... 2 <j>{a+Q)
n 1 = 0 nr=O

oo l+r F&r)(/i\ r /Jn Cx C

= 2 ck£r(k,a)+ 2 r-^^Fr\%-n\ ...
fc=r n=0 W! LdX ]„ J

where \ Ji\ is at most of order m~l~r.

The first r terms of the series for <p(x) have been omitted because of
the modification of the fundamental formula thereby introduced. The

00

general theory remains unimpaired: when <p(x) = 2 cijxk, Ji is at most
of order m~l~l. ~

The proof proceeds as for the case of a single parameter, and the
general theory stated for a single parameter holds good.

20. If a is positive with respect to the w's and <f>(z) is an integral
function of order less than unity, which admits the expansion

2 ckx
k, we have the absolute equality

k-=0

i t n - l p r m - l

2 ... 2 <f>(a+Q)
it.=0 nr=0

oo co £?-r)(n\ |~ (["• Cx Cx

V /. i1 / h /•»\_l_ V r tt ' ' TP I I I
ik=O n = 0 " • l_u^C JQ Jo

00

In other cases the series 2 c^ri—k, a) is, in general, divergent.
A.=0

-pnuM


