N₂ COLLISIONAL BROADENING OF METHANE IN THE THZ REGION MEASURED AT THE SOLEIL SYNCHROTRON

Vincent BOUDON, Tony GABARD

Laboratoire Interdisciplinaire Carnot de Bourgogne – UMR 5209 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 DIJON, France

Olivier PIRALI, Pascale ROY, Jean-Blaise BRUBACH

Ligne AILES – Synchrotron SOLEIL, L'Orme des Merisiers, F-91192, GIF-SUR-YVETTE, France

Laurent MANCERON

LADIR – UMR 7075 Université Pierre et Marie Curie–CNRS, Case 49, 4 Place Jussieu, F-75252 PARIS, France

Jean VANDER AUWERA

Service de Chimie Quantique et Photophysique, ULB, CP 160/09, 50 Av. F. D. Roosevelt, F-1050 BRUSSELS, Belgium

Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 5209 CNRS - Université de Bourgogne

11th International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

Contents

I. The THz spectrum of CH₄
II. Experimental details
III. Analysis of pressure broadening
IV. Conclusion

I. The THz spectrum of CH₄

The polyads of CH₄

11th International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

Far-infrared CH₄ lines on Titan

AILES beamline at SOLEIL

High Resolution Absorption Spectroscopy in the Far-IR

Example with pure CH₄

^{11&}lt;sup>th</sup> International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

^{11&}lt;sup>th</sup> International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

III. Analysis of pressure broadening

Retrievals

✓ Line parameters (initial or fixed values)

- Positions and intensities of cold and hot bands : Boudon et al, JQSRT <u>111</u> (2010) 1117
- Self-broadening : Estimates from Brown *et al*, JQSRT <u>48</u> (1992) 617
- N_2 -broadening : $b_L^0 = 0.0429 \text{ cm}^{-1} \text{atm}^{-1}$ (T. Gabard)

11th International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

Retrievals – Continued

✓ Multispectrum fitting

- Whole Multiplets fitted at once
- Lines with intensity > 7 × 10⁻²⁶ cm/molecule fitted, others fixed
- ✓ Fitted parameters [in addition to b_L⁰(N₂)]
 - Single wavenumber calibration for all spectra
 - CH₄ mixing ratio
 - Single pressure-induced shift for each multiplet
 - Line-mixing (Rosenkranz)
 - Baseline : polynomial, up to 2nd order

Example: multispectrum fit of R(10)

Theoretical model

• Lines broadenings are calculated through a semiclassical theory.

• Spectrum:

(Average over both initial conditions and evolutions.)

- Binary collisions, impact approximation.
- Quantum internal dynamics, tetrahedral formalism for CH₄.
- Electrostatic interactions and at short range (major contribution).
- Relative trajectories: paraboloidal (classical), computed from the isotropic potential (molecules = spheres!).
- Symmetrized formalism (T_d).
- Very complicated, but without any fitted parameter.
- See T. Gabard and V. Boudon, JQSRT 111, 1328–1343 (2010).

First trial modelling

Broadening coefficients for the cold band

11th International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

First trial modelling

Broadening coefficients for the hot band

11th International HITRAN Conference – 10th ASA Conference • June 16–18, 2010

IV. Conclusion

Conclusion

- These results constitute the first measurements and analysis ever attempted for the collisional broadening coefficients of CH₄ by N₂ in the far infrared.
- The values we measure are close to those observed for excited vibrational states (*ca*. 0.06 cm⁻¹.atm⁻¹) The *J* dependence is also consistent.
- As expected, we see that the values obtained for the collisional broadening coefficients depend on the fine structure of the rotational states. Thus, taking constant values would lead to errors.
- Even with the long absorption path achieved, the spectrum is rather weak, preventing extraction of line-mixing information.
- The present collisional broadening coefficients could be included into the HITRAN database.