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The present .result thus lies fairly close to the values of 
Weber and of Lees, the difference between it and each of 
these (extrapolating to 20 ° C. from the numbers given above) 
being about three per cent. 

In conclusion, we hope to be able shortly to apply our 
method to two problems upon which it seems desirable that 
more work should be done--the temperature-coefficient of 
water and the properties of solutions. Each of these measure- 
ments amounts to the comparison of the thermal conductivitics 
of two liquids in different physical conditions, and the ex- 
perience now gained of the working of our apparatus points to 
its being particularly well adapted to such comparisons. 

I[I .  Re flexion and Refraction of Elastic Waves, with Selsmo. 
logical Applications. By Professor C. G. KNOTT, D.Sc.~ 
F.R.S.E.* 

A T Lord Kelvin's suggestion I reproduce, with additions 
and extensions, a paper I published eleven years ago 

in the ' Transactions' of the Seismological Society of Japan. 
]]his Society ceased to exist some years ago ; a fact which 
may serve as a further reason for reproducing a paper~ 
in which the problem of the behaviour of an elastic wave 
incident on the interface of rock and water was for the 
first time fully worked out. In that paper also, I believe, 
the sound method of treating the general problem when the 
two media are elastic solids was first explicitly stated (see 
below, pp. 71, 92). 

For convenience I have divided ~he present communication 
into three parts. 

Part I. is a reproduction of my seismological paper of 
1838 with a taw verbal corrections. Footnotes added now 
are enclosed in square brackets. 

Part I l cont~tins detailed numerical calculations for rock- 
rock interface and for rock-air interface, similar to the calcu- 
latio,~s for rock-water interface in Part I. 

Part i I I .  gives the mathematical investigation and the 
various sets of formulm on which these calculations are based. 

PXRT I.~ 
EARTHQUAKES AND E,~RTHQUAKE SOUNDS : as Illustrations of 

the General Theory of Elastic Vibrations. 
The first systematic application of the theory of vibrations 

to the problems of earthquake motion was made, I belier% 
Communicated by the Author. 

t [Read at Tokyo before the Seismological Society of Japan, February 
23rd~ 1888, and published in their ' Transactions' of that year.] 
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by Hopkins in his " Report on the Theories of Elevation and 
Earthquakes," presented to the British Association in 1847. 
During the forty )Tears which have elapsed since then, our 
knowledge of earthquake phenomena has steadily grown. 
The labours of Mallet have been largely supplemented by the 
observations and experiments of a small army of enthusiasts~ 
who have pitched their tents on the trembling soil of Italy 
and Japan. Their energies have been mainly directed to 
the per(ecting of seismographs and seismometers, to the 
registering of all kinds of earth-movements, to the study of 
the effects of these on buildings, and, in a limited degree, to 
the measurement of the velocities of propagation of dis- 
turbances due to artificial earthquakes. With all this activity 
on the experimental side, we have to confess that theoretic 
views have hardly advanced beyond the stage in which 
Hopkins left them in 1847. G . H .  Darwin's discussion of 
the strains due to continental areas, and Lord Rayleigh's 
investigation into a special case of surface-waves on an elastic 
solid, are perhaps the only mathematical pieces of work that 
have any distinct bearing on seismic phenomena. The 
former gives an obvious raison d'dtre for the existence of 
seismically sensitive regions within the earth's ernst, but, 
being an equilibrium problem, can throw no light on that 
progress of the state of strain which constitutes earthquake 
motion. Lord Rayleigh's results will be referred to hera- 
after in due course. Meanwhile, as it is my object to 
discuss in a general way how far earthquakes and their 
accompanying effects may be explained as disturbances in 
an elastic or subelastie medium, it will be convenient to 
reproduce here much that nmy be tbund in authoritative 
earthquake literature, such as Hopkins' and Mallet's 'Re-  
ports,' Mallet's 'Neapolitan Earthquake,' Milne's 'Earth-  
quakes,' and so on. 

From the general theory of the vibrations of homogeneous 
elastic solids, we know that there are three types of wave 
propagated with different velocities. If  we confine our 
attention to an isotropic elastic solid these types reduce 
to two, which are kinematically easily distinguished by the 
relation which the direction of vibration of any particle bears 
to the direction of propagation of the wave. Thus, in the 
one type the vibrations are normal to the wave-front; in 
the other they are transverse or tangential. Dynamically~ 
the types may be distinguished as the condensational and 
distortional waves. The former is of essentially the same 
character as ordinary sound-waves in air; and the latter 

I-'hil. Mag. S. 5. gel .  48. ~No. 290. Jull/1899. ~' 
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may be compared~ so far as direction of motion is concerned, 
to waves of light in the luminiferous rather. In the con- 
densational wave the vibrating particles move to and fro 
in lines parallel to the direction of motion of the wave. In 
the distortional wave the particles move to and fro in lines 
perpendicular to the wave's direction of motion. 

In all cases these two types of wave are propagated with 
different velocities, which depend upon the density and the 
elastic constants of the material. For an isotropic elastic 
solid there are two independent elastic moduli, known 
respectively as the bulk-modulus, or resistance to com- 
pression, and the rigidity, or resistance to distortion. The 
velocity of the distortional wave depends on the ratio of the 
rigidity to the density. The velocity of the condensational 
wave, however, is not so simply related to the other modulus, 
but depends for its value upon the rigidity as well. 

Take, for example, a uniform cylindrical rod of iron. By 
giving the one end of this rod a slight twist we may set up a 
series of torsional vibrations, whose velocity of propagation 
along the rod is to be measured by the square root of the 
ratio of the rigidity to the density. The velocity of pro- 
pagation of longitudinal vibrations, which may be supposed 
to be given by an impact on the end, is to be measured by 
the square root of the ratio of the so-called Young's Modulus 
to the density. ¥oung's Modulus is a definite function of 
the principal moduli already mentioned, being given by the 
tbrmula 

9nk/(3k+n), 
where k is the resistance to compression and n is the 
rigidity. 

Again, if we consider the case of plane waves in an infinite 
solid, we find that here also the velocity of propagation of 
the distortional wave is given by the ratio 4/n/Vp; while 
that of the condensational waves is measured in terms of a 
mixed modulus which is not necessarily the same as ¥oung's 
Modulus. its value is k+~n, which is equal to Young's 
Modulus only if 3k=2n. 

According to Navier's and Poisson's theory of elasticity 
we should have 3k = 5n. This is usually expressed by saying 
that, when a bar is stretched under a longitudinal pull, its linear 
contraction at right angles to the pull is one quarter of the 
elongation in the direction of the pull. So far as experi- 
ments with hard metals go, this ratio may vary from "2 to "4. 
~evertheless "25 may be taken to be a pretty fair mean 
value. 
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I f  we write m instead of kT~n*,  we obtain for the value 
of the Poisson ratio the expression 

~ ~ 2 r t  

s -  2(m--n)" 

The possible values of s range from + { to - -1  ; the former 
being its value in an incompressible elastic body, the latter 
its value in a body of infinite rigidity but finite compres- 
sibility. The luminiferous ~ether appears to be a substance of 
infinite resistance to compression ; but of the other limiting 
kind of elastic material we have no example. 

The velocities of the condensational and distortional waves 
are given respectively by the expressions ~/n-~/p and ~/n-~, 
p being the density of the material. 

There are experimental methods for measuring the quan- 
tities m and n ; and from them the two velocities can easily 
be calculated. Or, if the two velocities are known, it is 
possible to calculate from them the two moduli. Now it is 
quite obvious that m must  always be greater than n ; the 
ratio indeed varies from m for the case of the incompressible 
body to ~- for the ease of the infinitely rigid body. Of course, 
in the latter case, both waves travel with an infinite speed ; 
but the speed of the distortional wave can never become 
equal to the speed of the condensational wave, however large 
it is made to be. 

In deducing the true values of m and n from the two wave- 
velocities, we must know the density of the material. The 
only values I have been able to find for wave-velocities of 
both types in rocks are those given by Messrs. Milne 
and Gray.  These velocities were originally obtained from 
direct measurements of the elastic moduli of the rocks in 
question. The moduli themselves Professor Milne has 
recently furnished me with. In the following table they 
are given J', expressed in C.G.S. units, along with the Poisson 
ratio s. 

* This m is not the same as the m used by Thomson and Tait ; but 
for our present purpose it is convenient to use one symbol for the 
mixed modulus which determines the speed of the condensational 
wave. 

t In the notes given me by Professor Milne the numbers here 
tabulated under m are headed " Young's Modulus." This, I am inclined 
to think, is a mistake. Professor Milne himself, not having the complete 
records in possession is doubtful. At any rate, these numbers give the 
velocities of the normal vibrations as tabulated by Messrs. 1Mi]ne and 
Gray (see Phil. Mag., November 1881). Further, if they really were 
Young's Moduli, we should ha~e in granite and marble examples of 
substances which expand when compressed ! 

F 2  
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Rock. 
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Gran i t e  . . . . . . . . . . . . . . . . . .  

Marble  . . . . . . . . . . . . . . . . . .  

T u f f  . . . . . . . . . . . . . . . . . . . . .  

Clay-l~ock . . . . . . . . . . . . . . .  

Slate . . . . . . . . . . . . . . . . . . . .  

4"68× 10 ]1 

4"35 × 10 n 

2"44 × 10 l 

3"66 × 10 n 

6"07 × l0  ll 

1"44 × I 0  ll 

l-3 × 1 0  u 

1"3l × 10 n 

1'94 × 10 n 

2 . 4 5 x 1 0  n 

+ ' 2 8  

+ "29 

- -  ' 0 8  

--'07 

+ ' 1 6  

Two of the ratios come out negative, which means physically 
that, if  the substance be perfectly elastic, an extension of the 
substance by a pull in a given direction is accompanied by an 
extension at r ight angles to this direction. I t  also means that 
the ratio of the velocities of the two waves is distinctly smaller 
than in the other cases. This diminished ratio, it will be 
noticed, exists along with a diminished resistance to com- 
pression, while the rigidity continues to have much the same 
value as those which hold for the other rocks. In the cases 
of the tuff and clay-rock we may have to do with either 
a considerable compressibility, or a sluggishness in recovery 
due to the viscosity of the material. Such a viscosity might 
well show itself more distinctly in compression than in 
distortion. 

I f  we calculate from Milne's values of wave-velocities 
Obtained from his experiments on artificial earthquakes, we 
find for the ratio s in two different cases the values 4-'154 
and - - '152,  and for the corresponding ratios of m to n the 
values 2"43 and 1"76. 

In the calculations to be described presently, I have taken 
the following values of the several constants involved as a 
fair approximation to what might reasonably be regarded as 
somewhat near the truth, when tile elastic properties of fairly 
solid rock are to be considered. 

Density . . . . . .  g ----3 
Rigidity . . . .  . . n ----1"5 × 1011 
Ratio of the wave-moduli m/n = 3 
Poisson's ratio . . . .  s -- "25 

We now pass to the consideration of the transmission of 
waves in an elastic solid ; and first I desire to call attention 
to Lord Rayleigh's short paper " On Waves Propagated 
along the Plane Surface of an Elastic Solid " * .  To show 

* ~ P r o c e e d i n g s  of  t h e  L o n d o n  M a t h e m a t i c a l  Soc i e ty , '  vol .  xv i i .  
(1885--86). 
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that the paper deserves the special attention of members 
of the Society I need but quote the two concluding 
sentences : - - "  It is not improbable that the surface-waves 
here investigated play an important part in earthquakes, and 
in the collision of elastic solids. Diverging in two dimensions 
only, they must acquire at a great distance a continually 
increasing preponderance,"--that is, I presmne, as compared 
to waves diverging in three dimensions. 

The purposeof the paper is " to investigate the behaviour 
of waves upon the plane free surface of an infinite homo- 
geneous isotropic elastic solid, their character being such that 
a disturbance is confined to a superficial region of thickness 
comparable with the wave-length. The case is thus ana- 
logous to that of deep-water waves, only that the potential 
energy here depends upon elastic resilience instead of upon 
gravity." 

Starting with the usual equations of motion of a vibrating 
elastic solid, Lord Rayleigh obtains a general solution on the 
assmnptions that the displacements are harmonic functions of 
the time and the two coordinates parallel to the plane free 
surface, but are exponential functions of negative multiples of 
the distance from this plane. The boundary equations are 
then introduced ; and from the conditions for the equilibrium 
of a surface-element the various constants of integration are 
determined in terms of the circumstances of the assumed 
motion. Two cases are discussed in detail--thos% namely~ 
of an incompressible elastic solid, and of a solid for which the 
Poisson ratio has the value one-fourth. For both cases the 
results are very similar. Ttms, if the displacements are sup- 
posed to be confined to one plane, a particle at the surface 
moves in an elliptic orbit whose major axis is perpendicular 
to the plane surface of the solid. For the incompressible 
solid the major axis is nearly twice as great as the minor 
axis ; and for the other case it is about one and a half times 
as great. The displacement parallel to the plane surface 
penetrates but a short distance into the solid--to about one- 
eighth of a wave-length for the incompressible substance, and 
to about one-fifth for the other case. On the other hand, 
there is no finite depth at which the motion perpendicular to 
the plane vanishes. The surface-waves are propagated at 
a slightly slower rate than a purely distortional plane wave 
would be. 

It would appear then that ver~icaI motion on a level surface 
over which a disturbance is passing cannot exist alone. 
Associated with it there must always be a distinctly smaller 
horizontal motion, which vanishes completely at a short depth 
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below the surface. Lord Rayleigh's formulm also show that 
the amplitude of the displacement is directly as the wave- 
length; so that for vibrations of short period the surface 
motions are proportionally small. 

I f  ~e consider the features of earthquake motions, we find 
that the vertical motion when it is appreciable is always very 
much smaller than the horizontal motion. Hence we cannot 
have here merely the surface disturbance discussed by Lord 
Rayteigh. I f  his investigation touches upon any earthquake 
phenomenon, this phenomenon is never met with by itself alone. 
Horizontal displacements exist, at any rate along with it, of a 
magnitude greater far than Lord Rayleigh's result requires. 
r . . . .  . r  - -  The snnple conclusion is that ordmar~ earthquakes cannot 
be reg~rded as due to the propagation of surface-waves. 
Milne has, at various times, specuh~ted upon tile existence 
of' such surface-waves outstripping the vibrations transmitted 
through the mass. There never has seemed to me sufficient 
reason tot calling in the aid of these surface-waves~ as distinct 
from the mass-waves. Lord Rayleigh's investigation shows 
besides that the velocity of a surface disturbance is somewhat 
less than the velocity of the distortional plane wave travelling 
through the mass. There is no evidence of a quickened 
velocity. These two thcts, namely, the comparative minute- 
ness of the vertical motion il) all earthquakes, and the somewhat 
slower speed of Lord Rayleigh's surtaee-wave, seem to show 
that we can expect very little towards the elucidation of earth- 
quake phenomen% by taking into account the so-called 
sarface-wave. 

I now pass to the consideration of the reflexion and refrac- 
tion of plane waves at the surface of separation of two elastic 
media. In doing so I shall direct more especial attention 
to the case in which the one medium is rock and the other 
water. The case in which both media are solid substances 
is a good deal more troublesome to deal with ; and so far I 
have not had time to work out any detailed calculations con- 
cerning it*. A few general considerations will show the 
nature of the problem. 

The reflexion and refi'action of plane waves at the bounding 
sm'face of two media have been very closely studied by many 
mathematicians. Especially have their eilbrts been directed 
towards the explanation of the ordinary phenomena of light 
upon a purely dynamic basis. Cauchy, Green, Maceullagh, 
Lorenz,. Rayleigh, Thomson [Kelvin], may be mentioned in 
this connexion. It is sufficient here to point out that, when 
the problem is worked out for the case of two incompressible 

[Now worked out below, Part II.]. 
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elastic substances of" equal rigidities but different densities, 
results are obtained in fhir accordance with observation. The 
media being incompressible, no wave of condensation can be 
propagated through them. Distortional waves only canexist. 
Thus an incident distortional wave failing on ~he bounding sur- 
fhce will, in general, be broken up into two waves--one reflected 
into the first medimn, and the other refracted into the second 
medium. But although distortional waves alone exist in the 
media, the correct solution of the problem in elastic solids 
requires us to take account of something existing at the 
bounding surface of the nature of a condensational wave, 
We must bear in mind, indeed, what the physical meaning 
of incompressibility is. I t  is not that the condensational wave 
vanishes, but that it is transmitted with infinite velocity. By 
taking this surface disturbance into account--this pressural 
wave as Thomson [KelvinJ has called i t - -we are able par- 
tially to explain certain phenomena of reflexion and refraction 
of polarized light in terms of the theory of elastic solids. 

Now in this special problem we begin with a distortional 
wave incident on the bounding surface; and, although the 
media are taken as incompressible, we must not neglect the 
effect of the pressural wave. Hence, if our methods of attack 
are to be the same in all cases, we must admit the possibility 
of true waves of compression being started in media of finite 
compressibility, when upon their boundary a single distortional 
wave impinges. In other words, an incident distortional wave 
may be broken up into four parts : - -a  reflected distortional, 
a refracted distortional, a reflected condensational, and a 
refracted condensational. In like manner, an incident con- 
densational wave will in general give rise to reflected and 
refracted distortional waves as well as to reflected and refracted 
condensational waves. 

The various angles of reflexion and refraction are easily 
calculated in terms of the angles of incidence, it being noted 
that the surface trace is common to all the waves, in  other 
words, each wave velocity is, so to speak, the component in its 
direction of the velocity of propagation of the surface trace. 

Thus, let a condensational wave be incident at an auglet:) to 
the normal to the bounding surface ; let m, n, p, and m:, n,: 
p', be the wave moduli and densities of the two media, in the 
first of which the incident wave is given. Then if O: be the 
angle of refraction of the condensational wave, and q~ q~l the 
angles of reflexion and refraction of the distortional waves, 
the above condition gives these equations : - -  

• ~y~v ~ " 

_m cose@ 0 = ,_t cosec~ ~b---- ~ cosec O' = n cosec~ ~,. 
P P P 
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tN'ow, as n is less than m, there will always be a reflected 
distortional wave, except of course at normal incidence when 
8 = 0  °, or at agraz ing  incidence when 0=90% There will be 
refracted waves at all except the limiting incidences if m/p is 
greater than m:/p:. I f  m/p should be intermediate in value 
to m'/p / and n:/p' there will always be a refracted distor- 
tiona] wave, but for angles of incidence higher than a certain 
critical value a refracted condensational wave is impossible. 
Further ,  ifm/p should be less than n//p ', then, for each refracted 
wave, there is a special critical angle of incidence at and above 
which the wave vanishes. When the critical value corre- 
sponding to the refracted distortional wave is reached, there 
will be total reflexion, and the whole energy of the incident 
wave will be divided between the two reflected waves. 

I f  the incident wave is a distortional wave, there must 
always be a critical angle of incidence for and above which the 
reflected condensational wave vanishes. The existence of 
such critical angles for the refracted waves will depend upon 
the relative values of the quantities n/p, m//p ', n'/p: ,--the con- 
dition for the possibility of total reflexion being that ~@ is less 
than nl/p '. 

i f  one of the media is a fluid, there can, of course, be no 
distortional wave in it. I t  is this somewhat simple case I 
I)ropose to discuss in detail. ][ shall not here enter into the 
purely mathematical method "~ by which the energies of the 
• "arious possible waves have been determined. I t  is sufficient 
to say that it is the usual mode of treatment of plane waves, 
an harmonic form being assumed and the constants determined 
so as to satisfy the equations of motion and the boundary 
conditions. 

We shall take then, as the one medium, water;  and, as the 
other, rock of density 3, rigidity 1"5 × 10 t: and Poisson ratio 
"25. The density of the "water is taken as unity and the 
value of the bulk-modulus, which in this case is also the 
wave-modulus, 2"2 x 10 ~°. The quantities are given in c.a.s. 
units. The manner in which, for different angles of incidence 
in the rock, the energy of the incident wave is distributed 
amongst the reflected and refracted waves is shown in ~he 
following tables. The first refers to the case of the incident 
wave being condensational; the second to the case of the 
incident wave being distortional. The quantities A Ax A' 
represent the energies of the incident, reflected, and refracted 
condensational waves ; B B: B' the energies of the similar set 

• [The mathematical investigation and formulm are given below, 
pa~ Ig.]  
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of distortional waves. Tile corresponding angles of incidence, 
reflexion, and refraction are given in contiguous columns--0 
referring to the condensational and ~b to the distortional waves. 

Incident Wave Condensational. 

Incident .  Reflected. Refracted.  Reflected. 

O. 

0 o 
1.0 o 
20 ° 
30 ° 
40 ° 
50 ° 
60 ° 
70 ° 
80 ° 
89 ° 
90 ° 

n .  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

! 1 1 
l 

"599 
"536 
"377 
"195 
-056 
"006 
'014 
"031 
-000 
"616 

O. 2~t .  

0 ° "40[ 
3 ° 49' "397 
7 ° 32' "370 

I I  ° 2 '  "333 
14 ° 15' "293 
17 ° 4'  '244 
19 ° 22' "206 
21 ° 5 '  '188 
22 ° 9'  "182 
22 ° 31' @;9 

'000 

0 o 

5 ° 45' 
11 ° 23' 
16 ° 35' 
2t  ° 47' 
25 ° 15' 
30 ° 
32 ° 15' 
31 ° 39'  
35 ° 16' 

"000 
"071 
"254 
"456 
"660 
"753 
"775 
"783 
'818 
"314 
'000 

Incident Wave Distortional. 

Inc ident .  Reflected. l%fleeted, l~efrae~ed. 

0. B. 

0 ° 1 
10 ° 23' 1 
21 ° 47 '  1 
30 ° 1 
34 ° 39 '  1 
35 ° 12; 1 
35° 
36 ° 
40 ° I 
50 ° 1 
60 ° 1 
70 ° 1 
80 ° 1 
89 ° 4 5 ' ]  I 
90 o I 1 

i 

B 1 • 

"1 
"711 
"222 
"014 
"027 
'679 

t 
"584 
"46I 
"504 
"506 
"520 
"634 
"818 

1 

0 t • 

0 o 
20 ° 
40 ° 
60 ° 
80 ° 
89 ° 
90 ° 

A l . O r. 

• 0 o 0 o 

"253 7 ° 32'  
'656 14 ° 15' 
"779 19 ° 22'  
• 815 22 ° 9' 
• 311 22 ° 31' 
• 000 22 ° 31' 

22 ° 56 '  
25 ° 14' 
30 ° 33' 
35 ° 4'  

"~ 38 ° 34' 
40 ° 47'  
41 ° 34' 

A t . 

'206 
'157 
'007 
"000 
"415 
'539 
'495 
"494 
'480 
"366 
"183 
"000 

In the first table B and B' of course do not appear ; and in 
the second table A and B' do not appear. 

I t  should be mentioned that each wave-energy is calculated 
independently ; and a test of tile accuracy of the calculations 
is aflbrded by the condition that the energy'of the incident 
wave must be fully accounted for. That is, since, in every 
case the incident wave (either A or B) is taken as unity, the 
sum of all the others must be unity. 
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The chief peculiarities embodied in these tables are shown 
graphically in the corresponding curves (figs. 5 and 6, 
p. 86). Any one curve represents the manner in which 
the energy of each wave depends on the angle of incidence. 
The angles of incidence are measured off along the horizontal 
line ; and the corresponding energies are represented by the 
ordinates perpendicular thereto. The energy of the incident 
wave is of course represented by a straight line at unit 
distance from the line along which the angles of incidence are 
measured off. 

The first set of curves shows the state of things for an 
incident eondensational wave. For  the sake of brevity, we shall 
occasionally refer to the diffbrent waves by the letters A A1 A I 
]3 ]3j chosen to represent their energies. At perpendicular 
incidence condensational waves only are started at the bound- 
ing surIhee; and as the angle of incidence increases the 
energies of both of these diminish. A r, which we may also call 
the water wave, seems to fall off' continuously until it vanishes 
at grazing incidence. The A-wave, however, vanishes at two 
distinct incidences, and after bO ° is reached begins to increase 
till at 90 ° it attains unity. The behaviour of this reflected 
condensational wave is extremely curious, the wave being 
practically non-existent for incidences between 50 ° and 80 °. 
The greater part of the energy of the incident wave is then 
accounted for by the B1 or reflected distortional wave. For  
incidences higher than 45 °, three-quarters of tile whole 
incident, energy is so transformed. It  will be noticed that 
up to pretty high angles of incidence the energy of the water- 
wave does not suffbr any very great falling off. 

Turning now to the second set of curves, which show the 
state of things for an incident distortional wave, we meet with 
some very curious relations. For  reasons already discussed, 
the Al-wave cannot exist for incidences higher than a certain 
critical value, which depends only on the rock itself. The 
energy of this wave, however, attains a considerable maximum 
value for an angle of incidence slightly below this critical 
value. Ahnost for the same incidence, the energy of the 
Bl-wave falls to a very low minimum, almost vanishing 
indeed. Comparing this first portion of the second set of 
curves with the first set of curves as a whole, ~e see a 
general resemblance between the two. That is, the energy 
of the reflected wave of the same type as the incident wave 
rapidly falls off to a minimum as the angle of incidence 
grows, while that of the reflected wave of the other type 
rapidly increases to a maximum. Finally the energy of the 
reflected wave of the same type, in both cases quite abruptly, 
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runs up to equality ~vith the incident wave. In  the second 
set of curves this happens at the angle of total reflexion ; 
tbr, not only does the Al-wave vanish, but so also does the 
A/-wave *--which indeed never attains any great significance 
a~ the lower incidences. After tim critical angle of incidence 
is passed~ however~ the energy of the A~-wave soon reaches a 
maximum, being then of greater value than that of the B 1- 
wave, and gradually fails away to zero, while the energy of 
the Bl-wave as gradually rises to unity. 

In t rying in some way to bring these results into corre- 
spondence with earthquake phenomen% we notice first of all 
that~ if an earthquake is to be regarded as a progressive wave 
in an elastic solid, the angles of emergence of the waves will 
generally be small-- that  is~ the angles of incidence large. 
Hence we need pay but little attention to the state of affKirs 
at the lower incidences. For  higher incidences we see that 
whether the inci,ient wave is condensatioaal or distortional~ 
the energy is reflected either wholly or almost wholly in the 
distortional wave form. Suppose ibr example that a disturb- 
ance begins at some region below the bottom of the sea~ 
say at the point C in the f igure;  and let us assume that 
what starts from (3 is a simple wave of compression--that 
is a condensational wave. Then to an)" point t ) suitably 
placed~ there will come not only a purely condensational but 
also a distortional wave produced by refiexion from some 
part of the surface separating the sea and the land. 

I t  is easy to see~ however~ that this transformation of eon- 
densational into distortional straining will accompany all 
similar eases of reflexion at the boundary of two dittgrent 
lnedi% whether the one medium is water or some other sub- 
stanee--air~ say, or mud~ or rock. Also we may safely assume 
that during r~'rc~ction across a boundary separating two 
medi% both being of the category of clastie solids, an incident 
condensational wave will give rise to a distortional as well as 
to a eondensational refracted wave. In the light of these 
results, then~ it is little wonder that no defiJdte relation has 
ever been shown to exist between the manner of motion of a 
particle and the direction of propagation of an earthquake. 

e This seems to be a result as novel as it is curious from a purely 
theoretical point of view~ although it has no special bearing on eaa'th- 
quake phenomena. [See below, p. 95.] 
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I should also be inclined to regard as absolutely futile any 
attempt to infer the nature of the movement in which the 
shock originates from the nature of the motion of any surface 
particle. 

Even in the extremely simple case of an isotropic elastic 
solid, we see how a single reflexion (and probably refraction) 
is sufficient to alter the type of wave motion, or rather to 
bring into existence the other type. How much more will 
this be true ill such a heterogeneous mass as we know the 
earth's crust to be ! And if the large earth shirtings, which 
certainly mean straining beyond the limits of elasticity, differ 
essentially from the purely elastic disturbances we have just 
been considering, it will not be in the direction of simplicity. 
I t  seems reasonable to expect in these also somewhat analo- 
gous, although much more complex, relations. Hence it 
may safely be concluded that the existence of distortional or 
transverse waves does not of necessity imply a faulting of 
rocks, any more than that the existence of the other type 
necessarily points to a rupture or an explosive increase of 
pressure. In short~ as observation has only too plainly 
demonstrated, it seems vain to look for any certain separation 
of£he normal and transverse types of vibration. Only when 
the origin of the disturbance is within a few miles of us, and 
is at an insignificant depth below the earth's surface, can we 
reasonably expect to find an appreciable separation of the 
two types of waves*. 

At this stage we may very fitly consider the general 
import of the assumption of the existence of these two types 
of wave in earthquake motion. The assumption is tanta- 
mount to regarding the earth's crust as isotropic. Such a 
characteristic may safely be applied to surface soil ; so that, 
in artificial earthquake experiments, such as Milne has 
carried out, it may be an easy matter to distinguish the 
normal vibrations as ~helr wave outstrips that of the trans- 
verse vibrations. But it is altogether out of the question to 
regard any stratified rock as isotropic ; while as for non- 
stratified rocks, their heterogeneity makes a theoretical dis- 
cussion of their elastic properties impossible. By considera- 
tion then of the elastic properties of homogeneous isotropie 
media, we can only hope to get at best a glimpse into the 
seismic darkness. And small though the present contribu- 
tion may be to the vast problem of earthquake motion, it 
surely will have some value i f  only it opens our eyes to the 

* [This statement requires modification in the light of recently 
acquired knowledge regarding" the transmission at great speeds of tremors 
through thousands of miles of the earth's material.] 
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vanity of expecting the study of sm'face motions to throw 
much light on the question of earthquake origin. 

And now let us pass to the discussion of the refracted 
water-wave. Here a glance at the two sets of curves shows 
that the incident distortional wave is, at the higher incidences, 
much more efficient than the condensational wave in creating 
a progressive disturbance in the water. The angle of refrac- 
tion can never exceed 42 ° ; so that even for very high in- 
cidences the water wave will travel upwards to the surface 
tolerably directly. Here I think we may have the explana- 
tion of the curious bumpings which have sometimes been 
felt at sea. These must not be confounded with the so-called 
tidal waves so frequently the companions of earthquakes, and 
due almost without a doubt to large displacements of the ocean 
bottom. What I refer to here are the jerks or shakings 
(sometimes aceoml~anied by sounds) discussed by Milne 
in the opening paragraph of chapter ix. of his book on 
'Earthquakes. '  Sounds of course will be heard if the 
periodic time of any of the components in the wave-motion is 
short enough, and if at the same time the intensity is sufficient 
to give rise to azldlble sound waves in the air, either directly, 
or indirectly through the medium of such a solid as a strip. 
According to Colladon's experiments at the Lake of Geneva, 
the speed of sound in water at 8°'1 C. is 1435 .metres per 
second. This gives 14"35 metres (or about 8 fathoms) for 
the wave-length of a wave whose pitch is 100 vibrations per 
second. A slower vibration will of course give a longer 
wave-length ; and a quicker a shorter. But enough has been 
said to show that in such a wave of condensation we have 
~omething quite fitted to affect even a large ship as a whole. 

Now all that has been said regarding the transference of 
vibrations from rock to water will, in a general way, hold 
true of their transference from rock to air. For all angles 
of incidence in the rock, the angle at which the refracted ray 
passes out into the air is very small. Thus, returning to the 
equation 

m cosec2 0 = m' P -~ cosec 2 0, 

and Mviu~ mr, the wave-modulus in air, the value 1"41 x 106, 
and ~' the value "0013, we find, with the same values as 
formerly for the rock constants, 

cosec~0 = "00242 cosec ~ 0q 

Hence if 0 = 90 °, 0 '=  2 ° 50' nearly. 
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Ill the same way, calculating for the incident distortional 
wave, we obtain 

cosec:~b = "00726 cosec ~/9'. 

Hence if 90 ° , 8 I =  4 ° 531 fully. Thus, whatever the 
incidence, ~he  refracted wave goes off in a direction never 
more than 5 ° removed from the normal. 

Into a detailed calculation regarding the distribution of 
the energy, it is not necessary to go ~. The amount of 
energy which gets into the air as a condensational wave is 
extremely small compared to the vibratory energy existing 
in the rock. With the constants as given above it is doubtful 
if for any incidence as much as the thousandth part of the 
original energy is so transmitted into the air. For  most 
incidences it is distinctly less. 

I t  is thus easy to see why in earthquakes which may be 
accompanied by considerable mechanical violence, there may 
be no audible sound phenomena. The essential condition for 
the production of earthquake sounds is a sufficiently pronounced 
vertical motion with a sufficiently rapid period. According 
to Professor Sekiya's recent analysis t ,  vertical motion as 
measured on the seismographs is absent from most of the 
earthquakes that shake Japan. When vertical motion is 
apparent, it is in the more intense shocks. We cannot 
assume of course that the vertical motion is absent in those 
cases in which the seismograph shows no trace of it. I t  is 
always much smaller than tbe horizontal motion, being on 
the average only one-sixth of it. Hence when the horizontal 
motion is itself very small, as in the weaker shocks, the 
vertical motion may be too small to affect the seismograph. 
Or, as is more than likely, it may have too short a period to 
make itself felt, even though its amplitude may be large 
enough to be otb,~rwise apparent. We must be careful 
indeed not to confuse the seismograph indications with the 
rapid el~stie vibrations ~hi('h seem a necessity for the pro- 
duction of sound phenomena. That the quick short-period 
motions that precede the big wave as shown on our seismo- 
graphs may co-exist along with vertical vibrations sufficiently 
rapid to cause audible sounds is highly probable ; but in no 
other sense can they be regarded as "connected " with those 
so,nds, as seems to be suggested by Milne. These rapid 
sinuosities appear on all the best diagrams showing the 

* [This calculation is now given below, Part lI. Case (4).] 
~" ~ee Tlansacfions Seism. Sot'. oi Japan, vol. xii. ; also the Journal 

of the College of Scienee~ Imperial University, vol. it. 
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horizontal motion ; but, as I belier% it is the ~'ertical motion 
we must look to specially. 

Another point brought out strongly by Sekiya's analysis 
is that in no case has he found the vertical motion pre- 
cede the horizontal motion. The vertical seems always to 
show itself later. It  is certain, however, that earthquake 
sounds are often heard before the earthquake shock is felt. 
This simply means that the big earth shiftings which affect 
our seismographs are preceded by rapid vibratory motions 
which, however large they may be, cannot have any mechan- 
ical effect on the instruments. The case is exactly similar 
to what happens if we pass alternating electric currents 
through the coil of an ordinary galvanometer. No matter 
how sensitive the galvanometer, or how intense the alternating 
current,--so long as the alternation is rapid enough, no effect 
is observed on the galvanometer needle. So it cannot fail to 
be with ordinary seismographs as regards rapid vibrations. 
I doubt if a seismograph, mechanically capable of registering 
vibrations occurring at even so slow a rate as 10 per second, 
has been as yet imagined. It is very questionable also if 
those sinuous records which the seismograph tracings show 
• ts precursors of the large slow waves really indicate what is 
taking place in the soil. For, exactly as very rapid vibra- 
tions will not show at all on the seismograph trace, so some- 
what less rapid vibrations will not show to their full. 
There must always be a lagging of the record behind the 
motion recorded. Thus before a given motion has its full 
effect on the seismograph, the rapid reverse motion may set 
in and prevent anything like a complete record. :Not until 
a comparatively slow " swing-swang" of the ground takes 
place can we hope to have a tracing even approximately true 
as to amplitude. It is therefore well, I think, flint seismo- 
logists should bear this point in mind. It is highly probable 
that an earthquake is preceded by rapid vibr tory m,,tious. 
Th~,t we should expect ; and the early sinuosities of earthquake 
tracings certainly suggest the same. But that these sinu- 
osities can be taken as an approximate repres(.ntation of the 
amplitudes or periods of the rapid vibration to which they 
are due may well be matter of grave doubt. 

In conclusion, I would draw special attention to the fol- 
lowing point which seems to be of some importance. 

In the discussion of the propo.qatwn of seismic disturbances 
thro,tgh the earth's crust: a clear distinction sbouht 5e dr~wn 
betw,,en p~rel.q elastic ,,nd QUASI-elasbc i,/~,nomena. So long 
as the m,~terials co ,stituting the earth's crust are not strained 
distinctly beyond the limits of elasticity, we have to do with 
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purely .elastic vibrations. . .  These, generally speaking, will be 
transmitted wxth consxderable speed, comparable to that of 
sound in steel wires. Such high speeds have indeed been 
observed, their existence depending upon a small compressi- 
bility (or high rigidity) combined with a comparatively small 
density. Tile destructive effects of earthquakes are, however, 
due to the propagation of quasi-elastic disturbances. In them 
the material is distinctly strained beyond the limits of elasticity; 
or, at all events, so strained as to bring about conditions in 
which other strain-coefficients than the usual ones of rigidity 
and compressibility play the important part. It is quite to 
be expected that these quasl-elastic disturbances should travel 
much more slowly than the purely elastic ones. The investi- 
gation given above into the effect upon the type of elastic waves 
as they suffer reflexion at the boundary of two isotropic elastic 
media suggests the existence of analogous efibcts in the propa- 
gation of all seismic disturbances. The molotropy and discon- 
tinuity of the earth's crust will transform a disturbance of an 
originally simple type into one or more of excessive complexity. 
Furthermore, wherever a quasi-elastic disturbance suffers 
transformation at some region of discontinuity, it will give 
rise to a new set of elastic disturbances. And again, as the 
quasl-elastic disturbances lose energy per unit volume, partly 
because of radiation, partly because of dissipation, they will 
gradually lose their quasi-character, and become of a purely 
elastic nature. ]t is quite conceivable, then, that under certain 
circumstances the speed of a disturbance might undergo 
strange variations, appearing even to be accelerated as its 
intensity diminished. Such a phenomenon was observed by 
Lieut.-Col. Abbot at Flood Rock explosion in 1885. Of 
course a peculiar change of this kind might easily be due to 
the different elastic properties of successive portions of rock 
travelled through. It is quite possible, however, that the 
other explanation is the true one. It is known that a very 
intense sound travels faster in air than one of less intensity; 
and the same will be true of vibrations in elastic solids. But 
there must be a superior limit to the intensity, for intensities 
above which this relation will cease to hold. Viscosity, 
friction, and the little understood effects of permanent strain 
will make themselves more and more strongly felt as the 
strains increase beyond the limits of elasticity. I understand, 
indeed~ that in the case of cannon-reports the sound has been 
observed to travel somewhat less rapidly during its early than 
during its after stages. Here the very large initial a~rial 
disturbances bring in conditions, either thermodynamic or 
elasti% under which the ordinary theory fails even in ap- 
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proximate application. If  such a phenmnenon is mot with 
in the comparatively simple case of sound-waves in air, similar 
phenomena are certain to exist in tile more eomplex eases that 
correspond to earth shakings. 

Another point which this explici~ recognition of purely 
elastic and qua~4-elastic disturbances suggests is in relation to 
the measurement of earthquake velocities by comparison of 
the effects at distant statipns. Thus the purely elastic tremors 
felt at stations f~r distant from the centre of seismic disturb- 
ance have probably not come as such directly therefrom. They 
are, so to speak, the feebler descendants of the quasi-elastic 
disturbances, which may have caused havoc at localities 
nearer to the seismic centre. The initi~,l elastic tremors felt 
at these nearer stations will reach the further distant ones 
with intensities so diminished as no longer to be appreciable. 
Thus in the very usual method of timing the arrival of a 
tremor by the blurring of an image reflected from the surface 
of mercury, it is evident that the speed, as estimated between 
two stations in the line of propagation of the disturbance, 
must be somewhat smaller than the true value. For before 
the particular tremors which sufficiently blurred the image a~ 
the first station have reached the second one, their intensity 
has become diminished. Hence the sufficient blurring of the 
image at the second station is due to the diminished violence 
of tremors which passed through the first station subsequently 
to the blurring of the image there. Now the same reasoning 
will apply with even greater [orce to other than mere tremors ; 
and especially will it apply to the case of the propagation of 
the quasi-elastic disturbances which constitute dangerous 
earthquakes. 

If the views so far expressed are eorreeg, there is no difficulty 
in understanding the nature of earthquake-sounds. As already 
point~ed out, they are to be traced to rapid vertical vibrations 
of the ground, so rapid as to be inappreciable on our seismo- 
graphs. Sometimes they may be due to transverse vibrations 
of walls caused by horizontal displacements of the ground ; 
or, as suggested by Mallet, they may be transmitted through 
the framework of the body. That these sounds should fre- 
quently precede the coming of the true earthquake-shock is 
simply due to the running ahead of the purely elastic waves. 
The nature of the rock or soil through which these waves 
proceed will have a powerful influence upon their final 
intensity. Thus in soft reek viscosity will soon destroy the 
vibrations of short period. In such circumstances there will 
be less chance of hearing earthquake-sounds than when the 

.Phil. Mug. S 5. Vol. 48. No. 290. July 1899. G 
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rock is hard and solid. Very frequently earthquake-sounds 
die away before the earth-swayings have ceased--a fact which 
is probably connected with the short-lived character of the 
vertical motion as compared with the horizontal motions traced 
out by our seismographs. 

Wi~h the air pulsations, which if rapid enough constitute 
audible sounds, the following curious effect of earthquakes 
may have some connexion. 1 am indebted to Professor Sekiya 
for the information. I t  seems that at the time an earthquake- 
shock passes, or it may be a little sooner, birds flying in the 
air have been seen to drop suddenly, as if for an instant 
paralysed, and then to recover themselves. This effect 
might be sufficiently explained as due to a momentary mental 
paralysis produced by tbar. Perhaps, however, we have a 
sufficient physical cause in the air pulsations, a slight change 
of density being enough to disturb the delicate poise of the 
hovering bird. 

PAtrr I[. 

ADDITIONAL EXAMPLES OF REFLEX]ON AND REFRACTION OF 
ELASTIC WAVES IN TItE EARTH'S SUBSTANCE. 

To the detailed numerical results formerly published for 
the case of rock and wa[er, I now add the corresponding 
results for rock and rock, for rock and air, for solid rock and 
fluid rock, assuming certain relations among the densities 
and rigidities. The hypothetical case of rigidities equal and 
densities as 1 to 2 was worked out several years ago;  the 
others have been worked out quite recently. In calculating 
these I have taken as the angles of incidence the angles for 
which the cotangent has values ~ ,  4, 2, 1, 0"6, 0'3, 0"1. 
When expedient i have introduced other angles, especially 
when there were critical angles corresponding to cases of 
total reflexion. The angles of reflexion and refraction corre- 
sponding to these are given in the tables only to the nearest 
degree. The angle of incidence or reflexion of the eondensa- 
tional wave is represented by 0, and 0 ~ is the angle of 
refi+action of the wave of tile same type. The symbols ~b and 
~)' represent the angles of incidence (or reflexion) and 
refraction of the waves of distortional type. The letters At, 
A ~, represent the derivative condensational waves ; and B1, B ~, 
the derivative distortional. The tabulated numbers give the 
energies, the energy of the incident wav% A or B as the ease 
may be, being taken as unity. 
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I. Condensatlonal-rarefactlonal Wave Incident on the Interface 
of two Elastic Solids; of which the Rigidities and Com- 
pressibilkies are eq~tal and the Densities as 1 to 2. 

(1) Inciden~ Wave in the less dense medium. 

O. -~-. 

0 ° 1 
14 ° 2'  1 
26 ° 3~:' 1 
45 ° l 
59 ° 2'  1 
73 ~ 18' 1 
8 ~o 17' 1 

t .  

"03 
"024 
"Ol~l 
"001 
" 0 l l  
"1~8 
"511 

Ore A I. 

"97 
10 ° '970 
18 ° "958 
30 ° "930 
37 ° "88l 
43 ° '743 
45 ° "410 

4" ~ l '  
0 

8 ° '004 
15 ° '016 
24 ° '039 
30 ° "062 
34 ° '071 
35 ° '044 

Or. Bt. 

0 
5 ° "003 

11 ° '011 
17 ° "029 
21 ° "047 
23 ° "055 
24 ° "035 

(2) Incident Wave in the denser medium. 

O° 
0 o 

i t  ° 2'  
26 ° 3~'  
42 ° 16' 
45 ° 
45 ° 17' 
48 ° 
59 ° 2' 
73 ° 18' 
84 ° 17' 

.R. A I. 

1 '03 
1 "025 
1 '015 
1 "020 
1 "444 
1 "4f~3 
1 '5L4 
1 "631 
1 -825 
1 '936 

0 t , A t ,  

"97 
20 z "966 
39 ° "939 
72 ° "767 
90 ° 0 
imaginary .  

9" 131, 

8 "004 
15 ° "0[8 
23 ° "093 
24 ° "244 
24 ° "237 
25 ° '210 
30 ° "144 
34 ° "08~ 
35 ° "033 

B'. 

11 ° "006 
21 ° "025 
33 ° "119 
35 ° "311 
36 ° "302 
37 ° "266 
44 ° '167 
52 ° '089 
54 ° "032 

The chief points to be noted here are :--(a) The manner in 
which the energy of the reflected condensational waves, always 
small at the lower incidences, passes through a minimum 
value, and the suddenness with which, in the second case, it 
increases when the angle of total reflexion is reached ; (b) 
the simultaneous rapid increase, in the region of this critical 
angle, of the energy of the derivative distortional waves ; (c) 
the fairly large values of these distortional waves when the 
condensational wave is incident on the denser medium, more 
than half the energy taking this form fbr incidences in the 
neighbourhood of 45 °. 

G 2  
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2. Distortional Wave Incident on the Plane [nte~Sace of two 
Elastic Solids, of wMeh the Rigidities and Compressibilities 
are equal and the J)ensities as "2 to 3. 

(1) I n c i d e n t  W a v e  in  t he  d e n s e r  m e d i u m .  

0 ° 1 
14 ° 2' 1 
26 ° 34' 1 
45 ° 1 
54 ° 24' 1 

"011 
"01 
'012 
"01 

1"00 

~ t  B ¢. 

'989 
17 ° "978 
33 ° "912 
60 ° "99 
imaginary. 

"0 
25 ° "005 
51 ° "0~7 
imaginary. 

0 t . ~k t . 

'0 
31 ° "007 
72 ° "029 
imaginary. 

J~ 

F o r  all h i g h e r  i n c i d e n c e s  t h e r e  is to ta l  r e f l cx ion .  

( 2 )  I n c i d e n t  W a v e  in  t h e  less d e n s e  m e d i u m .  

o. A~. 0'. A. ~° ~ .  

0 v 1 
14 ° 2' 1 
26 ° 34' 1 
45 ° 1 
59 ° 2' 1 
73 ° 18' 1 
90 ° 1 

"011 
-008 
"027 
'01 
"01 
"088 

1'00 

"989 
11 ° "984 
21 ° '943 
35 ° "99 
44 ° '99 
51 ° '912 
54 ° 000 

25 ° "005 
51 ° "019 
imaginary. 

20 ° .004 
39 ° .015 
imaginary. 

S i m i l a r  p e c u l i a r i t i e s  p r e s e n t  t h e m s e l v e s  h e r e .  I n  case  (1),  
fo r  e x a m p l %  t h e  r e f r a c t e d  d i s t o r t i o n a l  w a v e  a c c o u n t s  fo r  
n e a r l y  all t h e  e n e r g y  u n t i l  t h e  c r i t i ca l  a n g l e  is r e a c h e d ,  w h e n  
t h e  e n e r g y  in  t h e  r e f l ec t ed  d i s t o r t i o n a l  w a v e  s u d d e n l y  i nc r ea se s  
to  t he  f ina l  va lue  u n i t y .  The  c o m p a r a t i v e  s m a l l n e s s  in  t h e  
e n e r g i e s  of  t h e  d e r i v e d  c o n d e n s a t i o n a l  w a v e s  is due  to  t h e  
d e n s i t i e s  b e i n g  t a k e n  as 2 to  3, t h a t  is~ m o r e  n e a r l y  e q u a l  
t h a n  in  t h e  p r e v i o u s  case .  

3..Behavlour of Waves at the Plane Interface of the Slate and 
Granite, whose .Elastic Constants are as given in t]te Table 
on p.  68~ t]te .Densities being assumed to be equal. 

( 1 )  D i s t o r t i o n a l  W a v e  i n c i d e n t  in  the  Sla te .  

• ~ .  B .  

0 ° 1 
14 ° 2' 1 
26 ° 34' 1 
39 ° 25' 1 
45 ° 1 
47 ° 56' 1 
59 ° 2' 1 
73 ° 18' 1 
84 ° 17' 1 

][3]. 

'016 
"006 
"001 
"008 
"020 
'02 
'085 
"144 
"386 

"984 
11 ° "981 
20 ° "960 
29 ° "787 
33 ° '922 
34 ° "98 
42 ° "915 
48 ° '856 
50 ° "614 

0, ~1" 

22 ° "006 
45 ° "005 
90 ° 0 
imaginary. 

O f. ~kt. 

20 ° "008 
39 ° "032 
62 ° "2 
81 ° '058 
900 0 
imaginary. 

J~ 
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(2) Distortional Wave incident in the Granite. 

85 

0 ° 1 
5 ° 43'  1 

14 ° 2 ' '  1 
26 ° 34' 1 
29 ° 48' 1 
83 ° 3 l '  1 
45 ° 1 
48 ° 1' 1 
49 ° 43' 1 

"016 
"014 
"004 
"009 
"075 
"026 
"11 
"145 

1.000 

'984 
7 ° "983 

18 ° @77 
35 ° "920 
89 ° "793 
45 ° "974 
66 ° "890 
74 ° "855 
90 ° 0 0 0 0  

0 ,  ~l- 1 . 

10 ° '001 
28 ° "006 
54 ° "0002 
62 ° "132 
90 ° 0 
i m a g i n a r y .  

D 

0 t , .At. 

12 ° '002 
30 ° "013 
65 ° "071 
90 ° 0 
imagil~ary. 

(3) Condensational-rarefactional Wave incident in the 
Slate. 

0 ,  ~k. 

0 ° 1 
14 ° 2' 1 
26 ° 34'  1 
45 ° 1 
59 ° 2'  1 
73 ° 18' 1 
84 ° 17' 1 
87 ° 17' 1 

,AI" 

"041 
"002 
"004 
"003 
"004 
'006 
"247 
"500 

12 ° 
22 ° 
32 ° 
50 ° 
58 ° 
62 ° 
62 ° 

A' .  ~. B~. 

'959 
• 992 9 ° "003 
• 979 16 ° "008 
• 949 24 ° '011 
• 940 33 ° "0002 
• 901 37 ° '004 
• 668 39 ° '009 
• 411 39 ° "006 

O'. B' .  

7 ° "003 
12 ° '011 
19 ° '037 
25 ° -056 
28 ° '083 
29 ° '077 
29 ° "053 

(4) Condensational-rarefactional Wave incident in the 
Granite. 

O. 

0 o 

5 ° 43 '  
14 ° 2' 
26 ° 34' 
45 ° 
59 ° 2 '  
62 ° 33'  
73 ° 18' 
84 ° 17' 
87 ° 17' 

~k. ,A t • 

1 '041 
1 "004 
1 0 0 2  
1 '043 
1 "003 
1 "006 
1 "664 
1 "813 
1 '932 
1 "962 

Or. .At. 

"959 
6 ° "994 

16 ° "99I 
30 ° "978 
53 ° '948 
75 ° "890 
90 ° 0 
imaginary .  

:7 

D 

3 ° "001 
8 Q "003 

14 ° '007 
23 ° '005 
29 ° .004 
30 ° '131 
32 ° "08I 
34 ° "028 
34 ° '014 

¢'. ]3'. [ 

4 ° .001 
10 ° "004 
19 ° '015 
30 ° "044 
38 ° "100 
390 "198 
43 ° "106 
45 ° "041 
46 ° '023 

These four cases are shown graphically in figs. 1, 2, 3, 
arA 4. The curves which refer to the second medium are 
dotted. 

Undoubtedly the most peculiar are cases (1) and (2). For 
nearly all incidences in the one cas% and for incidences up to 
the critical angle for complete total reflexion in the other, the 
refraci~ed disgortional wave, B ~, is by far the most important. 
Except for a limited region in the vicinity of the angle at 
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w h i c h  the  re f l ec ted  condensa t i ona l  w a v e  vanishes ,  90 per  cent .  
o f  the  who le  in i t i a l  e n e r g y  is t r a n s f e r r e d  to t he  second m e d i u m  
in t he  d i s to r t i ona l  fo rm.  The  cu r ious  fall  in the  B ~ cm've ,  
and  the  c o r r e s p o n d i n g  a b r u p t  r ise  in the  A ~ o r  A1 c u r v e s  (or  
in t he  B1 c u r v e )  are  v e r y  cha rac te r i s t i c .  M e a n w h i l e  the  
e n e r g y  of  the  ref lec ted  disLort ional  w a v e  r ema ins  v e r y  s m a l l ;  
and  no t  un t i l  t i le  condensa t i ona l  de r iva t ives  have  become  
i m a g i n a r y  does  i t  a t t a in  a n y  app rec i ab l e  va lue .  ] t  t h e n  
increases ,  for  file h i g h e r  inc idences ,  at  an  a c c e l e r a t i n g l y  r ap id  
ra te ,  f ina l ly  b e c o m i n g  e q u a l ' t o  u n i t y - - a t  g r a z i n g  i n c i d e n c e  
in  the  one  case, at  the  c r i t i ca l  a n g l e  of  49 ° 43 ~ in  the  other .  

I t  is obv ious  that ,  w i t h  g r e a t e r  d i v e r g e n c e s  a m o n g  the  
va lues  o f  t he  cons tan t s  than  those  he re  chosen,  the  con-  
densa t i ona l  wuves  in cases  (1) and  (2) and  the  distorLional  
waves  in cases (3) and (-l) w o u l d  have  b e c o m e  r e l a t i ve ly  
more  i m p o r t a n t  ; b u t  the  e x a m p l e  b r ings  ou t  v e r y  c l ea r ly  the  
c o m p l e x  n a t u r e  of  t he  ~ h o l e  p h e n o m e n o n  of re f lex ion  at the  
p l ane  i n t e r f a c e  of  two  e las t ic  solids.  

4. Behaviour of IVaves at the Plane interface of l~ock and 
Air, the Elastic Co~stanls of the rock being taken as on p. 68, 
with the exception of the Density~ which is taken 2000 times 
that o( air. 

(1) D i s t o r t i o n a l  W a v e  i n c i d e n t  in Rock .  

0 1 
14 ° 2' 1 
26 ° 3~' 1 
33 ° 40' 1 
35 ° 13' 1 
39 ° 48' 1 
45 ° 1 
59 ° 2' 1 
73 ° 18' 1 
84 ° 17' 1 

B r 0. A~. 

• 534 25 ° '466 
• 025 51 ° "975 
'003 74 ° '997 

90 ° 0 
imaginary 

0'. A'. 

1°.6 .00002 
3 ° .00006 
3 ° .7 '00006 
3°-8 0.00000 
4°.3 "00019 
4°'7 "00016 
50-7 .00014 
6°.3 .00014 
6 ° -6 "00006 

(2 )  C o n d e n s a t i o n a l  W a v e  i n c i d e n t  in  Rock .  

~'. B t. I 0. 

I o  
I 14° 2' 

26 ° 34' 
45 ° 
59 ° 2' 
73 ° 18' 
84 ° 17' 

i 

2~k, A 1 .  

1 1 
1 "828 
1 "464 
1 "079 
1 "0002 
1 '003 
1 "091 

O r . A l l  ` 

'00013 
0°-9 "00013 
1°7 "00011 
2°.7 "00009 
3°'3 "00007 
3°'7 '00006 
3 ° "8 '00005 

8 ° "172 
15 ° "536 
24 ° '921 
30 ° 1 
34 ° "997 
35 ° "909 

I 
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The energy which escapes into tile air is so small that 
practically the whole energy remains in ?she rock. The 
general behaviour of the phenomenon is very similar to what 
was found in the case of rock and water, the differences 
being differences of degree and not of kind. Thus we may 
make the graphs for rock and water serve in a rough way 
for rock and air by imagining a few slight changes to be 
made. In the graph for the incident eondensational wave, 
imagine the distortional-energy curve, B1, to run up into 
practical contact with A when the anglo of incidence is about 
60 ° , to remain very near to it till about 75 ° , and then to fall 
rapidly away to zero at 90 ° . At the same time, because of 
the great minuteness of the refracted energy, A ~, the reflected 
eondensational energy At begins, at zero iucidenee, with 
practically unit value and is to a very close approximation 
the inversion of By In like manner, the incident distorfional 
wave is, for incidences between 0 e and the critical anglo 
35 ° 13 f, practically represented by the two reflected waves. 
The distortional energy begins and ends with value unity, 
passing through a small minimum value immediately before 
the critical angle is reached ; while the eondensational energy 
begins and ends with zero and passes through a maximum 
which is practically unity just  before the critical angle is 
reached. The refracted condensational energy, A ~, is very 
small throughout, and could not be shown graphically with 
the others unless it were drawn to a scale of a~ least 1000 to 1. 
Immediately after the critical angle is past the condensational 
energy in the air rises abruptly to the greatest value it ever 
attains, and falls off steadily with increasing incidences until 
it vanishes at grazing incidences. Practically the whole 
energy is retained in the solid in the purely distortional form. 

5. .Belmviour of graves at the _Pla~e Surface of Rock and 
_Fluid, w]wse 2Density and Com2)ressibilit~ J are e~ual to those 
of tire _Rock. 

(1) Distortional Wave incident in the Rock. 

~b° :B. 

0 1 
14 ° 2' 1 
26 ° 34' 1 
35 ° 13' 1 
45  ° 1 
50 ° 44 '  1 
H i g h e r  in-"! 1 

cidenees. ) 

]31 . 

1.725 

1'318 

"147 
1 

1 

0. ~1" 

25 ° "144 
51 ° "261 
90 ° 0 

imaginary .  

0'. A'. 

18 ° "131 
35 ° "421 
48 ° 0 
66 ° "853 
90 ° 0 

imaginary .  
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(2) Condensational-rarefactional Wave ineidenL in the Rock. 

0. ~ko 

0 1 
14 ° 2 '  1 
26 ° 34 '  1 
45 ° 1 
59 ° 2 '  1 
7 3  ° 18 '  
84 ° 17'  1 
90  ° 1 

A 1 • 

"02t 
"007 
'003 
"104 
"240 

1 "268 
"039 

1 

0t. ~ r .  

0 ° "979 
10 ° "937 
19 ° "839 
32  ° "646 
40  ° "~)3 
46  ° "471 
48  ° '618  
48° .2  

8 ° "055 
15 ° "158 
24 ° "256 
30  ° "256 
34  ° "261 
35 ° "344 
350"3 0 

The chief peculiarity in the first of these hypothetical cases 
is, perhaps, the v:mishing "~t two incideuces of" the refi'aeted 
wave in tile fluid. I t  wmishes at the critical angle (35 ° 13 f) 
at which the reflected condensational wave disappears; and 
then it has its own critical angle (50 ° 44'). 

Between these limits its energy rises to a pronounced 
maxinmm. In these respects there is a broad similarity between 
this ease and the cases of rock and water, and rock and air. 
The differences are only differences of degree, depending on 
the different relations among tile densities. 

The bearing of this investigation upon the question of 
Earthquake sounds has been discussed above. There is, how- 
ever, another point on which some light seems to be thrown 
by these calculations. I refer to the Preliminary Tremors and 
(comparatively) Large Waves, which were first observed in 
1889 and are now recorded on many delicate seismographs in 
countries which are not, in the ordinary sense, subject to 
earthquakes. The discussion of these forms the bulk of the last 
British Association Report of the Seislnological Committee : 
no one doubts that they have come from a distant earthquake 
origin, tile preliminary tremors outrunning the big waves 
as they pass through the earth. The origin being known, 
it is an easy matter to calculate approximately the average 
velocity of the swiftest of'these tremors. Following out one of 
Milne's suggestions, I have found * that the square of this 
average speed may be represented by the formula 

v~=2"9+ "026 d, 
where d is the average depth of the chord joining the eagh- 
quake origin with the station where the tremors are recorded, 
the units being miles and seconds. 

This involves an increase of about 1"2 per cent. per mile 

• See  " T h e  N e w  S e i s m o l o g y  " in  t h e  ' S c o t t i s h  G e o g r a p h i c a l  M a g a z i n e , '  
J a n u a r y  1 8 9 9 ,  
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descent below the earth's surface in the ~,alue of the elastic 
coeh2cient which determines the speed of transmission of the 
preliminary tremors. 

:But these preliminary tremors, from the moment they begin 
to show themselves, continue until the large wave-motion sets 
i n ;  and are probably continuous with the tremors which 
survive after the ]arge waves have died away. If  we regard 
the first recorded tremors as having passed from the earth- 
quake origin to the station at which they are being recorded 
by the path of shortest thne through the earth, the subsequent 
h'emors may he regarded as having arisen in one of two ways. 
They may be sent off as forerunners from the wave-front 
of the Large Waves, especially when this wave-front is passing 
across surfaces of discontinuity; or they may come by more 
or less circuitous paths, after it may be several reflexions from 
fissures or other surface barriers. A very distinct change 
in the elastic constants or in the densities of the materials in 
contact is sufficient to make the interface, for certain inci- 
dences, a practical harrier to the transmission of waves. 
Milne's recent discovery of reverberations, that is, the recur- 
rence of the same groups of' waves in the tremor record, seems 
to demonstrate the existenee of reflexion of waves within the 
body of the earth. 

PAler III. 

THEORETICAL DISCUSSION OF THE BEHAVIOUR OF ELASTIC 
WAVES AT THE PLANE INTERFACE OF SOLIDS AND 
FLUIDS. 

The equations of motion for phme waves in an elastic 
solid are expressible in the form 

I 
. . . . . .  (I.) 

J 
in which, the phme XY being taken perpendicular to 
the wave-fi'ont, tile displaeemenls in directions X, Y~ Z are 
respeetively 
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and in which p is the density, n the rigidity, and (m--½n) tlle 
hulk-modulus or resistance to compression. 

The stress-components have the values 

2n=--, S = n ~  p=@~+~,)V~¢_ ?~ 
Oj 

Q =  (m + ,~) V2~b-- 2n ~ x '  T = n D~v (II.) 

u=.(2 + 

where P, Q, R, S, T, U have the same meanings as in Thomson 
and Tait's 'l~atural Philosophy.' 

The components of stress on the plane whose normal has 
direction-cosines X,/z, v; are 

F = P X + U t ~  ~-Tv ] 

G = U ~ + Q / x + S v  I " . . . .  (IlI.) 
t t = T k +  S ~ + R ~  J 

The waves of the q) type are condensational-rarefactional 
waves travelling with a speed equal to 4/(m+n)/p. The 
waves of the ~ t, ype are purely distortional waves travelling 
with speed ~/n/p, the vibrations being in the plane XY. 

The ~" displacement belongs also to a purely distorti.nal 
wave, the vibrations being at right angles to the plane XY. 

Let the plane interface between two media, mnp and mlntp r, 
be perpendicular to the X-axis, then any incident wave of' the 

type will, in general, break up into two waves, a reflected 
wave and a refi'acted wave, of the same type. 

But  any incident wave of the ~ type will, in general, break 
up into four parts, two distortional (reflected and refracted) 
as well as two condensational-rarefactional (reflected and 
refracted). 

Similarly any incident wave of the ~ type ~ill also, in 
general, break up into four parts, two condensational-rare- 
factional as well as two distortional. 

The necessity for this duplication of reflected and refracted 
waves may be easily shown by a simple consideration of' the 
boundary conditions which must be satisfied at the interface. 

Even in the simple case of a solid bounded by an Jan- 
passable barrier~ we must assume the two reflected waves as 
derived from the one incident wave; or we encounter an 
absurdity. 



92 Prof. C. G. Knot t  on Re flexion and Refraction of 

This important  principle does not seem to have been 
explicitly recognized in the literature of' the subject, although 
Green 's  t reatment  of what Kelvin calls the pressural wave 
involves it *. In  1887 I introduced the complete discussion 
of the problem in my lectures on Elasticity to my advanced 
students in the Imperial  Universi ty of Japan ;  and made some 
definite calculations in regard to earthquakes in a paper which 
was read before the Seismological Society of Japan  in 
February  1888 and published in their 'Transact ions. '  This 
is the paper which is reproduced above. 

In  the September number of the ' Philosophical Magazine ' 
for 1888, Lord Kelvin gives the formulm for the case of the 
incident distortional waves, and discusses a similar problem in 
the February  nmnber  for this year (p. 179). 

I propose now to give the complete solutions for the 
different cases, the meanings of which are brought out by the 
definite numerical calculations given above. 

I. Distortional Wave at the Interface of two Elastic Solids. 

The solution is of the form 

• - e x + y + ~ t )  = Bdb(cx+v+,~t) + BI# b( 

~b = Aid b(-~+y+ ~t), 

~E'= Bl elb(o'z+Y+~t)~ 

cb I = AIe~b(~'~+u+'~t), 

in medium mnp ; 

in medimn m/n/p I. 

The equations of motion in the two media give the relations 

n ( c : + l )  = P  r~2-- ( m + n ) ( 7 2 + l ) '  }. (1) 
n'(c '~ + 1) = p'co ~ (m.'+ n') (7'2 + 1), 

The quantities c c / - / 7  r are evidently the cotangents of' 
the angles of incidence, ref'raction~ and reflexion of the various 
waves. 

The conditions to be satisfied at the surface, x = 0 ,  are 
(1) Equali ty of normal displacements on each side of the 

* To show how completely the principle was neglected, I need but 
reier to Question 9 on p. 378 of Ibbetson's ' Elasticity' (1887)~ in which 
a plane so-called " sound.-wave" is assumed to give rise to reflected and 
refracted waves of like type only, when it impinges on the plane interface 
of two elastic solids. It  is taken for granted that otlly the normal 
components of displacement and of stress in the two media are equal at 
every point of the interface. But no reason is even hinted at why the 
tangential components should be treated as of no account. In fact, for 
two solids in slipless contact~ all four conditions must be satisfied. 
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interface, or 

~b  ~ ~b '  bqt r when x = 0 .  
~x + b y -  ~x + - ~ -  

(2) Equality of tangential displacements on each side of 
the interface, or 

~ b  5 ~  b~b' 5 ~ '  when x = 0 .  
By ~ x -  By ~x 

(3) Equality of normal stresses on each side of the inter- 
f a c e ,  o r  

'. 
' ,oy  ~ x b y ]  = Ds ~xDY ] 

when x = 0. 
(4) Equality of tangential stresses on each side of the 

interface, or 

) 

when x---- 0. 

These lead to the equations 

--7AI + X = 7~A t + B r 

A 1 -  c Y  = A ' - -  c ' B  t 

(c2--1)A1+ 2cY = ~ (0'2 --1) A' +  n,o, B, ~ ( ~ )  "~ 
n 

27A1 + (c ~ -  1) X = n 7 A + n-- (c'~- 1)B' 

where X = B +  B1, and Y = B - - B I .  

Multiplying together the first and third of these and also 
the second and fourth, and then taking the difference of the 
two equatiolts so obtained, we get 

(~+I ) , rA~_(~+I )~X ¥ =  .~ (o,~ n' . 
- -  n -~ + 1)71M2-- n (d~ + 1)dBr*t 

which by (1) becomes 

~]p A t ~ + q,'ptArz + dp'B '2 = c p X Y  = cpB ~ -  cpB~ ~ . . . .  (3) 

This is the energy equation showing how the original 
energy (cpB ~) of the incident wave is distributed among the 
four waves into which it breaks up at the interface. In the 

~* These correspond to Kelvin's formulm Nos, 39-42 in h~s paper of 
1888 (Phil. Mag. xxvi. p. 422). 
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detailed numerical calculation of the ratios of the A and B 
quantities in any particular case, the energy equation supplies 
an important  criterion of the accuracy of the work. 

The e,quations (1) give the relations among the quantities 
c d T F for any assumed values of the densities and elastic 
constants. Hence for any chosen value of c, that is for any 
chosen angle of incidence, the corresponding values of F, 7, 
yt are readily calculated ; and the nmnerlcal values of the 
eoe~icients in equations (2) can be filled in. We are thus 
left with four simple nmnerical linear equations from which 
any four of the five quantities can be determined in terms of 
the fifth*. B and B I follow at once; and finally, by calcu- 
lating the terms in the energy equation (3) and dividing 
throughout by cpB ~, we obtain nmnbers showing the partition 
of energy mnong the reflected and refracted waves. 

When any one of the quantities d, % 7 I, becomes zero or 
imaginary,  there is no wave of that type. In  such cases the 
A and B qnantities nmy work out in the form 

p + q  ~/--1, 

and we must then take the expression p~+ q2 as the number 
on which the energy depends. 

I I .  Distortional Wave at the Tnte~Jace of an Elastic Solid 
a~d a .Fluid. 

There is no distortional wave in the second medium. The 
term in B ~ has therefore no existence ; and we have only 
three surface conditions. Obviously the second condition in 
the general problem is the one that must be dropped ; while 
in the fourth condition the right-hand side becomes zero. 

W e  may work out the solution ab imtio, or we may get the 
necessary equations by putt ing B ' = O ,  hi----O, and c ' ~ = ~  in 
the first, third, and tburth of equations (1). 

Also, c' being infinite, 

p' c "~+1, n 1~ pt ( c , 2 _  l )  = - -  ) = (c + 1 ) .  

I have found it both quicker and more accurate to fill in the 
numerical values in the equations as they stand, and then solve the 
e~uations for every individual case, than to write out the several algebraic 
exprcsAons for each ratio and then substitute. Except when n and n' 
are equal, or when either vanishes, the expressions are unwieldy. With 
a table of squares and square roots and with Crelle's Rechentafeln at 
hand, the four equations with numerical coefficients can be worked out 
with great ease. 
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Thus we find 

--7A1+ X = 7'A' 1 

J (c-°--l)A,+ 2cY - (c 2+ 1)A' (4) 
P 

2 7 & +  (c~-- 1)X = 0 3 

These give 

X -  27' A ' -  ~-c c~+l  1 ~A1 

y 1--C'~Al + P rl+c~ a , , [  (5) 

For numerical calculations these expressions are simple 
enough to be used as they stand. 

This is one of the cases I worked out in my paper of 
February 1888. 

The vanishing of everything except the reflected distor- 
tional wave when the cotangent of the angle of reflexioa 
of tbe condensationaLrarefaetional part is zero, is dearly 
brought out both in the Table on page 73, and in the 
curve (fig. 6). 

The condition is that 7 = 0  in equations (4). 
Hence also 

X = 0 and X = Ate/, 

so that A r also vanishes if 7' has a value differing from zero. 
This gives 

B = -- B1, 

and 
c 2 -- 1 

Y = 2 B =  2c A~; 

but the energy associated with the wave A1 is proportional to 
the product pTAt ~, and therefore vanishes with 7. Thus at 
the critical angle of incidence at which the reflected conden- 
sational-rarefactional wave runs along the interface, the 
refracted eondensational wave also vanishes, whatever its 
angle of refraction may be. The whole energy is found in 
the reflected distortional wave. 
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[II.  Condensational-Rarefactional Wave at the Inter/ace 
of two Elastic Solhls. 

The solution is of the form 
do =.AE ib(ez+y+~t)'4- Ate ib(-~+y+~t) ~ in medium 

~f .~- Bteib(yx+u+o#) ) mnp ; 

dO,= A@(~'~+U+,,O ) in medium 
~,  = Bleib(~,x+u + =t) ~ m'n 'p f. 

The equations of motion give the relations 
(m- I -n ) (c '+ l )=  peo'2=n(7'-I-1) } 

(m' 4 n') @,e t 1) = p ' ~  = n' (,/e + 1) (1') 

The conditions to be satisfied at the surface (x=O) are 
identical with those for the incident distortional wave, and 
lead to the equations 

BI + cY = B' + c'A' -) 
~/B i + X = --7'B' + A I J 

--2~/B,+ (7 ' - - l )X  = 2 n'~/B' + -- (7"--1) A' }. (2') 
I~ 7/ 

nl n! I 
(q2__ 1) Bi-- 2cY = - (7 '~ -- i) B'-- 2 - c'A' 

n n J 

where X = A + Ax and Y = A-- Ax. 
By taking the difference of the products of the first and 

third and of the second and fourth of these, and by suitable 
substitution according to (1'), we get the energy equation in 
the form 

ep& ~ - -  epA1 ~ = 7pB1 ~ + c'p'A ''2 + 9/p'B '2. (3') 

IV. Condensational-Rarefactional Wave at the Interface of an 
Elastic Solid and a Fluid ; ineldent in the Solid. 

Here again we mus~ drop the second boundary condition ; 
and, as in case No. II., are led to the simplified equations, 

BI+ cY = c'A' 

--2~/Bt+(72--1)X---- ~ ( 7 : + l ) A  ' ; (4') 

(~ /2  1) Bt-- 2cY = 0 
whence 

~- -  i R c' 7~--I At ~ 

) 
(5') 
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V. Condensational-Rarefactlonal ~Vave at the Interface of a 
Fluid and an Elastic Solid ; incident in the _Fluid. 

We get tho solution fl'om the general case by putting 
B,--0~ n----0, 7----~, and 

~:~(7e--1) P vr2+l _-- (7'e+l), --  0 , 7 ~ + 1  (7 ' 2 - 1 )  P, 

and the result is 

cY = B ~ + c ' A  I 

I 
~ ) (~ '~+ i )X  = "27'B'+ (7'~- i ) i ,  ~ ; (4") 
F / 

0 -= (7'2--I)B '- 2cA' j 
whence 

Bi _ 2d Ai 
T ' ~ -  l / 
d ~/'~ + 1 

Y _ _ _  AI 
c 7 ~ -  t ~'" 

p, ( 4cr,,/ ~,2_ 1"~ A' I X = - -  + 
p \ 7 ' 4 - 1  7'9+1] J 

. (5")  

IV. Leakage of Electricity from Charged Bodies at Moderate 
Temperatures. Bg J. C. BI~ATTIE, JD.Sc., F.R.S.E., Pro- 

fessor of Applied Mathematics and Physics~ South African 
College, CaNe Town*. 

§ 1. CliCHE conditions in which a charged body retains its 
1_ charge have been investigated withgreat thorough- 

ness in many directions. The effect of heat, of light, of 
R6ntgen rays, of uranimn rays on the insulation ; the effect 
of the nature of the charged body; the effect of the surround- 
ing atmosphere--its constitution and pressure; the effect of 
francs from flames, have been made the subject of experiment. 
In quite recent years the subject has also been investigated 
fi'om the point of view of what becomes of the electricity 
which leaks away from an insulated body in certain con- 
ditions. The object of the present series of papers is to 
communicate a number of results obtained by the writer on 
the leakage of electricity from metallic plates covered with 
various substances when the plates were placed in an atmo- 

* Communicated by Lord Kelvin, having been read before the Royal 
Society of Edinburgh~ May 1, 1899. 
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