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ON MODES OF CONVERGENCE OF AN INFINITE SERIES OF
FUNCTIONS OF A REAL VARIABLE

By E. W. Hosson.
[Received and Read, December 10th, 1903.]

It is well known that a series of functions of a real variable, each of
which is continuous in a given interval, and such that for every point in
the interval the sum of » terms of the series converges as n is increased
indefinitely to a definite number, has a continuous function for its sum,
provided the convergence of the series is uniform in the interval, but that
this condition, though sufficient, is not necessary. A less stringent con-
dition which is also sufficient, but not necessary, for the continuity of the
sum-function, was introduced by Dini, and has been adopted by other
writers : this condition is that the series must be simply uniformly con-
vergent ; in the first part of the present paper some remarks are made
upon this mode of convergence. The necessary and sufficient conditions
that the sum-function may be continuous throughout its domain have been
given by Arzela.* They consist in the necessity for a mode of convergence
of the series of a less stringent character than either of the above modes:
this mode is called “ uniform convergence by intervals’* and includes the
above-mentioned modes as special cases. A principal object of the present
communication is to show that the necessity and sufficiency of this mode
of convergence may be established in a simple manner by means of an
application of the Heine-Borel theorem concerning an infinite set of
intervals. The latter part of the paper is concerned with the determination
of the necessary and sufficient conditions that the sum-function may be
an integrable function, the terms of the series being no longer necessarily
continuous, but being assumed to be integrable; the main condition is
expressed by saying that the series must have a miode of convergence
called “uniform convergence by intervals in general” — a term due
also to Arzela. The conditions that an integrable sum-function is such
that its integral is obtained as the sum of the integrals of the terms of the
series are not dealt with here. Special cases have been treated by Osgood,*
by myself,} and by W. H. Young,§ and the matter has been treated more

# See his memoir in two parts ‘‘Sulle serie di funzioni,”” Memorie delle R. Accad. deyli
Sci. di Bologna, Series 5, Vol. viir., 1900.

+ American Journal, Vol. x1x.

t Proc. London Math. Soc., Vol. XXXIV.

§ Supra, p. 89.
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generally by Arzela.* A criticism is given of Arzeld’s proof of the con-
ditions of integrability of the sum-function; the proof given in the present
paper depends upon an application of the Heine-Borel theorem.

Simple Uniform Comvergence.

1. Let us suppose that u,(z), uy(®), ..., uu(z), ... denote an unending
sequence of functions each of which is defined for every point of the con-
tinuous interval (a, b) of the real variable z ; moreover, suppose that the
Sum $,(z) = 2, (z) +ug )+ ... +ua (), for each value of z in (a, b), converges
as 7 is increased indefinitely to a definite number s(z) which depends upon
the value of z ; the difference s(z)—s,(z) = R.(z), we call the ‘‘ remainder
function.” .

The series w,(x)+1y(x)+ ... +2,()+... is said to converge uniformly
in the interval (a, 0), to the limiting sum s(z), when corresponding to every
arbitrarily chosen positive number o an integer m independent of = can
be found such that | R, (@) |, | Bus1@) |, | Bm+2@) | ... are all less than o,
whatever value z may have. When the condition of uniform convergence
in the interval is not satisfied the mode of convergence may be that which
has Dleen terraed by Dini “simple uniform convergence.”  Dini’s+
definition is as follows :—The series is said to be simply uniformly con-
vergent in the interval (@, b)) when corresponding to every arbitrarily chosen
positive number o as small as we please and to every integer m/, only one
or several integers m exist which are not less than ', and are such that,
for all values of z in the interval (a, b), the | R, (z) | are <o.

The condition of simple uniform convergence is less stringent than
that of uniform convergence, in that in the latter case all the remainders
after a certain one are numerically less than o, whereas in the former
case one or several, but not all, the remainders are numerically less than o.

As regards Dini’s definition, it may in the first place be remarked that,
if there is one value of wm which satisfies the preseribed condition, there
must be an infinite number of such values, because we have only to ascribe
to m' a series of values increasing indefinitely, and for each of these there
1s a value of m; any one of this infinite series of values of m may be
taken to correspond to the smallest value of /.

Moreover the definition contains a redundancy ; it will here be shown
that, if, corresponding to every o, a value of 7 can be found such that
| R.(x) | <o, independently of z, then there must be an indefinitely great

* See the paper already referred to.
t See Grundiagen, by Liiroth and Schepp, p. 137.
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number of such values of n. Let us denote by R, the upper limit* of
| Ry(z)| for the whole interval (a, 8); R, may be either finite or indefinitely
great. If |R.@)| <o, for all values of z, we have R. <o take a
positive number ¢ less than E, and also less than the least of the
numbers R,, R,,...,B._1; then by hypothesis & number n, can be found
such that for all values of z, | R, (z)| <e. This numbern, cannot be
one of the numbers 1, 2, 8, ...,n, for it is always possible to find a value
of z for which |R3(w)| is arbitrarily near its upper limit E, and is thus
greater than e, ; hence a number 7, >n has been shown to exist such
that, for all the values of «, | R, (z)|<Co. Similarly, it may be shown
that a number n, > n, exists which has the same property ; thus there
are an indefinite series of values of 7 such that | R,(z) | <o.

It thus appears that the definition may be more simply stated as
follows :—The series is said to converge simply uniformly in the interval
if, corresponding to every arbitrarily chosen number & as small as we
please, a number 7 can be found such that, independently of z, | B, () | < o.

If the series converges simply uniformly, but not uniformly, there must
also be an indefinitely great nuraber of values of 7 for which the condition
| By(x)| <o, for all values of z, is not satistied ; for, if there were only a
finite number of such values of n, we could take a value of n greater than
all of them, and, starting from this value of 2, the condition of uniform
convergence would be satisfied.

2. Let €, € €5, ... be a sequence of diminishing positive numbers
which converges to zero: if the series is simply uniformly convergent, we
can find n, so that | B, (z) | <e, for all values of x; we can then find u,
a number greater than n,, so that | R,,(x) | <e; then sy > n, such that
| B, (x) | <eg; and so on. If now we amalgamate the first », terms into
one, then those after the first 2, up to and including w,,(x) into one term,
and so on, the series may be written

8 (2) [ S (@) — 8, @) ][50 @) — 80, (&) ]+ - 5

in this form the series is uniformly convergent. It thus appears that a
simply uniformly convergent series can be changed into a uniformly con-
vergent series by bracketing the terms suitably, and amalgamating the
functions within each bracket. Conversely, a uniformly convergent series
may be replaced by one which is only simply uniformly convergent; if
each term w,(z) of a uniformly convergent series be replaced by the sum
of 7, functions, such that u,(@) = U, @)+ U, :(0)+...4+ U, (2), the
new series Uy, (@)+ Uy, 2(@)+...4 Uy, » @)+ Uz 1 (®)+... is not necessarily

* The trivial case in which R,(z) = 0 for every x is omitted from consideration.
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convergent, but, if the functions U are so chosen that the series converges
for every value of z in (a,b), then the series converges at least simply
uniformly. It thus appears* that the distinction between uniform con-
vergence and simple uniform convergence is an unessential one.

Conditions for the Continuity of the Sum-Function at a Point.

3. Let us nowsuppose that all the functions w«, (z), wy(z), ..., %, (), ... are
continuous throughout the interval (@, b); it is known that, if s(z) is dis-
continuous at a point z, the series is non-uniformly convergent in any neigh-
bourhood (x—4, x+-d') of the point z, but that, if it is so non-uniformly
convergent, the function s(z) is not necessarily discontinuous at the point
z. It is frequently convenient to replace the remainder R,(z) by the
transformed remainder-functiont E(z, ), obtained by taking y = 1/n,
and considering R(z,y) as a function of the two variables z,¥; the
function R(x,0) is defined to be zero for all values of x. At a point x
of uniform continuity of the series the function | R(z,y)| is continuous
at the point (z, 0) with regard to (z,%); at a point = of non-uniform con-
tinuity of the series the function | R(z,y)| is discontinuous at (z, 0) with
regard to (z, y), the saltus of the function at the point giving the measure
of non-uniform convergence at that point. To find the necessary and
sufficient conditions that z,(P) is a point of continuity of s(z), let us first
assume this to be the case: then a neighbourhood of P can be found such
that, if p be any point whatever, in that neighbourbood, | s(p)—s(P) | < 3,
where e is arbitrarily chosen. Now let % be so chosen that | R.(P)| < e:
this is possible on account of the convergency condition of the series at
the point P. Since s,(x) is continuous, a neighbourhood of P can be
found such that, if p is any point in it, | s.(p)—s.(P) | < 3e; take now
that neighbourhood of P which is the common part of the two neigh-
bourhoods which have been already chosen, denote this by (@—#, x4 %);
then, if p is any point in (x—/%, z+k), we have both | s(p)—s(P) | < 3e
and | s,(p)—su(P)| < 3e. Since

Rn(p)_Rn(P) == {S(p)—S(P)} - {sn(p)_sﬂ(P)},
wehave |R.(p)—B.(P)| < |s(@—s®)|+|su(p)—s(P)];

heuce, if p is any point in (z—%, y+k), we have | Ru(p) —R.(P)| < e,
and, since | R.(P)| < %, we have | R,(p)| <e. It has thus been shown

* I find that the substance of Art. 2 is contained in a paper by Arzeli in the Bologna Rendsi-
conti for 1899. However, I retain Arl. 2 in the present paper for the sake of completeness.
t+ See Proc. London Math. Soc., Vol. XxXIV.
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that, if s(z) is continuous at z, and » has a sufficiently great value, viz.,
one such that | B,(z) | < 3¢, a neighbourhood (z—17, x4+ %) of © can be
found such that everywhere in it | B,(z) | < e; this condition is necessary
for the continuity of s(x) at the point x. Conversely, assume this condition
to be satistied for every value of n sufficiently great; then it will be shown
that z is a point of continuity of s(x). A neighbourhood of z can be so
chosen that for any point p in it both | s,(p)—s.(P) | < », where 7 is an
arbitrarily chosen positive number, and also

l -Rn.(p)'_-Rn(P) l < I Rn(P) l + l Rn(P) l< %G;

in this neighbourhood of P, | s(p)—s(P) | < %e+7, and thus, since € and y
are both at choice, the function s(r) is continuous at . It has now been
shown that the necessary and sufficient conditions that s(z) may be con-
tinuous at the point P are that corresponding to every fixed positive
number e chosen arbitrarily, and as small as we please, and for any value
whatever of n which is greater than or equal to a fixed number dependent
on e, a neighbourhood of P can be found such that at every point in it
| B.(@) | < e

4. Let the function E(z, y) be represented on the plane of (z, y), the
function being defined for all values of z in the interval (a, ) and for all
values of ¥ in the interval (0,1); the values of the function for those
values of ¥ which are not the reciprocal of an integer may be defined *
so that R(z,y) is a continuous function of y; moreover, R(x, 0) = 0.
If a positive number e is prescribed, then for a certain range of values of
y from zero upwards the condition | R(z, y) | < ¢ is satisfied ; the upper
limit of these values of y may be denoted by ¢.(x); there may be other
greater values of y not continuous with the interval (O, be (;1;)) for which the
condition | R(z,y) | <e is also satisfied. At a point P of non-uniform
convergence of the series, the lower limit of ¢.(z) for the values of z in
any neighbourhood of P is zero, whereas for a point of uniform convergence
a neighbourhood of P can be found for which the lower limit of ¢.(r) is
greater than zero. '

. The distinction between the three classes of points in the interval (a, 0),
viz., (i.) those at which the series is uniformly convergent, (ii.) those at
which the series is non-uniformly convergent, but at which the sum-
function is contirtuous, and (iii.) those points at which the function is
discontinuous, may be illustrated by means of figures which indicate the
regions of the plane (z,%) in the neighbourhood of (z,0), at which
| R(z,%)| is less than an arbitrarily chosen e.

* See the paper already referred to, Proc. London Math. Soc., Vol. xXXI1V.
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Fig. 1 represents the neighbourhood of a point P at which the con-
vergence of the series is uniform ; the blackened lines represent those
portions of the lines whose ordinates are 1/n, 1/(n+1), 1/(n492), ..., at
which | R.(z)|, | Rus1@)],... are <<e These portions consist of all
those parts of the lines which are bounded by the curve y = ¢.(z), and
also possibly of other pieces outside this curve. An area, for example,
semi-circular, can be drawn which is bounded by a portion of the z axis
which contains P, and is such that for every point within it | Rz, o) | <e;
that this should be possible for every value of e is the condition that
R(z,y) is continuous at the point P, with regard to the two-dimensional
continuum (z, y).
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Fig. 2 represents the neighbourhood of a point P at which the function
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s(z) is continuous but at which the series is non-uniformly convergent.
In this case the function ¢.(z) is for a sufficiently small value of e, dis-
continuous at P; the value of ¢.(x) at P is finite, but the functional
limits ¢(z+0), ¢.(x—0) at P are both zero. The breadth of the
blackened portions of the straight lines parallel to the z-axis, which
represent the portions of those lines at which | R,(r)| <e, diminishes
indefinitely as y approaches the value zero at P. In this case no semi-
circle can be drawn with P as centre, for all internal points of which
| R(z, y)] <e: thus the point P is one of non-uniform continuity, the
measure of non-uniform convergence being greater than e. In the figure
the convergence is nen-uniform on both sides of P; it is clear, however,
how the figure must be modified for the case in which the convergence is
uniform on one side of P. In case the measure of non-uniform con-
vergence is indefinitely great the figure will be essentially similar whatever
value of ¢ is chosen ; otherwise the figure applies to an e which is less than
the measure of non-uniform convergence, viz., the saltus at P of | R (z, y) |
in the two-dimensional continuum.

Fig. 8 represents the neighbourhood of a point P at which s(z) is dis-
continuous, for a value of ¢ less than the measure of non-uniform converg-
ence of the sertes at P. In this case, as hefore, ¢.(z) is finite at P, and

Y
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N~ N
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z ) i
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¢ (z+0), ¢p.(x—0) are zero, but there are no intervals near P on the
ordinate at which | B (z, )| <, but only points on the ordinate through
P itself.

As an example we may take

nx Ty
1472’ a7

and we may suppose the domain of z to be the interval (0, 1). In this

B.(z) = and thus Rz, y) =
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case the end-point z = 0 is a point of discontinuity of R (z, y), and we
find that, if € <3, the condition | B, (z)| < e is satisfied for the space
bounded by the z-axis and by the straight line

_ _ 1 /1 )b]
y=¢@ =z 2¢ (462 1 )
The same condition is satisfied for the space between the y-axis and the
3
straight line y = .’E[%‘*‘(Z];g—l) ], and thus the point £ =0 is a
€ €
point of continuity of the function s(z), although the convergence at that
point is non-uniform. If ¢> 3, |R(z, y)| <e for the whole space
between the axes ; thus the measure of non-uniform convergence is 3.

5. Conditions for the Continuaty of the Sum-Function in its
whole Domazin.

The necessary and sufficient conditions can now be determined that
s (z) may be continuous for the whole interval (a, b). First suppose that
s (2) is everywhere continuous, and choose an arbitrarily small number ¢;
then, if  is sufficiently large, there are points in (a, ) at which |R, )| <e.
If P be such a point, a neighbourhood of P can be found such that at
every point within it the condition | R, (z)| < e is satisfied; the size of
this neighbourhood may be extended in both directions until points p, ¢
are reached, at which |RB,(p)| = | R.(¢)| = ¢; this follows from the fact
that R,(x) is a continuous function. Every such point P in (a, b) at
which | E.(z)| < e may, in a similar manner, be enclosed in an interval of
finite length, and in all internal points of such intervals the condition
| B.(x)| < e is satisfied. Thus for any fixed value of n which is suffici-
ently large there exists a finite or infinite system D, of intervals in (a, 0)
such that at every point which is interior to one of the intervals of D, the
condition |R,(x)| < e is satisfied ; moreover, the intervals of D, contain
in their interiors all points except «, b at which the condition is fulfilled.
Two intervals of the set may have a common end-point in case | R.(z)|
has a maximum equal to e; otherwise the intervals will be separated from
one another.

Consider the systems of intervals D,, Dyut1, Duys, ..., every value
of n being taken from a fixed value onwards: the whole set thus formed is
such that every point in (a, 0), except the end-points, is interior to an
infinite number of intervals of the compound set; this follows from the
fact that, for any point z, a value of n, say n;, can be found such that
| R, @)| < e |Rn+1@]| <e .... Moreover, intervals can be found with
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a and b as end-points which for a sufficiently large value of m belong to
Dpym. The Heine-Borel theorem states that, if in (a, b) any infinite set
of intervals is taken such that every point within (@, d) is an internal point
of one interval at least of the set, and such that @, b are end-points of two
intervals of the set, then a finite number of the intervals can be selected
which is such that every internal point of (a, b) is in the interior of one at
least of the finite set. If we apply this theorem to the set of intervals D,,
Drysy, ..., we see that a finite number of these intervals can be chosen
which contains every point within (a, b) as an internal point of one at least
of the intervals. The number » can be chosen so great that | R,(a) | and
| R.(b)| are both less than ¢, and thus that the points a, b are end-points
of two of the finite set of intervals. It thus appears that on the supposition
that s(z) is continuous at every point of (a, &), and #» is a chosen number,
then a finite series of numbers 7+, 241y, ..., #+1, all greater than
or equal to m, can be chosen such that, for every value of «, |R.,.(w)l <e
where m has one of the values 741, 41, ..., n41,; the particular value
of m varies with z, but the same value of m is applicable to the whole of
one of a finite number of continuous intervals. The intervals of the set
will overlap, but an overlapping portion may be considered as belonging to
one of the intervals only, so that (a, b) may be divided into a finite number
of parts, in each of which for some value of m constant for that part, the
condition | R, ()| << e is satisfied.

It should be remarked that the set D, for a fixed » is not necessarily a
finite set, for, besides those intervals for which | R,(z)| < e and those for
which | R.(z)| > ¢, there may be points of (a, b) which are not in either
set of intervals, but are limiting points of end-points of the intervals D, ;
at such points | R.(z)| = e. For example, if

| Buto)] = S5+ 55 sin (),

where a < ¢ < b, and, if ¢ = 1/2% the point ¢ is a point of continuity of
R, (z), and is a limiting point of end-points of those intervals for which
R.(*)|<e. Conversely, if, for every value of ¢, & finite set of intervals exists,
having the property described, then s(z) is continuous throughout (a, b).
~ Consider a point P of non-uniform convergence of the series: then, for
a given ¢, P is inside an interval for every point of which, for a fixed value
of m, IR,,. () | < ¢, and we have shown that this is a sufficient condition that
s (z) is continuous at the point P; hence every point of non-uniform con-
vergence of the series is a point of continuity.

It has now been established that the necessary and sufficient condition



382 Dr. E. W. Hogson [Dee. 10,

that a series u,(z)+uy(@)+...4un@)+..., each term of which is a con-
tinwous function of z throughout (a, b) and converges at every point of
this domain to a definite value s(z), is that, corresponding to any arbi-
trarity chosen number e and to an arbitrarily chosen integer n, we have
| Bu(@)| < €, for every value of ® in (a, b), where m las one of a finite
number of values greater than or equal to m, and that the value of m
depends in general on that of z, but is constant for points z which lie in
one of a number of finite portions of the interval (a, b).

This theorem, which has been established otherwise by Prof. Arzela,
shows that a certain mode of convergence of the series is the necessary and
sufficient condition for the continuity of the sum; this mode has been
termed by Arzela convergenza wuniforme a tratti (“uniform convergence
by intervals ') ; this term is, perhaps, not altogether appropriate, because
the intervals are dependent in number and length upon the arbitrarily
chosen e. Uniform convergence and simple uniform convergence are
special cases of uniform convergence by intervals; they correspond to the
case in which the finite set of intervals which correspond to an e reduce to
one interval, namely, the whole interval (a, b).

Conditions of Integrability of the Sum of a Series of Integrable
Functions.* '

6. Let the functions , (z), %, (2), ..., %,(x), ... be no longer necessarily
continuous functions, but let us suppose that each one has a proper
integral in every interval contained in (@, b); that this may be the case
it is necessary that the upper limits of each of |s;(®)|, |s@) |, ...,
| su(@) |, ... in the interval (a, b) is finite. Denoting these upper limits by
I, &y ..., Ly ..., then, provided 1, 4, ... I,, ... have a finite upper limit L,
it can be shown that | s(z) | has a finite upper limit in (e, b); for, if the
upper limit of | s(z) | were indefinitely great, we could find a value of «
such that | s(z) | = L+a, where a is some positive number. Now 7 can
be taken so great that |s(z)—s.(x)| <e, where e is arbitrarily small;
hence |s(z) | <|s.(@)| +e < L+e and e can be chosen to be less than
a; thus it is impossible that the upper limit of | s(z)| in («, b) is not
finite. The condition just stated that |s(z)| may have a finite upper
limit is a sufficient one but not a necessary one; in fact we know that at
the point (z, 0) the function s(z,7) may have an infinite discontinuity
whilst s(«) has only a finite discontinuity or is continuous at the point z.

* §§ 6 and 7 have been rewritten December 30th, 1903.
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We shall suppose, in what follows, that | s(z) | has a finite upper limit in
(@, ), so that, in case s(z) is integrable, the integral is a proper one.

To find the conditions that s(z) may be an integrable function, we
shall first suppose it to be so; then those points of (a,d) at which
s(z) has a saltus which is >e¢ form a closed set of points with zero
content. These points may be included in a finite set of intervals
whose sum is arbitrarily small, say », and the end-points of these
intervals &y, &y, ..., 6 may be so chosen that in each the saltus of s(z)
is <e. At every point of (a,d) which is not in the interior of one of
the intervals {}, the saltus of s(z) is less than e. In a similar manner
the points of (a, b) at which the saltus of s, (z) is >> ¢ may be included in
a finite set of intervals 8", 65", ..., &, whose sum », is arbitrarily small,
and such that at the end-points the saltus of s,(z) is less than e. If both
sets {8}, 10"} be excluded from (a, D), the remainder consists of a finite
number of closed intervals, such that at every point in them both s(z) and
su(z) have a saltus which is <{e; these intervals we may denote by
AP AP, ..., AP forming a finite set {AM],

Let us consider the set G™ which consists of those points of the
intervals {A™} at which | B.(z)| < 8e¢; the set G®™ consists in general
of a set {D™} of intervals, and of a set H™ of points which are not in
intervals for which | R, (z) | is everywhere << 8¢; the intervals of the set
{D™} may be finite or enumerably infinite in number, and each interval
of the set may be closed, or open, at either end, according as the end-point
is, or is not, a point at which | B, (z) | < 8e; two intervals of the system
may abut on one another, in case the common end-point does not belong
to G™., As regards the set of points H™ and the set of intervals { D™},
we observe that, if P be any point belonging to G, then, if no neighbour-
hood of P either on the right or on the left can be found, such that every
point in the neighbourhood belongs to G, P is a point of the set H";
if, on the other hand, a neighbourhood (z—a, 2+08) of P (z) exists, every
point of which belongs to G, the number 3 is capable of having a set of
values which have an upper limit B3;, and the number « is capable of
having a set of values which have a lower limit « : in that case
(x—a, z+B,) is an interval belonging to the set {D™} ; it is a closed
interval in case both z—a, and z+ /3, are points of G™, and it is open at
one or both ends in case one or both of the points —a;, x4+ /3, does not
belong to the set G™. 1In case z has only a neighbourhood (z, z+8) on
the right, or only a neighbourhood (z—a, ) on the left, every point of
which belongs to G™, we see, in a similar manner to the above, that a
definite interval (z, z+8,) or (z—a,, z) exists, every point of which, with
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the possible exception of the end-point, belongs to G™, and thus that the
interval belongs to {D™}. Since P is any point whatever of G™, it is
now clear that the set of points H™ and the set of intervals {D™} which
together constitute G™ are determinate ; either { D™}, or {G™!, or both,
may be absent for the » considered ; it will, however, appear that, if » is
sufficiently great, the set { D} must exist.

We now see that every point z, of (a, 0), which is such that
| B, (x) | < 8¢, either lies in the interior of one of the intervals of {4},
or of {8™}, or else belongs to one of the intervals of {D™}, or to the set
of points H®™.

Similar reasoning applies if, instead of %, we take n+41, n4+2, ...,

71+7n'9 cees if we take M = f} Myl — %gs Nt = %f) ceey Mudm = 2—]:,,"§) ey

where { is an arbitrarily small fixed number, we see that the sum of all
the intervals {6}, {§®+V}, ..., {s+m) | is 2¢.

It will now be shown that there is no point « which belongs to all the
sets of points H™, H*+D H®+m or to an infinite number of
them ; to prove this, we observe that, for any fixed z, & value of m can be
found such that | B,4w ()| <e, for this value of m and for all greater
values ; taking m to have such a V&lue, unless z lies in the interior of one
of the intervals of {8}, {&"*+™}, a neighbourhood of # can be found such
that, for every point z+/% in it, |s(@+7)—s(@) | <e, and also

| $nim @+ —s0ml@) | <e;
in this neighbourhood of =,
| Ry (z+7) |
< | se+n—=s@ | + | 5@ —=susn@) | + | Sp4m @ —snsn(z+h) |
< 8e.

This holds for definite values of m ; the neighbourhood in which it holds
depends upon the values of m.

It has now been shown that, if z is any fixed point not in the interior
of {8}, nor an end-point of {8}, a value of m can be found so great that
 is either (1) interior to one of the intervals {&**™}, or (2) interior to
one of the intervals of {D™*™} or (8) an end-point of an interval of
{g+m!  In the last case, since every end-point of the {6®*™} is a point
at which the saltus of s,.n(z) is << 8¢, we can find a neighbourhood of z,
which encroaches on the interval of which z is an end-point, but is such
that the above reasoning applies to it. If z is an end-point of an interval
of {4}, we can, in a similar manner, find an interval encroaching on the



1908.] INFINITE SERIES OF FUNCTIONS OF A REAL VARIABLE. 885

interval of {3} of which it is an end-point, but such that throughout it
| Ruinm (z) | < 8e. For the end-points a, b, values of m can be found such
that these points are end-points of intervals through which | B, (z) | < 8¢,
unless a or b is already an end-point of the set {6}. If we take the
whole set of intervals which consists of (1) the intervals {6} whose sum is
7, of (2) all the sets {&"*™} whose sum is 2, and (3) of all the sets
{D®*™}, where m has all values 0, 1, 2, 8, ..., with (4) the addition of
intervals introduced as above whenever an end-point of one of the above
intervals becomes a point of a G™*™, we have, when these are taken
altogether, an enumerable set of intervals which contains every point of
(a, b) in the interior of at least one interval, except that @ and b are end-
points of intervals of the set. To this complex set of intervals the Heine-
Borel theorem is applicable, and we deduce that a finite number of
intervals of the set can be chosen which contain every point of (a, b)
except a and D, in the interior of at least one interval, and such that a, b
are themselves end-points of the intervals of the set. Those intervals of
the finite set which belong to {8} or {d™}, {&"*V}, ... have a sum less
than 74 2¢, and the rest of the intervals are such that for each of them
“there is a value of m such that | B.yn(2) | << 8¢, for every point of that
one interval. Since 742 is arbitrarily small, we see that, by excluding
from (a, b) a finite set of intervals whose sum is arbitrarily small, the
remainder of (a, b) is such that, for every point in it, | Ruyp () | < 8e,
where p has one of a finite number of values. That this should hold for
every e is a necessary condition for the integrability of s(z).

It can now be shown, conversely, that, provided this condition is satis-
fied for every €, the function s(z) must be integrable. To show this, we
apply Riemann’s test of integrability, according to which the whole interval
(@ b), is divided into a finite number of parts &y, ky, ..., i, and the value
of the sum of the products of each % into the fluctuation of the function
in that part % is estimated; the condition of integrability is that this
sum should have a zero limit when the number s is increased indefinitely,
and at the same time the greatest of the intervals % has a zero limit. It
is well known that it is sufficient to make the sub-division of (@, b) accord-
ing to any law we please, provided the condition as to the greatest of the
h is satisfied. Taking a given ¢, let the intervals (6, &y, ..., J-) be marked
out, and also the finite set of intervals into which the rest of (a, b) can be
divided, so that in each one of them, for some particular value of p,
| RBaip(@)| < 8e; let the end-points of Ay, Ay, ..., ks contain among them
all the end-points of both these finite sets of intervals. In any 7 which
lies within one of the J, the product of the % into the fluctuation of s(z) is
less than or equal to A(M—m), where M, m are the upper and lower
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limits of s(z) in (a, D) ; in any . which lies within an interval for which
| RBusp(@) | < 8e, the fluctuation of s(z) cannot exceed that of s,.,(x) by
more than 6e. It follows that the sum of the products required for
Riemann’s test is less than (M—m)Z$ +§2h {fluctuation of sy, () +6e},

where in the double summation the first summation refers to all those of
the % which are within an interval for which p is constant, and the second
sum is taken for all the finite number of values of p. Now s,4,(z) is
integrable through any interval; hence, through the interval for which p
has a fixed value {2/ fluctuation of s,.,(z)} has a zero limit; also (M —m)y
is arbitrarily small; hence the product in Riemann’s test is arbitrarily
small as n becomes indefinitely small and s is indefinitely increased ; there-
fore s (z) is integrable in (a, b).

It has now been shown that, if w, () +uy(@)+... 4u, () + ... converges
to a definite value s(x) at every point i (a, b), and if all the functions
) (T), ug(T), ..., u, (@), ... have proper integrals in (a, b), the necessary and
sufficient conditions that s (z) may have a proper integral are (1) that the
upper bimit of s (x) wn (a, b) is finite, and (2) that corresponding to any
arbitrarily small positive number o, and to any posttive integer n, a fintte,
number of intervals whose sum s arbitrarily small can be excluded from
(a, b) so that, in the remainder of (a, b), | Boyp @)| < o, for every z, where
p has one of a finite number of values which depend on x, but are such
that the same p is applicable to all points = in a certain continuous
miterval.

7. The conditions which have been found that s(z) may be an in-
tegrable function are expressed by saying that | s(z) | must have a finite
upper limit, and that there must be a certain mode of convergence of the
series, which Arzeld has denominated convergenza uniforme a tratti in
generale, “ uniform convergence by intervals in general.” This mode of
convergence is distinguished.from uniform convergence by intervals, in
that a finite number of intervals of arbitrarily small sum are excluded
from the domain. As regards the proof which Arzela has given of the
theorem which has been just obtained, it may be remarked that it appears
to depend upon the assumption that not only the points of (@, ) at which
s(z) has a saltus > ¢ form a set of zero content, but also that the set of
points at which any of the functions $a(2), sn+1(@), Sn4n(®), ... have a
saltus > ¢ can be enclosed in a finite number of intervals whose sum is
arbitrarily small ; this appears from the statement on p. 708 and in the
first paragraph of p. 709 (loc. cit.). This is, however, not necessarily the
case, and has not been assumed to be true in the present paper. The set
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of points for which any one s, (r) has a saltus > ¢ is a closed set, but
it does not follow that the set of points at which any of the s,.+. (z) has a
saltus > ¢ can be enclosed in a finite number of intervals of arbitrarily
small sum. The sets Gy Gy, ..., Gu, ..., which correspond to s,(z),
$u41(@), .0y Suam(2), ..., being each closed, we may consider the sequence
of sets Gy, Gy+ Gy, Go+G+G,, ..., G+ G+...4+G,, ...; each of these
sets is closed and is contained in the succeeding set ; hence, by a theorem
given by Prof. Osgood,* the limiting set, provided ¢ ¢s closed, has for con-
tent the limit of the content of Gy+ G,+...+ G, ; in our case this is zero.
In the general case it is quite true that all the points at which any of the
Sa+m(z) has a saltus > e can be enclosed in finite intervals whose sum is
arbitrarily small, but not in a finite number of such intervals. It would
thus appear that the proof of the theorem given by Arzeli cannot he
accepted as valid, at all events in the form in which it has been given
by him.

* American Jowrnal, Vol. xix., p. 178 ; see also Schinflies, Bericht tiber die Mengenlehre,
p. 91; the proof given by Schonflies is, however, invalid.
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