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however, like those of chromic oxide and the oxide of zinc, 
in which a shifting of a region of maximum of reflecting- 
power towards the longer wave-lengths actually occurs when 
the pigment is heated. 

It had been our purpose in the investigation just described 
to extend our spectre-photometric measurements to the very 
low temperatures obtainable by the use of solid carbon 
dioxide, but we have been compelled by lack of time to content 
ourselves with noting such changes as could be detected with 
the unaided eye. The change observed was in every case 
that which wotdd be brought about by increase of reflecting- 
power. There was no increase in the saturation of the 
eolour, rather, on the other hand, a paling or dilution of the 
tint, as though there were a tendencytowards white. Houston*, 
who made a similar set of observations at the higher tempera- 
tures reached by the evaporation of carbon bisulphide or 
sulphurous acid, arrived at a similar result. Ackroyd, from 
theoretical considerations, concluded that as the absolute zero 
is approached, the. prevailing, tints of. pigmenm will be blues 
and violets, merging finally rote white. 

Ackroyd, Hartley, as also Houston and Thomson, and still 
earlier Sehcenbein and Brewster, have had something to say 
concerning the explanation of these phenomena. Their 
various views need not be touched upon here, unless it be to 
call attention to the opening paragraph of Ackroyd's paper, 
which contains an important statement. Ackroyd says : -  
"These changes embrace a class of phenomena, quite as 
important in their way as phosphorescence and fluorescence, 
with which in fact the!~ are intimately connected." It is our 
opinion that the connexion is indeed a most intimate one, and 
that every change of colour that pigments undergo is to be 
regarded simply as a symptom of changes in the radiating- 
power of the substance. 

Physical Laboratory of Cornel1 University, 
June 1891. 

LIII.  1)2/namical _Problems in Illustration of the Tl~eory of 
Gases. By Lord I~t4kYLEIGH, SeC. l~.~.t 

Introduction. 

T HE investigations, of which a part is here presented, had 
their origin in a conviction that the present rather un- 

satisfactory position of the Theory of Gases is due in some 

Zoc. dr. p. 123. 
# Gommunicated by the Author. 
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degree to a want of preparaffon in the mind of readers, who 
are confronted suddenly with ideas and processes of no 
ordinary difficulty. For myself, at any rat% I may confess 
that [ have found great advantage from a more gradual 
method of attack, in which effort is concentrated upon one 
obstacle at a time. In order to bring out fundamental sta- 
tistical questions, unencumbered with other difficulties, the 
motion is here limited to one dimension~ and in addition one 
set of impinging bodies is supposed to be very small relatively 
to the other. The simplification thus obtained in some 
directions allows interesting extensions to he made in others. 
Thus we shall be able to follow the whole process by which 
the steady state is attained, when heavy masses originally at 
rest are subjected to bombardment by projectiles fired upon 
them indifferently from both sides. The case of pendulums, 
or masses moored to fixed points by elastic attachments~ is 
also considered, and the stationary state attained under a one- 
sided or a two-sided bombardment is directly calculated. 

Collision Formula. 

If u I, d be the velocities before collision, u, v after collision, 
of two masses P, Q, we have by the equation of energy 

P(u '~ -u2)+Q(v '2 -v"~)=O,  . . . . . .  (1) 

and by the equation of momentum, 

P ( u ' - u ) + Q ( v ' - v ) = O  . . . . . .  (2) 

From (i) and (2) 
u' + u = v '  + v ,  . . . . . . .  (3) 

or, as it may be written, 

Uf ~ Vt  _.~ V - -  U,  

signifying that the relative velocity of the two masses is re- 
versed by the collision. From (2) and (3), 

(P + Q) u '= ( P -  Q)u + 2Qv ) (t) 
( P + Q ) v ' = 2 P u +  ( Q - P )  v j~ . . . .  

As is evident from (1) and (2), we may in (4), if we please, 
interchange the dashed and undashed letters. Thus from the 
first of (4), 

( P + 0 ) u  = ( P - Q ) u ' + 2 Q  v', 
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r + Q  2Q v' u'-p_QU p_Q 

2Q (u-v'),  (5) ~ U 2 v  ~ . . . .  

In the application which we are about to make, P will denote 
a relatively large mass, and Q will denote the relatively small 
mass of what for the sake of distinction we will call a pro- 
jectile. All the projectiles are equal, and in the first instance 
will be supposed to move in the two directions with a given 
great velocity. After collision with a 1 ) the projectile re- 
bounds and disappears fi'om the field of view. Since in the 
present problem we have nothing to do with the velocity of 
rebound, it will be convenient to devote the undashed letter v 
to mean the given initial velocity of a projectile. Writing 
also q to denote the small ratio Q : P, we have 

u ' = u +  12--2__~q (u--v) . . . . . .  (6) 

If  u and v be supposed positive, this represents the case of 
what we may call a favourable collision, in which the velocity 
of the heavy mass is increased. If  the impact of, the pro- 
jectile be in the opposite direction, the velocity u ', which 
becomes u after the collision, is given by 

u"=~ + 12_-~qq (u + v) . . . . . .  (7) 

The symbol v thus denotes the velocity of a projectile with- 
out regard to sign, and (7)represents the result of an un- 
favourable collision. 

.Permanent State of .Free Masses under Bombardment. 

The first problem that we shall attack relates to the ultimate 
effect upon a mass P of the bombardment of projectiles 
striking with velocity v, and moving indifferently in the two 
directions. It  is evident of course that the ultimate state of 
a particular mass is indefinite, and that a definite result can 
relate only to probability or statistics. The statistical method 
of expression being the more convenient, we will suppose that 
a very large number of masses are undergoing bombardment 
independently, and inquire what we are to expect as the 
ultimate distribution of velocity among them. If the number 
of masses for which the velocity lies between u and u + du be 
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denoted by f(u)du, the problem before us is the determination 
of the form o f f ( u ) .  

The number of masses, whose velocities lie between u and 
u +du,. which undergo collision in a given small interval of 
time, is proportional in the first place to the nmnber of the 
masses in question, that is to f (u)du~ and in the second place 
to the relative velocity of the masses and of the projectiles. In 
all the cases which we shall have to consider v is greater 
than u, so that the chance of a favourable collision is ahvays 
proportional to v--u, and that of an unfavourable collision 
to v +u.  I t  is assmned that the chances of collision depend 
upon u in no other than the above specified ways. The 
number of masses whose velocities in a given small interval 
of time are passing, as the result of favourable collisions, 
from below u to above u, is thus proportional to 

f~,~ (w). Cry--w) dw, . . . . .  (8) ~ 

where u' is defined by (6) ; and in like manner the number 
which pass in the same time from above u to below u, in con- 
sequence of unfavourable collisions, is 

~ "f(~). (,,~ +w)d~, . . . . .  (9) 

u" being defined by (7). In the steady state as many 
must pass one way as the other, and hence the expressions 
(8) and (9) are to be equated. The result may be written in 
the form 

} f (w)dw= w/ (,~)~ Vl 

Now, if ~/ be small enough, one collision makes very little 
impression upon u ; and the range of integration in (10) is 
narrow. We may therefore expand the function f by Taylor's 
theorem : - -  

f (w) = f  (~) + (w - u ) / ,  (~) + ½(w - ~)~:'"(,0 + • • •; 
so that 

5f(w)gw=wf(u)  +-~ (w-u)V' (u)  + ~,(w-u)V"(~, ) + . . . ,  

-~{(u'-,) ~ + (,~"-,O'-I./"(,~) + • .. 

4q s - 2 u~)f , (u)+cubes  of,/. (H) = -  ~/(~) ( l ~ ) ~ v  + 

• In the present problem v~=v ; but it will be convenient at this stage 
to maintain the distinction. 
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S w/(,o) a., = ~ { (,~ - ~  ) + ~ } / (w)  d,o 

= ½ ( w - ~ ) V  (,,) +~  ( ~ - u ) y ' ( u )  + . . .  

+ u /O0  {,,,/(,,) + ½ (w- , , )V ' ( ,O + . . ,  }; 

u, 

+ {-~/(~) + ½u/O0 }{ ( u " - u ) ~ - ( , e - ~ ) ~ }  + . . .  

4 ! v  8q%v 
= uf(,~) + ~ {f(u) + uf'(u)} + cubes of q. (12 

As fi~r as q~ inclusive (10) thus becomes 

@Vl ~/( , , )  + 4 ~ v ,  ~v ~ + ~ ) f , ( , )  
i - -  q' ( i  --(/)~ ~ 

8q~u v 
+ ,q'(u) + ( ~ { f ( u ) + , , f ' ( u ) } = 0 ,  

or  

~/(~) { (z-q)~,,  + (1 + ~)v } + q / ,  (~) {v~ ~ + ~,~(~, + 2~) } = o. 

If vl=v, q disappears from the first term as it stands, and 
will do so in any case in the limit when it is made infinitely 
small. Moreover, in the second term u" is to be neglected in 
comparison with v ~. We thus obtain 

~/(u)  {1 + ~/~,} + q~V'(~)  = o (13) 

as the differential equation applicable to the determination of 
f (u )  when q is infinitely small. The integral is 

qv ~ l o g f  (u) + ½(1 + vdv)u ~ :  constant, 
or  

/ ( ~ )  = A ~  - ' ~  , . . . . . . .  (z~) 
w h e r e  

/~ = 1 + , , / v ,  . (15) 2qv'~ . . . . . . .  

or~ if vv"v,  
h =  l / q v ~  . . . . . . .  (16) 

The ultimate distribution of velocities among the masses is 
thus a function of the energy of the projectiles and not other- 
wise of their common mass and velocity. The ultimate state 
is of course also independent of the number of the projectiles. 
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The form of f is that found by Maxwell. To estimate the 
mean value of u 2 we must divide 

Now 

so that 

u2e-"21q~du-- v 2 e-'~lqv~du. 

The ratio in question is thus -~qv ~, showing that the mean 
kinetic energy of a mass is one half that of a projectile, 
deviating from the law of equal energies first (1845) laid 
down by Waterston. We must remember, however, that we 
have thus far supposed the velocities of the projectiles to be 
all equal. 

The value of A in (14) may be determined as usual. If 
N be the whole (very great) number of masses to which the 
statistics relate, 

N= f +: f (u) du = A~+:e-'Wqv2du=AvC'(Trq) ; 
so that 

N f(u)du= vv/(Trq----- ~ e-"21q"du. . (15') 

If  we were to suppose that the chances of a favourable or 
unfavourable collision were independent of the actual velocity 
of a mass, there would still be a stationary state defined by 
writing Vl=~  in (15). Under these circumstances the me-m 
energy would be twice as great as that calculated above. 

It  is easy to extend our result so as ~o apply to the case of 
projectiles whose velocities are distributed according to any 
given law F(v), of course upon the supposition that the pro- 
jectiles of different velocities do not interfere with one another. 
We have merely to multiply by F(v)dv and to integrate be- 
tween 0 and ¢v. Thus from (13) we obtain 

2~, f(u) f :*vF(v)dv+q/'(U) fo+~V~F(v)dv=O. 

If  F ( v ) = e  -~, we find 

j 1 {  f } 

(17) 
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so that 

fo 1 v3e-~2dv---- kJo ve-~'dv" . (18) 

Our equation then becomes 
~ku/(u) + q/'(u) =0, 

giving 
f (u) = Ae-a2/q . . . . . . .  (19) 

The mean energy of the masses is [q/k, and this is now equal 
to the mean energy of the projectiles. We see that if the 
mean energy of the projectiles is given, their efficiency is 
greater when the velocity is distributed according to the 
Maxwell law than when it is uniform, and that in the former 
case the Waterston relation is satisfied, as was to be expected 
from investigations in the theor "~ of gases 

It may perhaps be objected that the law e- g~ is inconsistent 
with our assumption that v is always great in comparison with 
u. Certainly there will be a few projectiles for which the 
assumption is violated; but it is pretty evident that in the 
limit when q is small enough, the effect of these will become 
negligible. Even when the velocity of the projectiles is 
constant, the law e-¢~/q ~ must not be applied to values of u 
comparable with v. 

The independence of the stationary state of conditions, 
which at first sight would seem likely to have an influence, 
may be illustrated by supposing that the motion of the masses 
is constrained to take place along a straight line, but that the 
dit:ection of motion of the projectiles, striking always centri- 
cally, is ~nc]ined to this line at a constant angle 0. 

If  u' be the velocity of the mass (unity) before impact, 

and u after impact, B the impulsive action between the mass 
and the projectile, 

u - - u ' ~  B cos 0. 

Also, if v, V be the velocities of the projectile (q) before and 
after impact, 

~ ( v -  V) = B 
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so that 
q ( v - V )  cos e=~l -u ' .  

By the equation of energy 
u 2 - u ' ~ =  q ( v ~ -  V~) . 

From these we find, as before, 

2 q e o s  20 u - -  e ~  
u' = u - -  1 - -  q cos 2 0 

This may be regarded as a generalization of ( 6 ) ;  and we 
see that it m,~y be derived from (6) by writing v/cos 0 for v, 
and (2 c°s~ 0 for q. In applying equation (10) to determine 
the stationary state, we must remember that the velocity of 
retreat is now no longer w, but w cos 8, so that (10) becomes 

v , -  w)dw= ~v c o s  O/(w)dw. 
¢ 

The entire effect of the obliquity 0 is thus represented by 
the substitution of v/cos 0 for v, and of q cos 2 0 for 9, and since 
these leave qv: unaltered, the stationary state, determined by 
(15)~ is the same as if 8=0. 

The results that we have obtained depend entirely upon the 
assumption that the individual projectiles are fired at random, 
and without distinction between one direction and the other. 
The significance of this may be illustrated by tracing file 
effect of a restriction. I f  we suppose that the projectiles are 
despatched in pairs of closely following components, we should 
expect that the effect would be the same as of a doubling of 
the mass. If, again, the components of a pair were so pro- 
jected as to strike ahnost at the same time upon opposite sides, 
while yet the direction of the first was at random, we should 
expect ~he whole effect to become evanescent. These antici- 
pations are confirmed by calculation. 

By (5) the velocity ul ~, which on collision becomes u, is 

, l + q u  2q 

so that the velocity, which after two consecutive collisions 
upon the same side becomes u, is given by 

~, i+,/ __ 2~ 
~ = T____q u1+ y-~7,1 v 

1 + 2~ + (,/!) ~- 4T~ 
- T 1 -  + ( q g "  



432 Lord Rayleigh on Dynamical P~'oblems in 

The masses which by single collisions at velocity v would 
ultimately produce the same effect as these pairs are therefore 
very approximately 2q. 

If the projectiles be distributed in pairs in such a way that 
the components of each strike nearly simultaneously and upon 
opposite sides, 

, l + q  S1 +q  12_~qvq } 2qv 
u~ =~__q [l__qU+___ -T- 1 - q  

(1 + q)2 4q% = + 

1 + 2q+ (q~) 4q. qv 
- 1 -  + +- 1 -  2q + 

showing that the effect is the same as if the mass were 
doubled, and the velocity reduced from v to qv. Thus, when 
q is infinitely small, the effect is negligible in comparison 
with that obtained when the connexion of the components of 
a pair is dissolved, and each individual is projected at random. 

Another Method of Investigation. 

The method followed in the formation of equation (10) 
seems to lead most simply to the required determination of 
f (u) ; but it is an instructive variation to consider directly 
the balance between the numbers of masses which change 
their velocities from and to u. 

The number of masses whose velocities lie between u and 
u + du being f(u) du, we have as the number whose velocities 
in a given small interval of time are expelled from the range 
du, 

f(u) du (v-- u) +/(u) d~, (v + u), 
o r  

2v f (u  )du. 
This, in the steady state, is equal to the number which enter 
the range du from the two sides in consequence of favourable 
and unfavourable collisions ; so that 

f (u ')(v--¢)du'  +/(u")(v+u")du"--2~/(u)du=O. (20) 
By (6), (7), since v is constant, 

l +qdu 1 dd=- g~_, ~ , &d'= ~+q du ; 

so that 

l+q  ~'(u'). (v--u') + l+. q~(,,,,) (v+u")--2vf(u)=O. 
l__q~ , l _ _ q ~ -  ~" 
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Now 
l + q  l + q , o  ~-u~ 

v - u ' =  ~ _ q ( v - u ) ,  v + u " =  l _ ~ t  ~ ,, 
and thus 

(1 + q): 
(1 - ~)~ { ( v - , , ) i  (u') + (v + u ) f  (u") } - 2 v / ( u )  = o. 

In this 
q ( - -  2q~(u--v) ~ ~,,. . i(u'):l(u)+~l'<_f)l'(u)+ ~ :  t , u + . . .  

f (u") = i  (,,) + 2q~'~_+qv) i '  (u) 4 lq'(u + v)~ ~,, ( a ~uj + . . . ; 

so that 

(1 +q)~ £ 2vi(u) + Sq,,u:,(u) + 4-~,, ~ (1 ~ q), f"(u) } --2vfO0=O , (1--q)~ i. ~ 
or, when q is small enough, 

8qv{ f (u  ) + , q ' (u )  } + 4~vy"(u)  = O. (21) 
Accordingly 

i ( u ) + , , i ' ( u ) + ½ 7 , , y " ( u ) = O ,  . (22) 
or on integration 

ui(u  ) + ~qvy'(u) = C. 
I t  is easy to recognize that the constant C of integration 
must vanish. On putting u=O, its value is seen to be 

c=½qef'(0), 
for f (0)  is not infinite. ~qow f ( u )  is by its nature an even 
function of u, so that f t (0)  must vanish. We thus obtain the 
same equation (14) of the first order as by the former process. 

Progress towards the Stationary State. 

Passing from the consideration of the steady state, ~ve will 
now suppose that the masses are initially at rest, and ex- 
amine the manner in which they acquire velocity under the 
impact of the projectiles. In the very early stages of the 
process the momentum acquired during one collision is prac- 
tically independent of the existing velocity (u) of a mass, and 
may be taken to be +_-2qv. Moreover, the chance of a 
collision is at first sensibly independent of u. In the present 
investigation we are concerned not merely~ as in considering 
the ultimate state, with the mass and velocity of a projectile, 
but also with the fi'equency of impact. We will denote by l, 
the whole number of prqjectiles launched in both directions 

-Phil. Mag. S. 5. Vol. 32. No. 198. Nov. 1891. 2 G 



434 Lord Rayleigh on 1)ynamicat Problems in 

in the unit of time in the path of each mass. The chance of 
a collision for a given mass in time dt is thus represented by 
v dr. The number of collisions by which masses are expelled 
i¥om the range du in time dt i s f (u )du . vd t .  The nmnber 
which enter the range from the two sides is 

{ / ( , , - -  2qv) + / ( u  + 2q~,) }du . ½v dr, 

so that the excess of the number which enter the range over 
the number which leave is 

{ ½ / ( u -  2qv) + ½/(,, + 2qv) - / ( u )  }du. ~ dr, 

and this is to be equated todf(u't)dUdt. Thus 
dt 

~ ~d~f (23) d f  = ½f (~--  2q~) + ½f (u + 2qo) - / ( , , )  = ~q ~ ~ ,  
v dt 

the well-known equation of the conduction of heat. When 
t=O, f (u )  is to be zero for all finite values of u. The Fourier 
solution, at~plieable under th~se conditions, is 

A - -14  2141~ t 

f (u , t ' )=  ~-?~ , , 

where t' is written for 2~v~rt. The total number of masses 
being N~ we get to determine A 

N = f(u,  t')du---- 2 ~/~r. A ; 

so that 

f(~,  t') = ~ , / ( ~ t ' )  " 

If  n be the whole number of eoUisions (for each mass), n=vt ,  
and we have 

~t'=4q,v~. 2~ . . . . . . .  (25) 

I f  the unit of velocity be so chosen that the momentum (2qv) 
comnmnicated at each impact is unity, (24) takes the form 

N 
/ ( - ,  ~) = ~( -O-~)  ~ - ~  -, . . . .  ( ~ )  

which exhibits the distribution of momentum among the 
masses after n impacts. In this form the problem coincides 
with one formerly treated* relating to the composition of 
vibrations of arbitrary phases. I t  will be seen that there is a 

Phil. Mag, August 1880~ p. 73 
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sharp contrast between the steady state and the early stages 
of the variable state. The latter depends upon the momentum 
of the proiectiles, and upon the nmnber of impacts; the 
iormer involves the energy of the projeetiles~ and is independent 
of the rapidity of the impacts. 

The mean square of velocity after any number (n) of 
impacts is 

N-I u f(u, n)du= n, 

or, if we restore 4q~v ~, 

mean u 2 = n . 4q~v ~, • (27) 

It must be distinctly understood that the solution expressed 
by (24), (25), (26) applies only to the first stages of the 
bombardment, beginning with the masses at rest. If  the 
same state of things continued, the motion of the masses 
would increase without limit. But as time goes on, two 
causes intervene to prevent the accumulation of motion. 
When the velocity Of the masses becomes sensible, the chance 
of an unfavourable collision increases at the expense of the 
fi~vourable collisions, and this consideration alone would pre-  
vent the unlimited accumulation of motion, and lead to the 
ultimate establishment of a steady state. But another cause 
is also at work in the same direction, and, as may be seen 
fi'om the argument which leads to (13), with equal efficiency. 
The favourable collisions, even when they occur, produce less 
effect than the unfavourable ones, as is shown by (6) and (7). 

We will now investigate the general equation, applicable 
not merely to the initial and final, but to all stages of the 
acquirement of motion. As in (20), (23) we have 

dr(u,  t)dU dt = vdt {½f(u'). (v--u ')du'  
dt v 

+ ~ ( u " ) :  ( v + ¢ ' ) d ~ " - - / ( u )  . v  du} ; 

and thus by the same process as for (22) 

~dt  d ,~ , ~ d~f = 4 e  . . . .  (28) 

If we write, as before, 

t'=--27%~rt, and h = l / ~ v  2, . . . .  (29) 
we have 

g/ d 
= +21 ,  ( . / )  . . . . .  (30) 

2 G 2  
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Both in the case where the left side was omitted, and also 
when h vanished, we found that the solution was of the form 

f---- q ' ¢ .  e-~ ~, . . . .  (31) 

where ¢ was constant, or a function of t z only. We shall find 
that the same form applies also to the more general solution. 
The factor a/~b is evidently necessary in order to make 

® f ( u )  du independent of the time. By differentiation ot 

d r _  ~,,~ ~ ddp 

d2 f  = -- 2¢:e-V~(1 -- 2~bu2), 
du ~ 

udd'-~f u + f = c b ~ e - ~ ( 1 - - 2 ~ u  ~) ; 

so that (30) is satisfied provided ¢ is so chosen as a function 
of t ~ that 

o r  

Thus 

1 d e  h 
4r~ dt-- T = --  1 -b ~ .  

4t ' - -  ~ dd~-z 1 
- - 3  1 - - h e  -~ = --  ~ log (1 - - h e - ' )  + const., 

where, however, the constant must vanish, since ~b-----~ cor- 
responds to t~-----0. Accordingly 

h 
~ =  l_e_ ,h t ,  , . . . . . .  (32) 

which with (31) completes the solution. 
I f  t / is small, (32) gives ¢ = 1/4t', in agreement with (24) ; 

while if t' be great, we have ¢ = h = l / q v  '2, as in (15'). 
The above solution is adapted to the case w h e r e f ( u ) - - 0  for 

all finite values of u, when t ~ -  - O. The next step in the pro- 
cess of generalization will be to obtain a solution applicable 
to the initial concentration of f (u ) ,  no longer merely at zero, 
but at any arbitrary value of u ;  that is, to the case where 
initially all the masses are moving with one constant velocity a. 
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Assume 
f =  ~/~b. e-~("-¢) ~, . . . . .  (33) 

where ~b, ~ are functions of t' only. Substituting. as before, 
in (30), we find 

so that the equation is satisfied provided 

d~ 
½3Y +~4'~-2~4 '=° ,  . . . . .  (3:t) 

and 
dq~ 
at--v + 2 ] ~ = 0  . . . . . . .  (35) 

The first is the same equation as we found before, and its 
solution is given by (32) ; while (35) gives 

~ = o t e  -~h`'. . . . . . .  (36) 

Thus (32), (33), (36) constitute the complete solution of the 
problem proposed, and show. how the initial concentration, at 
u---,, passes gradually rote the steady state when t = ~ .  In 
the early stages of the process. 

1 
f (u ,  t') = ~/(4t'-~ e-("-")~/'t'; . . . .  (37) 

to which the factor N[ ~/~r may be applied, when it is desired 
to represent that the whole number of masses is N. It 
appears that during the whole process the law of distribution 
is in a sense maintained~ the only changes being in the value 
of u round which the grouping takes place, and in the degree 
of concentration about that value. 

There will now be no d~ffieulty in framing the expression 
applicable to an arbitrary initial distribution of velocity among 
the masses. For this purpose we need only multiply (33) by 
X(a) da, and integrate over the necessary range. Thus 

f(u, tr)= , /4 -  n~p{ -- 4,(~--a~-'~")'}, (38) 

~ being given, as usual, by (32). The limits for ~ are taken 
+ ~ ;  but we must not forget that the restriction upon the 
magnitude of u requires that ;g(u) shall be sensible only for 
values of u small in comparison with v. 
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When is small, we have from (38), 

1 +® f(u, t t) -- ----~_~/ ®da X (a) e-("-~)~/a'= ~/~'. X(u) ultimately ; 

so that 1 
X(a) = -5~ / ( ' '  0). 

Accordingly the required solution expressing the distribution 
of velocity at t / in terms of that which obtains when t /=0,  is 

We may verify this by sugposing thatf(u, 0 ) = e  -h~', repre- 
senting the steady state. ]?he integration of (39) then shows 
that 

f(u, tl)= e -h~,  

as of course should be. 
An example of more interest is obtained by supposing that 

initially 
f(u, 0)----- e-"u2; . . . . . .  (40) 

that is, that the velocities are in the state which would be a 
steady state under the action of projectiles moving with an 
energy different from the actual energy. In this case we 
find from (32), (39), 

f(u, t ' )=  e *-*+*'. (41) 

We will now introduce the consideration of variable velocity 
of projectiles into the problem o f  the progressive state. In 
(28) we must regard v as a function of v. If  we use vdv to 
denote the number of projectiles launched in unit of time with 
velocities included between v and v + dr, (28) may be written 

d~=4qY ~'dv" d {uf(u)}+2~' f v~'dv'~fd,,~' (42) 

which is of the same form as before. The only difference is 
that we now have in place of (29), 

. . . . . .  (43) 

. . . . .  (44) 
In applying these result~ to particular problems, there is 

an important distinction to be observed. By definition v dv 
represents the number of projectiles which in the  unit, time 
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pass a given place with velocities included within the pre- 
scribed range. I t  will therefore not represent the distribu- 
tion of velocities in a given si)ace ; for the projectiles, passing 
in unit time, which move with the higher velocities cover 
correspondingly greater spaces. I f  therefore we wish to 
investigate the effect of a Maxwellian distribution of velocities 
among the projectiles, we are to take, not v=  Be -ko2, but 

v = B v e  -k~ . . . . . . .  (45) 
In this case, by (18), 

1 , = k / q  ; . . . . . . .  (4a) 

and, as we saw, the mean energy of a mass in the steady state 
is equal to the mean energy of the projectiles which at any 
moment of time occupy a given space. From (43), 

tt=Bq~k-2t . . . . . . .  (47) 

Pendulums in place of Free ~]/Tasses. 

We will nbw inti'oduce a new element into the question by 
supposing that the masses are no longer free to w'mder in- 
definitely, but are moored to fixed points by similar elastic 
attachments. And for the moment we will assmne that the 
stationary state is such that no change would occur in it were 
the bombardment at any time suspended. To satisfy this con- 
dition it is requisite that the phases of vibrations of a given 
amplitude should have a certain distribution, dependent upon 
the law of force. For  example, in the simplest case of a force 
proportional to displacement, where the velocity u is connected 
with the amplitude (of veloci ty)r  and with the phase 0 by 
the relation u = r  cos 0, the distribution must be uniform with 
respect to 0, so that the number of vibrations in phases between 
0 and O+dO.must he dO/27r of the whole nmnber whose am- 
plitude is r. Thus if r be given, the proportional number with 
Velocities between u and u + d~ is 

du 
2_  . . . . . . .  (48) 

-And, in general, if  r be some quantity by which the mnpli- 
tude is measured, the proportional number will be of the form 

dp(r, u) du, . . . . . . .  (49) 
where ¢ is a determinate function of r and u, dependent upon 
the law of vibration. I f  now %(r) dr denote the nmnber of 
vibrations for which r lies between r and r+dr ,  we have 
altogether for the distribution of velocities u, 

A")  =SX (r) ¢(r,  ,,) dr . . . . .  (50) 
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If  the vibrators were left to themselves~ X(r) might be chosen 
arbitrarily~ and yet the distribution of ve]ocity~ denoted by 
f (u) ,  would be permanent. But if the vibrators are subject 
to bombardment, f (u)  cannot be permanent~ unless it be of 
the form already determined. The problem of the permanen~ 
state may thus be considered to be the determination of x(r) 
in (50), so as to maker(u) equal to e -h~'. 

We will now limit ourselves to a law of force proportional 
to displacement, so that the vibrations are isochronous ; and 
examine what must be the form of x(r)  in (8) in order that 
the requirements of the case may be satisfied. 

By (15+), if N be the whole number of vibrators~ 

N ~ / l ' e - h ~ =  f® X(r)dr  (51) 
4 ~" J= ~ , / ( ~ ' ~ -  u~)" 

The determination of the form of X is analogous to a well- 
known investigation in the theory of gases. We assume 

x(~) = a t  e-"", . . . . . .  (52) 
where A is a constant to be determined. To integrate the 
right-hand member of (51)~ we write 

r ~ = u  ~ + ~= ; . . . . . . .  (53) 
so that 

y.f = dr = 

Thus 

The distribution of the amplitudes (of velocity) is therefore 
such that the number of amplitudes between r and r+ dr is 

:q.4hre-h~dr~ . . . . . .  (55) 

while for each amplitude the phases are uniformly distributed 
round the complete cycle. 

The.argument in the preceding paragraphs depends upon 
the assumption that a steady state exists~ which would not be 
disturbed by a suspension, or relaxation~ of the bombardment. 
Now this is a point which demands closer examination ; 
because it is conceivable that there may be a steady stat% 
permanent so long as the bombardment itself is steady, but 
liable to alteration when the rate of bombardment is increased 
or diminished. And in this case we could not argue, as borer% 
that the distribution must be uniform with respect to 0. 

If  x denote the displacement of a vibrator at time t~ 

x = n '-1 r sin (n t -  8), dx/dt--  r cos (at--  ~). 
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When t = 0~ 
x = - - n - l r s i n 0 ~  dx/dt=u=rcos6 ; 

and we may regard the amplitude and phase of the vibrator 
as determined by u, */, where 

u = r  cos 6, , / = r  sin 6. 

Any distribution of amplitudes and phases may thus be ex- 
pressed by f(u, ~) du dr. 

I f  we consider the effect of the collisions which may occur 
at t = 0 ,  we see that n is altered accordin~ to the laws already 
laid down, while */~'ema/ns unchanged. The condition that the 
distribution remains undisturbed by the collisions is, as before, 
that, for every constant 7, f(u, ~l) should be of the tbrm e -an2, 
or, as we may write it, 

f(u, q?)=X(q?) e -au*. 

But this condition is not sufficient to secure a stationary state, 
because, even in the absence of collisions, a variation would 
occur~ unless f(u, ~1) were a function of r, independent of ~9. 
Both conditions are satisfied, if X(V)=Ae-a"2, where A is a 
constant ; so that 

f(u, 7) du d~ = A e -h(~2+~2) du d~ = 2~rA e -n~ r dr. 

Under this law of distribution there is no change either from 
the  progress of the vibrations themselves, or as the result of 
collisions. 

The principle tha~ the distribution of velocities in the 
stationary state is the same as if the masses were free is of 
gre,tt importune% and leads to results that may at first appeur 

:strange. Thus the mean kinetic energies of the masses 
i s  the same in the twn cases, although in the one case there is 
an accompaniment of potential energy, while in the other 
there is none. But it is to be observed that nothing is here 
said as to the rate of progress towards the stationary condition 
when, for instance, the masses start from rest ; and the fact 
that the ultimate distribution of velocities should be inde- 
pendent of the potential energy is perhaps no more difficult 
to admit than its independence of the number of projectiles 
which strike in a given time. One difference may, however, 
be alluded to in passing. In the case of the vibrators it is 
necessary to suppose that the collisions are instantaneous; 
while the result for the free masses is independent of such a 
limitation. 

The simplicity o f f  in the stationary state has its origin iu 
the independence of ~. I t  is no~ difficult to prove that this 
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law of independence fails during the development of the 
vibrations fi'om a state of rest under a vigorous bombardment. 
The investigation of this matter is accordingly more conl- 
plicated than in the case of the free masses, and I do not 
propose here to enter upon it. 

In a modification of the original problem of some interest 
even the stationary distribution is not entirely independent 
of phase. I refer to the case where the bombardment is 
from one side only~ or (more generally) is less vigorous on 
one side than on the other. It is easy to see that a one-sided 
bombardment would of necessity disturb a uniform distribu- 
tion of phase, even if it were already established. The per- 
manent state is accordingly one of unequal phase-distribution, 
and is not, as for the symmetrical bombardment, independent 
of the vigour with which the bombardment is conducted. 

But in one important particular case the simplicity of the 
symmetrical bombardment is recovered. For if the number 
of projectiles striking in a given time be sufficiently reduced, 
the stationary condition must ultimately become one of uniform 
phase-distribution. 

Under this limitation it is easy to see what the stationary 
state must be. Since the ultimate distribution is uniform 
with respect to phase, it must be the same i~om whichever 
side the bombardment comes. Under these circumstances it 
could not be altered if the bombardment proceeded indiffer- 
ently from both sides, which is the case already investigated. 
We conclude that, provided the bombardment be very feeble, 
there is a definite stationary condition, independent both of 
the amount of the bombardment and of its distribution between 
the two directions. It  is of course understood that from 
whichever side a projectile be fired, the moment of firing is 
absolutely without relation to the phase of the vibrator which 
it is to strike. 

The problem of the one-sided bombardment may also be 
attacked by a direct calculation of the distribution of ampli- 
tude in the stationary condition. The first step is to estimate 
the effect upon the amplitude of a given eoUision. From (6), 
if u I be the velocity before collision, and u after, 

u=u' + ~ (v-u'). 

The fraction 2q/ ( l+q)  occurs as a whole, and we might 
retain it throughout., But inasmuch as in the final result 
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only one power of q need be retained, it will conduce to 
brevity to omit the denominator at once, and take simply 

u=u' + 27(v-u') . . . . . .  (56) 

Thus if p, ¢ and r, 0 be the amplitude and phase before and 
after collision respectively, 

~cos 0=p  cos - -  (57) 
~ s i n 0 = p s i n : + 2 7 ( v ;  p c o s ~ ) , }  . . 

so that 
~ = g ~ +  4qp cos ff (v--p cos ¢) +47~(v--p cos ~b) ~. 

From this we require the approximate value of p in terms of 
r and ¢. The term in ~/e cannot be altogether neglected, but  
it need only be retained when multiplied by v ~. The result is 

p=r--~r~ 
where 

~ = 2 ~ ( ~ c o s ~ - r c o ~ ) +  'J sin~6. (58) 
r 

This equation determines for a given ~b the value of p which 
the blow converts into r. Values of p nearer to r will be pro- 
jected across that value. The chance of a collision at to, ~b is 
proportional to (v--p cos ~b). Thus if a number of vibrators 
in stat~ p,.~b be F(p) dp d~b*, the condition for the stationary 
state is 

d~J~ ( ~ - p  cos e) F(p) d p = 0 , .  (59) 

the integral on the left expressing the whole number (esti- 
mated algebraically) of amplitudes which irt a small interval 
of time pass outwards through the value r. 

By expansion of F(p) in the series 

F(p) = F(~) + F'(~) (p-r) + . . . ,  
we find 

f ' F ( p )  dp = F ( r )  ~r--½ F'(r)  (~r)~ + q, cubes of  

f f p  F(p) dp=r F(r)  ($~)2{F(r) +rF ' ( r )  } +cubes ofq. ~r--½ 

* We here assume that the bambardment is feeble. 
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Again from (58), 

.Dynamical Problems in the Theory of Gases. 

o2~$r ddp = -- qr + q~v~/r, 

f o  e. cos ~ ~r d~ = qv, 

f o2"( ~r) ~ dq~ = 2q% ~, 

fo ~"cos ~b (~r) ~ d ~ = 0 .  

The condition for the stationary state is therefore 

v{F(r) (--~r + q~v2/~) -- F'(~) q2v'}--~ F(~) qv=O, 
o r  

F(,)I-2r+ q,.y,}-F'(~) q~=o. 

Thus, on integration, 

r~--qv~log~'+qv~logF(r)= const., . (60) 
o r  

F ( r ) = A r e - " / ~  . . . . . .  (61) 

The mean value of @, expressed by 

fo'r3F (r)dr+yo®,F(r)dr, 
is qv ~ ; that is, the mean value of the maximum kinetic energy 
attained during the vibration is equal to the kinetic energy of 
a projectile. The mean of all the actual kinetic energies of 
the vibrators is the half of this ; but wou]d rise to equality 
with the mean energy of the projectiles, if the velocities of 
the latter, instead of being uniform, as above supposed, were 
distributed according to the Maxwellian law. 

If  we are content to assume the law of distribution, p e-hp ~, 
leaving only the constant h to be determined, the investiga- 
tion may be much simplified. Thus from (57) the gain of 
energy from the collision is 

½ ~ - ½ f = 2qp cos ~ (v - p cos 4) + ~ v  ~. 



.Discharge of Eleetridt S through Exhausted Tubes. 445 

The chance of the collision in question is proportional to tho 
relative velocity (v--p cos ~b) ; and in the stationary state the 
whole gain of energy is zero. Hence 

o @ { 2qO cos ( v -  p cos + 2q v } = O. 

In the integration with respect to ~b the odd powers of cos ~b 
vanish. Hence 

2qv P do e-h°'(q v2 --0 ~) = 0 ; 

s o  that 

as in (61). 

Terling Place, Witham, 
August 19~ 1891. 

h = lJqv 'z, 

LIV. On the .Discharge of Electrlclty through Fxhausted 
Tubes without Electrodes. ~ y  J. J. THOMSON~ M..A., 
F.R.S.~ Cavendish _Professor of Experimental Physms~ 
Cambridge. 

[Continued from p. 336.] 

_Phosphorescence produced by the Discharge. 

T HE discharge without electrodes produces a very vivid 
phosphorescence in the glass of the vessel in which the 

discharge fakes place; the phosphorescence is green when 
the bulb is made of German glass~ bIue when it is made of lead 
glass. Not only does the bulb itself phosphoresc% but a piece 
of ordinary glass tubing held outside the bulb and about a 
foot from it phosphoresces brightly ; while uranium glass will 

hosphoresce at a distance of several feet from the discharge. 
imilar effects~ but to a smaller extent~ are produced by the 

ordinary spark between the poles of an electrical machine. 
The vessel in which the discharge takes place may be 

regarded as the secondary of an induction-coil~ and the dis- 
charge in it shows similar properties to those exhibited by 
currents in a metallic secondary. Thus no discharge is pro- 
duced unless there is a free way all round the tube; the 
discharge is stopped if the tube is fused up at any point. In 
order that the discharge may take place, it is necessary that 
the molecules of the gas shall be able to form a closed 
chain without the interposition of any non-conducting sub- 
stance; indeed the discharge seems to be hindered by the 


