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Abstract

We present a user’s guide to the orbital-free density-functional theory (OFDFT) implementation
available for GPAW. The technical implementation details are given in the paper by Lehtomäki et al.
[J. Phys. Chem. 141, 234102 (2014)]. Here we introduce a more or less self-contained introduction to
the theoretical details underlying OFDFT and the use of a Kohn-Sham solver, and give the practical
guidelines needed to run and understand a GPAW OFDFT calculation. We perform an example
calculation of the binding energy of a N2 molecule, explicitly providing the Python codes required
for PAW setup generation and grid calculation.
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About this guide

This tutorial was originally written by Miguel A. Caro, with additions and corrections by Olga Lopez-
Acevedo, for GPAW. The original version can be accessed from Aalto University’s website, and an official
web version should become available on the GPAW website. The Python scripts provided were written by
Olga Lopez-Acevedo, who also did the atomic PAW setup cutoff optimization, with minor modifications
by Miguel A. Caro. The OFDFT module for GPAW was written by Jouko Lehtomäki and Olga Lopez-
Acevedo, with possible minor additions by others. GPAW as a whole is a collaborative effort: for further
information visit the website at https://wiki.fysik.dtu.dk/gpaw/ and read the implementation paper by
Enkovaara et al. [1]. At the time of writing this user’s guide, OFDFT calculations are only available in
GPAW’s development version.

1 Theoretical introduction

1.1 Orbital-based (Kohn-Sham) density functional theory

Density functional theory (DFT) has become possibly the most popular method for electronic structure
calculations. This is due to its balance between accuracy and computational cost. However, the success of
DFT mostly relies on the introduction of the Kohn-Sham single-particle ansatz [2]. DFT, as formulated
by Hohenberg and Kohn in their seminal paper [3], is an exact theory. In principle all the properties of
a system of interacting electrons in an external potential (for example that determined by the charged
atomic nuclei) can be derived from the knowledge of the electronic density n and the universal energy
functional E[n], where the electronic density can be obtained variationally as the density that minimizes
E[n]. The general form of this functional is

E[n] = 〈Ψ|T̂ |Ψ〉+ 〈Ψ|V̂ |Ψ〉, (1)

where T̂ and V̂ , are the kinetic and potential energy operators, respectively, and |Ψ〉 is the many-body
wave function. The exact kinetic energy functional is then T [n] = 〈Ψ|T̂ |Ψ〉. In practice, the form of
the universal density functional is unknown and we must rely on approximations. As we have already
mentioned, introducing the Kohn-Sham single-particle ansatz is the most popular strategy to tackle this
problem. Kohn and Sham proposed that the electronic density can be expressed as a sum of the density
of a set of N non-interacting single-particle wave functions, also called orbitals:

n(r) =

N∑
i=1

|ψi(r)|2. (2)

The Kohn-Sham energy functional (in atomic units) now becomes

EKS[n] = −1

2

N∑
i=1

〈ψi|∇2
i |ψi〉+

∫
drVext(r)n(r) +

1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
+ Exc[n(r)]. (3)

The first term, denoted Kohn-Sham kinetic energy functional Ts[n], now depends explicitly on the or-
bitals. All the other terms, including the exchange-correlation term Exc[n], depend only implicitly on the
orbitals, because the density is calculated from them. Applying a variational principle to the expression
for the total Kohn-Sham energy (e.g. that it is minimal with respect to changes in the wave functions),
this formulation in turns leads to N Kohn-Sham Schrödinger-like equations (one per orbital):

ĤKS ψi(r) = εi ψi(r), (4)

that need to be solved in order to obtain the orbitals. The aim of orbital-free DFT is to avoid the need
to solve the N equations by removing the explicit dependence of the kinetic energy term on the orbitals,
effectively obtaining a kinetic energy functional T [n] that depends explicitly only on the density. The
motivation for this objective is straightforward: by reducing the complexity of the problem from N
particles to one “particle” the computational cost is greatly reduced. In particular, the scaling law for
the time cost versus system size is reduced from cubic (Kohn-Sham DFT) to linear (orbital-free DFT),
as shown in Fig. 1. The question that follows is a no-brainer: if orbital-free DFT is so wonderful why is
it not the standard implementation of DFT?
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Figure 1: Linear scaling of orbital-free DFT compared to the super-
linear scaling of Kohn-Sham DFT. See Ref. [4] for the details.

1.2 Orbital-free density functional theory

An orbital-free formulation of DFT is more in line with the original spirit of the Hohenberg-Kohn
theorems [3], whereby the universal energy functional can be cast in terms of the electronic density
alone. The success of the Kohn-Sham method relies on the fact that it provides an accurate description
of the kinetic energy, which is the leading term in the total energy. All the many-body effects neglected
by the Kohn-Sham independent-particle formulation are “pushed” into the exchange-correlation energy
functional, which is then estimated by e.g. local-density, generalized-gradient or hybrid-functional (which
typically include Hartree-Fock exchange) approximations. Therefore the accuracy that can be achieved
within the realm of orbital-free DFT calculations heavily depends on the quality of approximated orbital-
free kinetic energy functionals.

As a historically important development and to illustrate how critical the quality of the kinetic energy
functional is, consider the kinetic energy functional of the non-interacting homogeneous electron gas, also
known as the Thomas-Fermi kinetic functional:

TTF =
3

10
(3π2)2/3

∫
dr [n(r)]5/3. (5)

When the Thomas-Fermi functional is used to represent the kinetic energy of electrons in matter, one
obtains results that are quantitatively quite far from reality but, more importantly, are also qualitatively
incorrect. For instance, DFT calculations based on the Thomas-Fermi functional fail to reproduce
molecular bonding of simple diatomic molecules, such as H2, N2, O2, CO, etc. [5]. On the other hand,
calculations based on local-density approximations (LDAs) for the exchange-correlation functional (i.e.
at the same level of approximation as the TF functional) used in combination with Kohn-Sham kinetic
energies have been quite successful at describing qualitative and quantitative properties of matter, such
as shell structure, molecular bonding, phase diagrams, elastic and structural properties, and so on.

It becomes clear at this point that the prospects of orbital-free DFT becoming a successful elec-
tronic structure method rely of refining the approximation of the kinetic energy functional as an explicit
functional of the density alone. We shall come back to this issue later on.
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2 Orbital-free implementation in GPAW: reusing a Kohn-Sham
calculator

Many years of development and popularization of DFT have left us with a variety of efficient codes to
solve the Kohn-Sham equations and an active community hungry for new functionals. It would then be
a great advantage if OFDFT calculations could be carried out reusing the computational tools already
available. Levy et al. [6] showed that it is possible to reformulate the orbital-free problem in such a
convenient way.

The total orbital-free (i.e. explicitly density-dependent) energy functional can be expressed as

EOF[n] =

∫
drn1/2(r)

(
−1

2
∇2

)
n1/2(r)︸ ︷︷ ︸

TW[n]

+J [n] + V [n] + Exc[n] + Ts[n]− TW[n], (6)

where the first and last terms, known as the Weizsäcker functional, are just subtracting each other. J [n]
and V [n] are the classical electrostatic energies due to electron-electron and electron-nuclei interactions,
respectively, and Exc[n] is the exchange-correlation energy functional, whose approximate form can
correspond to any of the usual LDAs or GGAs developed for Kohn-Sham DFT available for GPAW.

The kinetic energy functional Ts[n] is the non-interacting Kohn-Sham kinetic energy, and the last
two terms combined are known as the Pauli functional, Tθ[n] = Ts[n]− TW[n]. Levy et al. showed that
a Kohn-Sham-like equation, derived variationally from the equation above, holds for the square root of
the density: (

−1

2
∇2 + Veff(r)

)
n1/2(r) = µn1/2(r), (7)

where µ is the negative of the ionization energy. By making the equivalence between a single orbital and
the square root of the density, ψ0(r) = n1/2(r), with the condition that ψ0(r) renormalizes to the total
number of electrons in the system, i.e.

∫
dr |ψ0(r)|2 = N , we can rewrite Levy’s expression in terms of

this orbital, (
−1

2
∇2 + Veff(r)

)
ψ0(r) = µψ0(r), (8)

and use GPAW’s Kohn-Sham solver truncated to a single orbital with its occupancy set to the total
number of electrons [4]. This effectively orbital-free equation can be solved self-consistently using GPAW’s
iterative algorithms originally designed to solve the Kohn-Sham equations.

The development of accurate orbital-free kinetic functionals will focus on obtaining a close approx-
imation to Ts[n]. Historically, proposed orbital-free kinetic functionals incorporate only a fraction of
the von Weizsäcker term, parametrized by λ and the full Thomas-Fermi contribution, or the other way
around, where the Thomas-Fermi part is considered to be the correction to the Weizsäcker term. This
dichotomy is known as the “λ and γ controversy” [7].

Both OF approximations to Ts[n] derive from the more general form Ts[n] ≈ γTTF[n] + λTW[n],
and the corresponding Pauli functional is Tθ[n] ≈ γTTF[n] + (λ − 1)TW[n]. Since one could choose to
construct a kinetic functional which does not explicitly include the Thomas-Fermi part (Thomas-Fermi
is only one among possible OF kinetic functionals) we can express in a more general form Ts[n] as
Ts[n] ≈ Tr[n] + λTW[n], where r stands for “rest”, referring to the approximation to the total kinetic
functional minus the included fraction of Weizsäcker. In practice, the “rest” term is included in the code
as part of the definition of the exchange-correlation functional, and the Weizsäcker contribution will be
included via an additional parameter (see the next subsection on “λ scaling”). This more general form
leads to the Pauli functional expressed as Tθ[n] ≈ Tr[n] + (λ− 1)TW[n].

2.1 λ scaling

When using only a fraction of the Weizsäcker term the orbital-free equation needs to be rearranged in
the following way due to convergence issues and practicalities of the implementation [4]:(

−1

2
∇2 +

1

λ
V ′

eff(r)

)
ψ0(r) =

µ

λ
ψ0(r). (9)
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The new modified effective potential has the form:

V ′
eff(r) =

δ

δn
(Tr[n] + J [n] + V [n] + Exc[n]) . (10)

Because of practical considerations, the term Tr[n] is included as part of a parametrized exchange-
correlation energy functional when running GPAW’s OFDFT module, as explained in detail in the
section on running the code. Read through the next section to learn how the kinetic functional is defined
in terms of how the present GPAW OFDFT implementation works.

3 Construction and suitability of orbital-free kinetic energy func-
tionals

Although in principle any kinetic energy functional available from LibXC [8] can be used to run OFDFT
calculations in GPAW, we have only tested extensively a parametrized combination of Thomas-Fermi
and von Weizsäcker, in combination with LDA exchange and correlation. On the list of ongoing research
is the derivation of more accurate kinetic energy functionals. The recurrent (parametrized) form of the
kinetic energy functional used in the examples below is

EOF[n;λ, γ] = λTW[n] + γTTF[n] + J [n] + V [n] + EPW
xc [n], (11)

where the fractions of Thomas-Fermi and von Weizsäcker are given by γ and λ, respectively, and the
exchange-correlation energy functional is the Perdew-Wang LDA (although we could have chosen any
other LDA of GGA functional). An extensive and detailed study on the performance of this parametrized
functional for atoms has been presented in the paper by Espinosa Leal et al. [9].

An important thing to note is that because of how the implementation is done in GPAW, your kinetic
energy functional must always contain a fraction of Weizsäcker, λTW[n], where λ is set by the use of the
keyword tw_coeff. The definition of the remainder of the kinetic functional, Tr[n] = T [n] − λTW[n],
is done through the definition of the XC functional choosing a kinetic functional from those available
in LibXC and prepending a number for the corresponding fraction to be incorporated into T [n]. For
instance, in the example above, T [n] − λTW[n] = γTTF[n]. When defining this kinetic functional in
GPAW, say for λ = 0.2, γ = 0.8, we would do:

lambda = 0.2

gamma = ’0.8’

# Fraction of Weizsacker introduced through eigensolver definition

eigensolver = CG(tw_coeff=lambda)

# Fraction of Thomas -Fermi included in the definition of the XC functional

xcname = gamma + ’_LDA_K_TF+1.0_LDA_X+1.0_LDA_C_PW ’

3.1 A note on convergence

Convergence problems have been one of the historical obstacles to the development and spreading of
OFDFT. Convergence instabilities of the self-consistency cycle have been attributed to the quality of
the kinetic energy functional [10]. As a general rule, the more inaccurate the approximated orbital-free
kinetic functional the more severe convergence problems will be. If you experience convergence problems,
chances are that you are using an unreasonable approximation for the kinetic functional of your system.

4 Running the OFDFT GPAW module

Running GPAW’s OFDFT module consists of two steps. The first thing to do is to generate the OFDFT
PAW setups for each element and functional of interest. This needs to be done only once. For further
information on the PAW formalism the reader is referred to the original paper by Blöchl [11] and the
GPAW implementation paper [1]. The second step is to run the calculation itself. Both steps are
described in detail below.
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4.1 Setup generation

Before an orbital-free calculation can be carried out the PAW setups need to be generated. Currently,
only a 1s projector can be used for setup generation, but the plan is to extend this capability in the future
to be able to use a more flexible basis. Below we give a code example to generate the setup for a N atom
with λ = 1, γ = 1 and Perdew-Wang LDA exchange-correlation. The code includes the optimum cutoff
distances for the augmentation spheres for all the atoms in the first three rows of the periodic table.
N and the different functional options can be replaced by the desired values. Note that the definition
of the functional is done separately for the Weizsäcker part (through the tw_coeff keyword) and the
rest (Thomas-Fermi in the present case) which is done through the definition of the exchange-correlation
functional. The orbital-free mode is enabled through the option orbital_free=True.

Also note that the parametrized exchange-correlation functionality allows to use a linear combi-
nation of the different exchange-correlation functionals available from LibXC by changing the num-
ber prepended. For instance, xcname=’1.0_LDA_X+0.5_LDA_C_PW+0.5_LDA_C_PZ’ would combine half
Perdew-Wang with half Perdew-Zunger LDA exchange-correlation functionals.

from gpaw.atom.generator import Generator

# List of elements for which setups will be generated

elements = [’N’]

# Fraction of Weizsacker

lambda_coeff = 1.0

# Fraction of Thomas -Fermi

gamma_coeff = 1.0

# Select optimum cutoff and grid

for symbol in elements:

gpernode = 800

if symbol \section{’H’:

rcut = 0.9

elif symbol in [’He’ or ’Li’]:

rcut = 1.0

elif symbol in [’Be’,’B’,’C’,’N’,’O’,’F’,’Ne’]:

rcut = 1.2

elif symbol in [’Na’,’Mg’,’Al’,’Si’,’P’,’S’,’Cl’,’Ar’]:

rcut = 1.4

else:

rcut = 1.0

# If the lambda scaling is used change name to differentiate the setup

name = ’lambda_{0}’.format(lambda_coeff)

# Use of Kinetic functional (minus the Tw contribution ) inside the xc definition

pauliname = ’{0}_LDA_K_TF+1.0_LDA_X+1.0_LDA_C_PW ’.format(gamma_coeff)

# Calculate OFDFT density

g = Generator(symbol , xcname=pauliname , scalarrel=False ,

orbital_free=True , tw_coeff=lambda_coeff ,

gpernode=gpernode)

try:

g.run(exx=False , name=name , use_restart_file=False ,

rcut=rcut ,

write_xml=True)

except:

print "error"

4.2 Running an OFDFT calculation

Once the needed setups have been generated, an OFDFT calculation can be run similarly to any standard
Kohn-Sham GPAW calculation. Remember to make the path where you saved your OFDFT setups
available to GPAW via the setup_paths function, as in the example below, where we run a PAW
calculation for a N atom. Also remember the name of your XC functional needs to match the name of
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the corresponding setup you generated. GPAW will recognize the setup as an OFDFT setup and the
orbital-free mode will be automatically enabled.

from ase import Atoms

from ase.parallel import paropen

from gpaw import GPAW

from gpaw.mixer import Mixer

from gpaw.eigensolvers import CG

from gpaw.poisson import PoissonSolver

from gpaw import setup_paths

from ase.units import Bohr , Hartree

setup_paths.insert(0, ’.’)

# Usual GPAW definitions

h = 0.18

a = 12.00

c = a/2

# XC functional + kinetic functional (minus the Tw contribution ) to be used

xcname = ’1.0_LDA_K_TF+1.0_LDA_X+1.0_LDA_C_PW ’

# Fraction of Tw

lambda_coeff = 1.0

name = ’lambda_{0}’.format(lambda_coeff)

filename = ’atoms_ ’+name+’.dat’

f = paropen(filename ,’w’)

elements = [’N’]

for symbol in elements:

mixer = Mixer ()

eigensolver = CG(tw_coeff=lambda_coeff)

poissonsolver=PoissonSolver ()

molecule = Atoms(symbol ,

positions=[(c,c,c)] ,

cell=(a,a,a))

calc = GPAW(h=h,

xc=xcname ,

maxiter=240 ,

eigensolver=eigensolver ,

mixer=mixer ,

setups=name ,

poissonsolver=poissonsolver)

molecule.set_calculator(calc)

E = molecule.get_total_energy ()

f.write(’{0}\t{1}\n’.format(symbol ,E))

5 Example calculation

Here you will learn how to run a GPAW OFDFT calculation for the binding energy of an N2 molecule.
Any other GPAW method, as explained in the different GPAW tutorials, can also be used with OFDFT
by employing the definition of the GPAW calculator detailed here.

In the present example, our kinetic energy functional will be T [n] = TW + TTF, corresponding to
λ = 1, γ = 1, and our XC functional will be Perdew-Wang LDA. Below you will find the steps you need
to follow in this tutorial.
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Figure 2: Variation of the energy of the N2 molecule with respect to
changes in the N-N interatomic distance.

5.1 Generate the setups

Follow the instructions given in the section on running OFDFT for PAW setup generation for N. This
should generate a file called "N.lambda_1.0.1.0_LDA_K_TF+1.0_LDA_X+1.0_LDA_C_PW" in your current
directory, which contains the OFDFT PAW setup information for N generated with the desired energy
functional.

5.2 Run the grid calculations

We will now run grid calculations for atomic N and molecular N2 using the setup generated in the
preceding step. For the atomic calculation use the code given in the second part of the running OFDFT
section. The energy calculated by GPAW on the grid is given with respect to the total energy of the
atomic calculation done during setup generation, and should be close to zero. For the N2 molecule, we
first need to optimize the bond length. In order to do so, plot the system’s energy as a function of
interatomic distance and look for the minimum, for instance by adding the following loop to your script
(since the experimental bond length is about 1.098 Å we will start searching in that region):

for d in [0.9, 1.0, 1.1, 1.2, 1.3, 1.4]:

molecule = Atoms(’N2’,

positions=([c - d/2, c,c], [c+d/2,c,c]),

cell=(a,a,a))

We plot the output, which looks like Fig. 2.
Since errors with OFDFT can be quite large, the initial range was very wide (between 0.9 Å and

1.4 Å), and a 4th-order polynomial is required to fit the data. The analysis reveals that for this particular
energy functional the equilibrium bond length of N2 is close to 1.2 Å, which allows us to refine the search
by adding further data points around that value, as shown in Fig. 3.Refining the range allows us to
establish the interatomic distance in N2 at approximately 1.229 Å for this functional, about +12% error
compared to the experimental value. The energy calculation for N2 is thus performed for this value. The
results are summarized in Table 1. The binding energy, 2E(N)−E(N2) is 13.266 eV. For reference, the
experimental value is about 9.79 eV.

5.3 Accuracy

For PAW calculations, as well as for pseudopotentials, the formalism itself will introduce (hopefully
small) errors compared to full potential calculations, often referred to as “all-electron calculations” in
the context of the frozen-core formalism. These errors also affect usual Kohn-Sham calculations, not
only OFDFT. In the case of GPAW, the main sources of error will be the cutoff of the augmentation
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Figure 3: Same as Fig. 2 for a region closer to equilibrium.

Table 1: PAW energies of N and N2 using the Thomas-Fermi-Dirac-
Weizsäcker functional with the (λ = 1, γ = 1) parametrization.

System Energy (eV) Bond length (Å)
N 0.00723 n/a
N2 −13.25142 1.229

spheres and the grid spacing, both in the radial grid for atomic setup generation and the regular grid
for PAW calculations. For N2 there is a full potential OFDFT calculation that we can use for reference,
by Chan et al. [12]. Since this reference calculation did not include correlation, in order to compare our
result to Chan’s we need to perform the same calculation as above removing the 1.0_LDA_C_PW from
the definition of the XC functional, which yields 12.602 eV for our PAW calculation. The reference
full-potential binding energy from Chan is 12.599 eV (0.463 Hartree) giving a deviation of only 0.004 eV.

As is the case for Kohn-Sham PAW calculations in GPAW, one would also need to check the effect
of varying the cutoff radius of the setups and the grid spacing on the results. For the comparison with
Chan’s reference binding energy of N2, Table 2 summarizes the effect on the PAW calculation of changing
the cutoff during setup generation while keeping the other parameters unchanged.

Note that as the cutoff is reduced the potential becomes harder (less smooth) and a finer grid would
be required to keep the error small in the PAW calculation (this roughly corresponds to increasing the
size of the basis in plane-waves calculations). The “default” values given in the scripts of the present
tutorial correspond to our own optimization of these values, but depending on your own requirements
for accuracy and your specific system under study you might have to consider optimizing these values
yourself. A much larger source of error than the technical parameters discussed above, and even more so
for OFDFT calculations, is the choice of functional. For a test on the performance of different possible

Table 2: Dependence of the N2 binding energy on the cutoff used
for N PAW atomic setup generation.

Rcut (Bohr) N2 binding energy deviation (eV)
0.9 −0.091
1.0 −0.075
1.1 −0.031
1.2 −0.004
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kinetic functionals, you can vary the values of λ and γ and repeat the calculation, in order to check how
the choice of OF functional affects the values of bond length and binding energy.

6 Citation information

If you use GPAW’s OFDFT module for the compilation of published work, remember to add (in addition
to the general GPAW and PAW references) a citation to the following papers:

• J. Lehtomäki, I. Makkonen, M. A. Caro, A. Harju, and O. Lopez-Acevedo, Orbital-free density
functional theory implementation with the projector augmented-wave method, J. Chem. Phys. 141,
234102 (2014).

• L. A. Espinosa Leal, A. Karpenko, M. A. Caro, and O. Lopez-Acevedo, Optimizing a parametrized
Thomas-Fermi-Dirac-Weizsäcker density functional for atoms, Phys. Chem. Chem. Phys. (ac-
cepted), (2015) DOI: 10.1039/C5CP01211B.
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