260. Pascal's Theorem
Author(s): John J. Milne
Published by: Mathematical Association
Stable URL: http://www.jstor.org/stable/3603383
Accessed: 14-12-2015 06:08 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
is thus true for any rational \(x \). And the truth follows for irrational values of \(x \) by the continuity of \(\exp \, ix \) on one side (which has to be proved), and of \(\cos x \) and \(\sin x \) on the other.

5. In conclusion, I wish to add a few words. The Multiplication Theorem of two absolutely convergent series is undoubtedly an important theorem, leading as it does to proofs of the Binomial and Exponential Theorems and of the sine and cosine series, not to mention its importance, otherwise, in theory. But there is a theorem of far greater importance in the Theory of Infinite Series and Infinite Products which appears neglected; and to this theorem, I think, we should turn for any substantial improvement in the elementary treatment of Infinite Series and Infinite Products. And I am of opinion it is high time we should give this theorem its fundamental place and relegate the Multiplication Theorem to second rank. I hope to return to this point as soon as possible.

V. RAMASWAMI AIYAR.

Gooty, India,
24th January, 1907.

260. [§ 1. 1. c.] Pascal's Theorem.
Proved for the conic and line-pair by the methods of Euclid and Apollonius.
\(a, b, c \) and \(a', b', c' \) are any six points on a conic, or by threes on the pair of lines \(L \) and \(L' \).

\(a, \beta, \gamma \) are the intersections of \((bc', b'c), (ca', c'a), (ab', a'b) \).

It is required to prove that \(a, \beta, \gamma \) are collinear.

Through \(a \) draw \(ae \) parallel to \(ca' \). In the conic, \(O \) is the centre \(bs't', \) and \(Oa \) are parallel to \(ca' \), and \(OB \) is parallel to \(aa' \). Complete the figures by joining points as required.
I. For the conic. By similar triangles,

\[\frac{eh}{b's'} = \frac{hc}{cb'} = \frac{am}{mb'} = \frac{a'd'}{a't} \]
and

\[a'm : b't' = a'a : at'. \]
\[\therefore \; eh \cdot a'm : a' = b's' : b't' : at'. a't' = O.A^2 : OB^2. \]

Again,

\[ck : sb = ec : es \]
\[= a'a : at. \]
\[\therefore \; ck : a'a = sb : at \]
\[and \; al : a'a = bt : ta'. \]
\[\therefore \; ck \cdot al = a'a = sb \cdot bt : at \cdot ta' = O.A^2 : OB^2. \]
\[\therefore \; by \; (1) \; and \; (2), \; ck \cdot al = eh \cdot a'm. \]

II. For the line-pair. By similar triangles,

\[ck : ae = kb : be \]
\[= ka' : le. \]
\[\therefore \; ck : ka' = ae : le. \]
\[\therefore \; ck : ea' = ae : al. \]
\[\therefore \; ck \cdot al = ca' = ae \cdot \cdots \cdots (3) \]

Again, from the similar triangles \(b'eh, b'a'c \),

\[ek : a'c = b'e : b'a' \]
\[= ae : a'. \]
\[\therefore \; ek \cdot al = ca' = ae \cdots \cdots (3) \]

\[\therefore \; in \; both \; the \; conic \; and \; the \; line-pair, \]
\[ek : ck = al : a'm. \]
\[\therefore \; eq : gk = t\gamma : \gamma a'. \]
\[\therefore \; ek : gk = l\gamma : \gamma a' \cdots \cdots (4) \]
\[bk : be = ba' : bl. \]
\[\therefore \; bk : ck = ba' = al. \cdots \cdots (5) \]

\[\therefore \; by \; (4) \; and \; (5), \; bk : gk = ba' : \gamma a'. \]
\[\therefore \; \gamma g \; is \; parallel \; to \; a'c \; or \; ae. \]

Now \(\gamma \) is the intersection of \((ab', a'b) \) and \(g \) of \((eb, b'c) \).
\[\therefore \; if \; we \; introduce \; the \; point \; \gamma' \; in \; the \; place \; of \; b', \; and \; if \; n \; be \; the \; inter-
\[\therefore \; section \; of \; (a'c, a'b), \; \gamma \; \gamma' \; will \; be \; parallel \; to \; a'c \; or \; ae, \]
\[\therefore \; and \; therefore \; also \; to \; \gamma g. \]
\[\therefore \beta p : pc = nr : n' \]
\[= \gamma q : gg. \]
\[\therefore \beta p : \gamma q = pc : gg \]
\[= ap : agq. \]
\[\therefore \beta p : pa = \gamma q : qa. \]
\[\therefore \; a, \beta, \gamma \; are \; collinear. \]

John J. Milne.

261. [X. 4. b. β.] Graphical solution of a biquadratic.

The roots of the quartic

\[x^4 + ax^3 + bx^2 + cx + d = 0\]

are the abscissae of the meets of the hyperbola \(xy = d \) and the circle

\[x^2 + y^2 + ax + \frac{c}{d}y + b = 0. \]

The last term of the quartic can always be made positive by increasing the roots, each by the same amount, so that the method always applies. We get the same values of \(x \) by using the hyperbola \(xy = -d \). E. J. Nanson.