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MISCELLANEA. 

I. On a General Method of determining the successive terms in a 
Skew Regression Line*. 

BY KARL PEARSON, F.R.S. 

Let x and y be the two variates. Suppose the x-range divided up inito any not necessarily 
equal intervals h. giving arrays of y of which the meati of those which centre at x (lying some- 

here inl hX) is9 YX and the array total n_. Let .i, y, oX oy be the means and standard deviationis 
of the total populationi Y of the two variates. Assumrl-e the form of the regression line of y on x 
to be: 

~XY= aO+a.1+1 +*++an An *.................(i), 

where a0, a1... a,, are absolute constants to be determined and *, is aln orthogonal function of 

-,i.e. is subject to the condition that: 

S (n, k8 44) = 0, s and s' unequal ....................... (ii), 
if the summation S be taken for all values of x correspionding to the arbitrary system of arrays. 

Further let us suppose t that: 

8l = n & {x -Y Y) ($X) } nx = y E ( (x ) } =p ( t 

in the usual produiet-moment notation. 
Clearly if the +44s can be determined we must have by virtue of (ii) from (i) 

S (_jx 7 (?) ik,) = an (? +) .(iii). 

Now if + nbe determined as an integral function of (x - X)/or of the nth degree, the left-hand 
side of (iii) is expressible in terms of the qlt's, or the product-moments of the correlation distri- 
bution. Thus an will be determiined. Let us write: 

K = nx (N.x- ) +J} 

and X Na, }.(iv). 
Then an= Kn/In ................................................... (iii) bis 
is known, if the +,'s have once beeni determined, from the product-moments of the system of the 
correlated variates, and the moment coefficients of the s-variate. 

Square (i), mulltiply by nx/IN and sum for all arrays, we have: 

s ( 
P 
2X,+)2) +a 2 

. ~ () s ( .-(Pr, )) = r2Y X = aO2AO + al2 n ...................... Xn2)n ...z () 

Here i7y, Z is the well-ktnown correlation ratio of y-variate on s-variate, and must always lie 
between 0 and 1. The series oni the right-hand side of (v) consists of a system of squares, and 
accordingly every additional term we take in our series for the regression line must carry us 
nearer this value of 17 2. Unless X,, tends to zero the a6sn must grow smaller and smaller, or we 
have considerable anticipation of the convergency of the series, but this does not amount of course 
to definite proof. 

* Reproduced from lecture notes. 
t S denotes summation of all arrays, 2 denotes summation for each individual point. 
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Miscellanea 297 

Now suppose we had to determine our as's from (i) by the method of least squares, each array 
being weighted by its frequency. We should have to make 

u2=S {-v (e -ao#o-a1#1l- t>w)2} 
a minimum. 

dU2 x/ X-(.+2 Btut d=O=2S N( - _2a_N d8 
or a8= K,>Xe,, 
in agreement witb the result obtained in (iii) bis above as a result of the +,,Is being orthogonal 
functions. Now the fit by least squares to the means of the arrays is precisely the same as the fit 
by least squares to the whole swarm of points. In other words if we fit our regression line as 
above indicated to the whole population it will be "the best" fitting curve, if we make the 
assumption that least squares does give the best fit*. Anyhow it is likely to be a good fit, and 
that suffices for our present purposes. 

We will now write X= (x -)/o and Y =(y -y)/ay, whence it follows that qlit =S (n Y Xt)/IN. 
We shall fturther write: 

zJ= ("X XI) ax,11N, 

and $&=#28+21ah 2 +2=S {n(X ( ;)2 +} = S (n jX28 +2) and ~ ~ ~ ~ ~ - No 2s+2 N 
A28 + 1I$3 

928-1= ao2+4 

We may rewrite (i) Y=ao#o+al+,i+... +an* . ................................ (i) bis. 
Multiply both sides by n?+O/IN and sum: 

S (nx Y4U) = S (a2) 2= aO 
N =a~~N~ao= 

if we assume +0= 1 as we are at liberty to do. But the left-hand side is zero. Therefore a=O0. 
Now assume 4t X- clo+o and multiply both sides by nx# oIN and sum: 

-S 0+,1-=0 by hypothesis=S(nXiko) = (N .qio ) 

But S(nx+o)=Of .*. c10=0, and +,=X. N 
Multiply both sides by nxXINT and sum: 

S (n. YX) S (n X+1) S(n,X2) 
N =ral N =a, N a,. 

Ilence a-= r. 
Now assume +2= X2 -C21+1-C20+o. Multiply by n.#o/NV and sum: 

0 = S (n, X2) 
fo-?-C20-1-C20 

Thus c20=1. 

Multiply by n. +#/lN and sum: 
O S(n= X2) _ C S (n, k12) 

N NT S (n.,X3)= /1 2s (n., X2)=c 

Thus c21=VI. 
* In order that this statement should be absolutely true our arrays would have to follow the normal 

or Gaussian distribution. This produces, however, an unnecessary limitation. It is known, but possibly 
not well known, that expansions in orthogonal functions as defined by (ii) give least square fits. I am 
rather inclined to think that this is an argument in favour of least square fits, rather than a justification 
of the expansion, i.e. that the method of least squares has a wider validity thati Gauss' proof provides. 
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298 Miscellanea 

Vsi must of course be given the same sign as 3. Accordingly we have: 
#2= X2-/%X_ 1. 

Square, multiply by n.,/N and sum and we have: 

S (n.4+22) - S (nf#2X2) 
N N~29l 

It remains to find: 
S (n.Y Y2) = s {nz Y (X2 N =Snx(XVX -1)/N} =q12 -rVX. 

Thus it follows frtom (iii) that a2= (q12 - r - 1). 

We now proceed to find 43: 
4'3=X3-c324,2 -311 1-e304+0. 

Multiply by n.#O/N and sum: 
S (n. X3) 

0= N c3o, or c30= Vl 

Multiply by n. +,/IN and sum: 
oS(n.X4)_ S(ntX2) 

N NC1 , or c31 = j2. 
Multiply by n +2/IN and sum: 

0S{n. X3 (X2~V1~1)_ Sn#2 

N C32 N ' 

V$2- V//3i2 eC32 (/2 - l1- 1) 

193 ISIR2 -1 _c32 (,182 - igl 1 )) 

C32= -/ 3 -12 2 -- 

1 (/2 -/1-1) 

Accordingly: k3= X3 - 
- 

/ 1Flg /312 
- 

2 - 32'kl - V$1+0 

or 3 =X3- 393-/l1/2-/31 X2+033- 22+032 1-lX+$3-23102+ 912 

VX 3(02 -181-1 @2 -01-I N/#1 (182-@ 

We have next to determine Kc3: 

K 
(Y (n ,3) 

N 

= q13 d- 13-l2 - 
q12 + 3 -22+ 2-3I r 

= V~ 082 
- 2r_.v31 -2 1) (l $) 03 -1810232--31- 

Let us write: E12= =ql2-'rV1, FJ3=ql3-/2r, 

02= -3 1- 1, c03= (/33 - i13/2-/3O/V2 

Thus K3-E13 -3 jE12. 

We have next to find X3: 

3 =S (n4 32) (nX3 } 
N - tN - * 

(03 -$1 2 - 1) $3 (#3 - /22 +/2 -/31)2 +/3 - 2/1 $2 + $12 

/1 (i32 - i3-1)+ /32-131-1 + 2-11 

= 34 02 2ol -(i3~ - /31/32-013)2 

f1 A 
- 

31 - 1) 

= q54 - (k321(k2 f (A4 =#4 -.,822 -, #. 
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Miscellanea 299 

Accordingly: = 324 4)1 204 
- 4)32 

We now pass to the fourth order regression line function: 

#4 = X4 
C433 - 0C42*2 -C41+1 -C40+0k 

and we find: 
S (n,X4 3) S (n. t32) 

-2V 0C43 N =C43X3 

_ 6 ($3 112 - 1)34 (93 -$22+$2$ 1)p ($3 3 -I 2 2 + 12)$2 

V41 'Va (02 -,1 - 1) V41 (92- 1 - 1) '%/l 032 -01 - 1) 

1,5({32 -,SI1 - 1) - J94 (,83 -,81,8;2 - 01) + 33 ({33 _- 1322 + 2132 
- 

/31) + i31 02 (O3 - 232}*/1 (132 ~i3 ) 

Let +6=$6 (82 - 1 - 1) )94 (83 - 1312 - 31) + 03 083 -,8 2 + 2,8 - + ig fJ 081 2#2, 

Thus: ('434- 03 2 
f?)4'02 - 0)3 

Again: =(n42 X44,2) __ 

N 

/4 - $3 -$ C2= (C42 - 
- 1), 

or 04 )4403 V1 + )2$2 4) 4 Say, = C424)2. 

Thus: C42 t)4 
(102 

$3 Further: . 
C413 

and $2 = 040. 

Thus: +4X4- , 2*36 - 2-7 -41-$2*0. 

To find a4 we must determine 'C4 and X4: 

S (nxX 4+4) 

N 4-~~~~0 2 
L'(ff_8 ,2 2 

-++ 0 3') 02 '02 ( 0 3 )-a8-2 

)2 (4)2 

2 2(04)42-432) 02 
$2 

where <z6 ,83^- _'82 

4-S (N4) --=14- 
O 

4,,2 613- KE 
3 

{E12 
- /4' (ql2-r $/l-)- 

Let us write q14 - r = e , then 

F14 - 5-72 (E13- _ i2)- 12 
a4 '42 

- 
3 \ 02/ 4)2 a4 06 ~4)2 04)2 

402(442-032) - 2 

We have thus obtained the regression orthogonal functions up to the fourth order. Higher 
order terms can also be found, but their expressions become very complicated and such expressions 
involving fifth product-moments and eighth marginal total moments will be subject to very large 
probable errors. 
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300 Miscellanea 

We can now by aid of (v) express , We have: 

i2. Y, =r2+ El22/02+ (L13- 0213 /(I4 - 032/qa) 

{F14 - 
_ 

{l2 - (E13 - E12)I(04 - 03 /l2)4 
+ 2etc2 ........ 

406 -44 /02- (S4-+3 /02) 

The 'coniditions therefore for linear regression, or q. = r, are: 

612= E13 f14= etc.- = 0... 

That is: ql2 rV r , q13=r, 2, q14=r , #3etc........ 

For parabolic regression: E13 -3F12, E14=-04 12, etc........ 

or l3 ol q12 =r (- 3 )X 

1-4 912=r( - )etc...... 

Aud lastly for cubical regression: 

E14-+? E12- 022 ((1ElS: El2)/(94--3 )=0, etc........ 

Such conditions, especially with regard to their probable errors, become less and less manageable 
as we proceed. 

The general principle involved in the present paper has been discussed by Tchebycheff*, and 
more adequately by J. P. Gram t, but the former had in view the fitting or graduating of curves. 
He calculated quantities which correspond to our JL8 s on the assumption that n = 1, i.e. that the 
weight of the yx's are all the same or that the marginal total is a rectangle. He was thinking of 
fitting a curve to a curve and not fitting a culrve to a swarm of points. In his case each u, and 
accordingly each 9 and each 4 is expressible in terms of the total number m of subranges which 
he takes of equal length. There are I thiuk simpler methods of calculating the equation to a 
higher order parabola in such cases $. As far as I am aware these orthogonal regression functions 
have not hitherto been dealt with and they throw a good deal of light on the original equations 
I provided in 1905 for skew regression. I had not recognised at that time that my expressions 
of each order were true orthogonal functions. It will be seen that my solution does not involve 
equality of subranges and is not limited to aty special frequency distribution. 

It. Note on the "{Fundamental Problem of Practical Statistics." 

(Biometrika, Vol. xiii, p. 1.) 

Some misunderstanding has arisen with regard to nmy paper under the above title in the last 
issue of this Journal. I believe it to be due to the critics not having read Bayes' original theorem 
as giveni by Price in the Phil. Tranm., V0ol. Lli. Bayes takes a ball and places it at random on a 
table, say of breadth unity, aind its distance from one side being x, its chance of falling between 
x and x + 8x is 8x. x is thus not a chance, but -a variate. He now calls a " success," the chance that 
any other ball placed at random on the table will be nearer to the same side than the first 

* Mgmoires de l'Acadgmie de Saint-Pdttetsbourg. Memoirs in 1854 and 1859. A rdsurn by R. Radau: 
Bulletin Astroezomique, T. viii, Paris, 1891, pp. 850, 376 et seq. See also Liouville's Journal, 2* S4rie, 
T. in (1858), p. 289 et seq. 

t Thesis: " Om Rtekkeudviklinger beetemte ved Hjaelp af de mindete Kradvatero MethOde." Kj6ben- 
havn, 1879. 

$ Biometriika, Vol. ii, p?. 12-16. 
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